Search results for: decision tree classifier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4972

Search results for: decision tree classifier

4792 Dust Holding Capacity of Some Selected Road Side Tree Species

Authors: Jitin Rahul, Manish Kumar Jain

Abstract:

Dust pollution refers to the various locations, activities, or factors which are responsible for the releasing of pollutants into the atmosphere. The sources of dust can be classified into two major categories anthropogenic sources (man-made sources) and natural sources. Dust kicked up by heavy vehicles (Bus, Truck, Loaders, Tankers, car etc.) travelling on highways may make up approximately 33-40% of air pollution. Plants naturally cleanse the atmosphere by absorbing gases and particulate matter plants (Leaves). Plants are very good pollution indicator and also very good for dust capturing (Dust controlling). Many types tree species like Azadirachta indica A. juss, Butea monosperma (Lam.) Kuntz., Ficus bengalensis (Linn)., Pterocarpus marspium (Roxb.), Terminalia arjuna (Roxb, exDC.), Dalbergia sissoo roxb., and Ficus religiosa (Linn.) generally occur in roadside. These selected tree spiciness can control the dust pollution or dust capturing. It is well known that plants absorb particulate pollutants and help in dust controlling. Some tree species like (Ficus bengalensis, Ficus religiosa and Azadirachta indica) are very effective and natural means for controlling air pollution.

Keywords: dust, pollution, road, tree species

Procedia PDF Downloads 336
4791 Simulation of the Impact of Street Tree Species on the Urban Microclimate: A Case Study of El-Houria Neighborhood in Mostaganem, Algeria

Authors: Bachir Nora

Abstract:

Integrating vegetation into urban environments is crucial for enhancing quality of life, particularly through microclimate regulation and the reduction of urban heat islands. This study investigates the impact of different street tree species on the urban microclimate in the El-Houria neighborhood of Mostaganem, Algeria, using the ENVI-met software for advanced environmental simulations. it focused on three tree species—Robinia pseudo-acacia, Populus alba, and Jacaranda mimosifolia—to evaluate their effectiveness in influencing key meteorological parameters, including air temperature, mean radiant temperature, surface temperature, and the predicted percentage of dissatisfied (PPD) thermal comfort index. Statistical analyses were conducted to compare these parameters across different tree species, ensuring the robustness of our findings. Our results indicate that Robinia pseudo-acacia is the most effective species, capable of reducing air temperature by up to 1°C and surface temperature by up to 12°C. These findings underscore the importance of strategically selecting tree species to mitigate the effects of climate change, improve thermal comfort, and reduce energy consumption in urban settings. The study offers valuable insights for urban planners and policymakers, providing practical guidance for sustainable urban design practices tailored to the Algerian context.

Keywords: heat islands, microclimate simulation, street tree alignment, sustainable urban design, thermal comfort.

Procedia PDF Downloads 32
4790 Fast Switching Mechanism for Multicasting Failure in OpenFlow Networks

Authors: Alaa Allakany, Koji Okamura

Abstract:

Multicast technology is an efficient and scalable technology for data distribution in order to optimize network resources. However, in the IP network, the responsibility for management of multicast groups is distributed among network routers, which causes some limitations such as delays in processing group events, high bandwidth consumption and redundant tree calculation. Software Defined Networking (SDN) represented by OpenFlow presented as a solution for many problems, in SDN the control plane and data plane are separated by shifting the control and management to a remote centralized controller, and the routers are used as a forwarder only. In this paper we will proposed fast switching mechanism for solving the problem of link failure in multicast tree based on Tabu Search heuristic algorithm and modifying the functions of OpenFlow switch to fasts switch to the pack up sub tree rather than sending to the controller. In this work we will implement multicasting OpenFlow controller, this centralized controller is a core part in our multicasting approach, which is responsible for 1- constructing the multicast tree, 2- handling the multicast group events and multicast state maintenance. And finally modifying OpenFlow switch functions for fasts switch to pack up paths. Forwarders, forward the multicast packet based on multicast routing entries which were generated by the centralized controller. Tabu search will be used as heuristic algorithm for construction near optimum multicast tree and maintain multicast tree to still near optimum in case of join or leave any members from multicast group (group events).

Keywords: multicast tree, software define networks, tabu search, OpenFlow

Procedia PDF Downloads 264
4789 Fatty Acid Composition, Total Sugar Content and Anti-Diabetic Activity of Methanol and Water Extracts of Nine Different Fruit Tree Leaves Collected from Mediterranean Region of Turkey

Authors: Sengul Uysal, Gokhan Zengin, Abdurrahman Aktumsek, Sukru Karatas

Abstract:

In this research, we determined the total sugar content, fatty acid compositions and α-amylase and α-glucosidase inhibitory activity of methanolic and water extracts of nine different fruit tree leaves. α-amylase and α-glycosidase inhibitory activity were determined by using Caraway-Somogyi–iodine/potassium iodide (IKI) and 4-nitrophenyl-α-D-glucopyranoside (PNPG) as substrate, respectively. Total sugar content of the nine different fruit tree leaves varies from 281.02 mg GE/g (glucose equivalents) to 643.96 mg GE/g. Methanolic extract from avocado leaves had the strongest in α-amylase and α-glucosidase inhibitory activity, 69.21% and 96.26 %, respectively. Fatty acid composition of nine fruit tree leaves was characterized by GC (gas chromatography) and twenty-four components were identified. Among the tested fruit tree leaves, the main component was linolenic acid (49.09%). The level of essential fatty acids are over 50% in mulberry, grape and loquat leaves. PUFAs (polyunsaturated fatty acids) were major group of fatty acids present in oils of mulberry, fig, pomegranate, grape, and loquat leaves. Therefore, these oils can be considered as a good source of polyunsaturated fatty acids. Furthermore, avocado can be regarded as a new source for diabetic therapies.

Keywords: fatty acid compositions, total sugar contents, α-amylase, α-glucosidase, fruit tree leaves, Turkey

Procedia PDF Downloads 488
4788 Effect of Chilling Accumulation on Fruit Yield of Olive Trees in Egypt

Authors: Mohamed H. El-Sheikh, Hoda F. Zahran

Abstract:

Olive tree (Olea europaea L.) is considered as a Mediterranean tree which belongs to genus Olea that may comprise about 35 species. In fact, the crop requires mild to cool winters with a chilling accumulation from November to February with average temperatures varying between two groups of accumulated chilling hours (h1) of less than 7.2 °C (C1) and other group (h2) of less than 10 °C (C2) for flower bud differentiation. This work aims at studying the impact of chilling accumulation hours on the fruit yield of olive trees in Borg El Arab City, Alexandria Governorate, Egypt as a case study. Trees were aged around 7 years in 2010 and were exposed to chilling accumulation hours of h1, which was average of 280 hours under C1, and average h2 was around 150 hours under C2 the resulted fruit yield was around 0.5 kg/tree. On the hand, trees were aged around 7 years at 2016 showed that when average of h1 was around 390 hours under C1 and average h2 was around 220 hours under C2 then fruit yield was around 10 kg/tree. Increasing of fruit yield proved chilling accumulation effect on olive trees.

Keywords: chilling accumulation, fruit yield, Olea europaea, olive

Procedia PDF Downloads 292
4787 Climate Species Lists: A Combination of Methods for Urban Areas

Authors: Andrea Gion Saluz, Tal Hertig, Axel Heinrich, Stefan Stevanovic

Abstract:

Higher temperatures, seasonal changes in precipitation, and extreme weather events are increasingly affecting trees. To counteract the increasing challenges of urban trees, strategies are increasingly being sought to preserve existing tree populations on the one hand and to prepare for the coming years on the other. One such strategy lies in strategic climate tree species selection. The search is on for species or varieties that can cope with the new climatic conditions. Many efforts in German-speaking countries deal with this in detail, such as the tree lists of the German Conference of Garden Authorities (GALK), the project Stadtgrün 2021, or the instruments of the Climate Species Matrix by Prof. Dr. Roloff. In this context, different methods for a correct species selection are offered. One possibility is to select certain physiological attributes that indicate the climate resilience of a species. To calculate the dissimilarity of the present climate of different geographic regions in relation to the future climate of any city, a weighted (standardized) Euclidean distance (SED) for seasonal climate values is calculated for each region of the Earth. The calculation was performed in the QGIS geographic information system, using global raster datasets on monthly climate values in the 1981-2010 standard period. Data from a European forest inventory were used to identify tree species growing in the calculated analogue climate regions. The inventory used is the compilation of georeferenced point data at a 1 km grid resolution on the occurrence of tree species in 21 European countries. In this project, the results of the methodological application are shown for the city of Zurich for the year 2060. In the first step, analog climate regions based on projected climate values for the measuring station Kirche Fluntern (ZH) were searched for. In a further step, the methods mentioned above were applied to generate tree species lists for the city of Zurich. These lists were then qualitatively evaluated with respect to the suitability of the different tree species for the Zurich area to generate a cleaned and thus usable list of possible future tree species.

Keywords: climate change, climate region, climate tree, urban tree

Procedia PDF Downloads 109
4786 Youth Intelligent Personal Decision Aid

Authors: Norfiza Ibrahim, Norshuhada Shiratuddin, Siti Mahfuzah Sarif

Abstract:

Decision-making system is used to facilitate people in making the right choice for their important daily activities. For the youth, proper guidance in making important decisions is needed. Their skills in decision-making aid decisions will indirectly affect their future. For that reason, this study focuses on the intelligent aspects in the development of intelligent decision support application. The aid apparently integrates Personality Traits (PT) and Multiple Intelligence (MI) data in development of a computerized personal decision aid for youth named as Youth Personal Decision Aid (Youth PDA). This study is concerned with the aid’s helpfulness based on the hybrid intelligent process. There are four main items involved which are reliability, decision making effort, confidence, as well as decision process awareness. Survey method was applied to the actual user of this system, namely the school and the Institute of Higher Education (IPT)’s students. An establish instrument was used to evaluate the study. The results of the analysis and findings in the assessment indicates a high mean value of the four dimensions in helping Youth PDA to be accepted as a useful tool for the youth in decision-making.

Keywords: decision support, multiple intelligent, personality traits, youth personal decision aid

Procedia PDF Downloads 633
4785 The Role of Sustainable Financing Models for Smallholder Tree Growers in Ghana

Authors: Raymond Awinbilla

Abstract:

The call for tree planting has long been set in motion by the government of Ghana. The Forestry Commission encourages plantation development through numerous interventions including formulating policies and enacting legislations. However, forest policies have failed and that has generated a major concern over the vast gap between the intentions of national policies and the realities established. This study addresses three objectives;1) Assessing the farmers' response and contribution to the tree planting initiative, 2) Identifying socio-economic factors hindering the development of smallholder plantations as a livelihood strategy, and 3) Determining the level of support available for smallholder tree growers and the factors influencing it. The field work was done in 12 farming communities in Ghana. The article illuminates that farmers have responded to the call for tree planting and have planted both exotic and indigenous tree species. Farmers have converted 17.2% (369.48ha) of their total land size into plantations and have no problem with land tenure. Operations and marketing constraints include lack of funds for operations, delay in payment, low price of wood, manipulation of price by buyers, documentation by buyers, and no ready market for harvesting wood products. Environmental institutions encourage tree planting; the only exception is with the Lands Commission. Support availed to farmers includes capacity building in silvicultural practices, organisation of farmers, linkage to markets and finance. Efforts by the Government of Ghana to enhance forest resources in the country could rely on the input of local populations.

Keywords: livelihood strategy, marketing constraints, environmental institutions, silvicultural practices

Procedia PDF Downloads 58
4784 Efficacy of Different Pest Control Strategies against Citrus Rind Borer (Prays Eendolemma Diakonoff) Infesting Pummelo (Citrus maxima)

Authors: Larry V. Aceres, Jesryl B. Paulite, Emelie M. Pelicano, J. A. Esteban, Mamangun

Abstract:

Citrus rind borer still the most important pest infesting pummelo in the Philippines particularly in the Davao region. Hence, management of the pest is very important for successful pummelo production. This study was conducted to assess the effectiveness of the different control strategies against citrus rind borer; to determine the best treatment in controlling citrus rind borer; and to calculate the profitability of the various treatments in pummelo production. The experiment was laid-out in Completely Randomized Design (CRD) with five treatments replicated three times. The treatments were: T1- curry tree leaf leachate, T2- neem tree leaf leachate, T3- bagging with an ordinary net, T4- treated check (chlorpyrifos & betacyflutrin) and T5- untreated check. Data were analyzed using the Analysis of Variance and the differences among treatment means were computed using the Tukey’s Honest Significant Difference. The results of the study revealed that the curry tree leaf leachate and bagging treatments provide significant protection to the pummelo fruits which is comparable with the treated check (chlorpyrifos & betacyflutrin). Neem tree leaf leachate is not effective in controlling citrus rind borer which is comparable with the untreated check. In cost and return analysis, the most economical and effective is the bagging treatment using ordinary net.

Keywords: curry tree, neem tree, bagging, citrus rind borer

Procedia PDF Downloads 325
4783 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 136
4782 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
4781 Classification Using Worldview-2 Imagery of Giant Panda Habitat in Wolong, Sichuan Province, China

Authors: Yunwei Tang, Linhai Jing, Hui Li, Qingjie Liu, Xiuxia Li, Qi Yan, Haifeng Ding

Abstract:

The giant panda (Ailuropoda melanoleuca) is an endangered species, mainly live in central China, where bamboos act as the main food source of wild giant pandas. Knowledge of spatial distribution of bamboos therefore becomes important for identifying the habitat of giant pandas. There have been ongoing studies for mapping bamboos and other tree species using remote sensing. WorldView-2 (WV-2) is the first high resolution commercial satellite with eight Multi-Spectral (MS) bands. Recent studies demonstrated that WV-2 imagery has a high potential in classification of tree species. The advanced classification techniques are important for utilising high spatial resolution imagery. It is generally agreed that object-based image analysis is a more desirable method than pixel-based analysis in processing high spatial resolution remotely sensed data. Classifiers that use spatial information combined with spectral information are known as contextual classifiers. It is suggested that contextual classifiers can achieve greater accuracy than non-contextual classifiers. Thus, spatial correlation can be incorporated into classifiers to improve classification results. The study area is located at Wuyipeng area in Wolong, Sichuan Province. The complex environment makes it difficult for information extraction since bamboos are sparsely distributed, mixed with brushes, and covered by other trees. Extensive fieldworks in Wuyingpeng were carried out twice. The first one was on 11th June, 2014, aiming at sampling feature locations for geometric correction and collecting training samples for classification. The second fieldwork was on 11th September, 2014, for the purposes of testing the classification results. In this study, spectral separability analysis was first performed to select appropriate MS bands for classification. Also, the reflectance analysis provided information for expanding sample points under the circumstance of knowing only a few. Then, a spatially weighted object-based k-nearest neighbour (k-NN) classifier was applied to the selected MS bands to identify seven land cover types (bamboo, conifer, broadleaf, mixed forest, brush, bare land, and shadow), accounting for spatial correlation within classes using geostatistical modelling. The spatially weighted k-NN method was compared with three alternatives: the traditional k-NN classifier, the Support Vector Machine (SVM) method and the Classification and Regression Tree (CART). Through field validation, it was proved that the classification result obtained using the spatially weighted k-NN method has the highest overall classification accuracy (77.61%) and Kappa coefficient (0.729); the producer’s accuracy and user’s accuracy achieve 81.25% and 95.12% for the bamboo class, respectively, also higher than the other methods. Photos of tree crowns were taken at sample locations using a fisheye camera, so the canopy density could be estimated. It is found that it is difficult to identify bamboo in the areas with a large canopy density (over 0.70); it is possible to extract bamboos in the areas with a median canopy density (from 0.2 to 0.7) and in a sparse forest (canopy density is less than 0.2). In summary, this study explores the ability of WV-2 imagery for bamboo extraction in a mountainous region in Sichuan. The study successfully identified the bamboo distribution, providing supporting knowledge for assessing the habitats of giant pandas.

Keywords: bamboo mapping, classification, geostatistics, k-NN, worldview-2

Procedia PDF Downloads 313
4780 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.

Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability

Procedia PDF Downloads 107
4779 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning

Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.

Abstract:

Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.

Keywords: image processing, python, convolution neural network (CNN), machine learning

Procedia PDF Downloads 77
4778 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 78
4777 A Supervised Approach for Word Sense Disambiguation Based on Arabic Diacritics

Authors: Alaa Alrakaf, Sk. Md. Mizanur Rahman

Abstract:

Since the last two decades’ Arabic natural language processing (ANLP) has become increasingly much more important. One of the key issues related to ANLP is ambiguity. In Arabic language different pronunciation of one word may have a different meaning. Furthermore, ambiguity also has an impact on the effectiveness and efficiency of Machine Translation (MT). The issue of ambiguity has limited the usefulness and accuracy of the translation from Arabic to English. The lack of Arabic resources makes ambiguity problem more complicated. Additionally, the orthographic level of representation cannot specify the exact meaning of the word. This paper looked at the diacritics of Arabic language and used them to disambiguate a word. The proposed approach of word sense disambiguation used Diacritizer application to Diacritize Arabic text then found the most accurate sense of an ambiguous word using Naïve Bayes Classifier. Our Experimental study proves that using Arabic Diacritics with Naïve Bayes Classifier enhances the accuracy of choosing the appropriate sense by 23% and also decreases the ambiguity in machine translation.

Keywords: Arabic natural language processing, machine learning, machine translation, Naive bayes classifier, word sense disambiguation

Procedia PDF Downloads 359
4776 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis

Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan

Abstract:

We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.

Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.

Procedia PDF Downloads 140
4775 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: classification, singing, spectral analysis, vocal emission, vocal register

Procedia PDF Downloads 305
4774 Adolescents’ Role in Family Buying Decision Making

Authors: Harleen Kaur, Deepika Jindal Singla

Abstract:

Buying decision making is a complicated process, in which consumer’s decision is under the impact of others. The buying decision making is directed in a way that they have to act as customers in the society. Media and family are key socialising agents for adolescents’. Moreover, changes in the socio-cultural environment in India necessitate that adolescents’ influence in family’s buying decision-making should be investigated. In comparison to Western society, Indian is quite different, when compared in terms of family composition and structure, behaviour, values and norms which effect adolescents’ buying decision-making.

Keywords: adolescents, buying behavior, Indian urban families, consumer socialization

Procedia PDF Downloads 480
4773 Strategic Decision Making Practice in Croatia: Which Decision Making Style is More Effective?

Authors: Ivana Bulog

Abstract:

Decision making is a vital part of the business world and any other field of human endeavor. Which way a business organization will take, and where that way will lead it, depends on broad range of decisions made by managers in the managerial structure. Strategic decisions are of the greatest importance for organizational success. Although much empirical research has been done trying to describe and explain its nature and effectiveness, knowledge about strategic decision making is still incomplete. This paper explores the nature of strategic decision making in particular setting - in Croatian companies. The main focus of this research is on the style that decision makers on strategic management level are following when making decisions of life importance for their companies. Two main decision making style that explain the way decision maker collects and processes available information and performs all the activities in strategic decision making process were empirical tested: rational and intuitive one. Besides analyzing their existence on strategic management level in Croatian companies, their effectiveness is analyzed as well. Results showed that decision makers at strategic management level are following both styles somewhat equally in order to function effectively, and that intuitive style is more effective when considering decisions outcomes.

Keywords: decision making style, decision making effectiveness, strategic decisions, management sciences

Procedia PDF Downloads 382
4772 Carrying Out the Steps of Decision Making Process in Concrete Organization

Authors: Eva Štěpánková

Abstract:

The decision-making process is theoretically clearly defined. Generally, it includes the problem identification and analysis, data gathering, goals and criteria setting, alternatives development and optimal alternative choice and its implementation. In practice however, various modifications of the theoretical decision-making process can occur. The managers can consider some of the phases to be too complicated or unfeasible and thus they do not carry them out and conversely some of the steps can be overestimated. The aim of the paper is to reveal and characterize the perception of the individual phases of decision-making process by the managers. The research is concerned with managers in the military environment–commanders. Quantitative survey is focused cross-sectionally in the individual levels of management of the Ministry of Defence of the Czech Republic. On the total number of 135 respondents the analysis focuses on which of the decision-making process phases are problematic or not carried out in practice and which are again perceived to be the easiest. Then it is examined the reasons of the findings.

Keywords: decision making, decision making process, decision problems, concrete organization

Procedia PDF Downloads 475
4771 Contribution to the Decision-Making Process for Selecting the Suitable Maintenance Policy

Authors: Nasser Y. Mahamoud, Pierre Dehombreux, Hassan E. Robleh

Abstract:

Industrial companies may be confronted with questions about their choice of maintenance policy. This choice must be guided by several numbers of decision criteria or objectives related to their production or service activities but also to their level of development and their investment prospects. A decision-support methodology to choose a maintenance policy (corrective, systematic or conditional preventive, predictive, opportunistic or not) is proposed to facilitate this choice using the main categories of the most important decision criteria. The different steps of this methodology are illustrated using theoretical case: identification of the different maintenance alternatives, determining the structure of the most important categories of the decision criteria, assessing the different maintenance policies on to the criteria by using an ordinal preference relation, and finally ranking the different maintenance policies.

Keywords: maintenance policy, decision criteria, decision-making process, AHP

Procedia PDF Downloads 333
4770 The Effect of Mgo and Rubber Nanofillers on Electrical Treeing Characteristic of XLPE Based Nanocomposites

Authors: Nur Amira nor Arifin, Tashia Marie Anthony, Mohd Ruzlin Mokhtar, Huzainie Shafi Abd Halim

Abstract:

Cross-linked polyethylene (XLPE) material is being used as the cable insulation for the past decades due to its higher working temperature of 90 ˚C and some other advantages. However, the use of XLPE as an insulating material for underground distribution cables may have subjected to the unforeseeable weather and uncontrollable environmental condition. These unfavorable condition when combine with high electric field may lead to the initiation and growth of water tree in XLPE insulation. There are several studies on numerous nanofillers incorporate into polymer matrix to hinder the growth of tree propagation. Hence, in this study aims to investigate the effect of MgO and rubber nanofillers at different concentration on the electrical tree of XLPE. The nanofillers and XLPE were mixed and later extruded. After extrusion, the material were then fabricated into the desired shape for experimental purposes. The result shows that the electrical tree propagation of XLPE filled with optimize concentration of nanofillers were much slower compared to pure XLPE. In this paper, the effect of nanofillers towards electrical treeing characteristic will be discussed.

Keywords: electrical trees, nanofillers, polymer nanocomposites, XLPE

Procedia PDF Downloads 140
4769 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 73
4768 Tree Resistance to Wind Storm: The Effects of Soil Saturation on Tree Anchorage of Young Pinus pinaster

Authors: P. Defossez, J. M. Bonnefond, D. Garrigou, P. Trichet, F. Danjon

Abstract:

Windstorm damage to European forests has ecological, social and economic consequences of major importance. Most trees during storms are uprooted. While a large amount of work has been done over the last decade on understanding the aerial tree response to turbulent wind flow, much less is known about the root-soil interface, and the impact of soil moisture and root-soil system fatiguing on tree uprooting. Anchorage strength is expected to be reduced by water-logging and heavy rain during storms due to soil strength decrease with soil water content. Our paper is focused on the maritime pine cultivated on sandy soil, as a representative species of the Forêt des Landes, the largest cultivated forest in Europe. This study aims at providing knowledge on the effects of soil saturation on root anchorage. Pulling experiments on trees were performed to characterize the resistance to wind by measuring the critical bending moment (Mc). Pulling tests were performed on 12 maritime pines of 13-years old for two unsaturated soil conditions that represent the soil conditions expected in winter when wind storms occur in France (w=11.46 to 23.34 % gg⁻¹). A magnetic field digitizing technique was used to characterize the three-dimensional architecture of root systems. The soil mechanical properties as function of soil water content were characterized by laboratory mechanical measurements as function of soil water content and soil porosity on remolded samples using direct shear tests at low confining pressure ( < 15 kPa). Remarkably Mc did not depend on w but mainly on the root system morphology. We suggested that the importance of soil water conditions on tree anchorage depends on the tree size. This study gives a new insight on young tree anchorage: roots may sustain by themselves anchorage, whereas adhesion between roots and surrounding soil may be negligible in sandy soil.

Keywords: roots, sandy soil, shear strength, tree anchorage, unsaturated soil

Procedia PDF Downloads 293
4767 The Pressure Losses in the Model of Human Lungs

Authors: Michaela Chovancova, Pavel Niedoba

Abstract:

For the treatment of acute and chronic lung diseases it is preferred to deliver medicaments by inhalation. The drug is delivered directly to tracheobronchial tree. This way allows the given medicament to get directly into the place of action and it makes rapid onset of action and maximum efficiency. The transport of aerosol particles in the particular part of the lung is influenced by their size, anatomy of the lungs, breathing pattern and airway resistance. This article deals with calculation of airway resistance in the lung model of Horsfield. It solves the problem of determination of the pressure losses in bifurcation and thus defines the pressure drop at a given location in the bronchial tree. The obtained data will be used as boundary conditions for transport of aerosol particles in a central part of bronchial tree realized by Computational Fluid Dynamics (CFD) approach. The results obtained from CFD simulation will allow us to provide information on the required particle size and optimal inhalation technique for particle transport into particular part of the lung.

Keywords: human lungs, bronchial tree, pressure losses, airways resistance, flow, breathing

Procedia PDF Downloads 357
4766 Automated Localization of Palpebral Conjunctiva and Hemoglobin Determination Using Smart Phone Camera

Authors: Faraz Tahir, M. Usman Akram, Albab Ahmad Khan, Mujahid Abbass, Ahmad Tariq, Nuzhat Qaiser

Abstract:

The objective of this study was to evaluate the Degree of anemia by taking the picture of the palpebral conjunctiva using Smartphone Camera. We have first localized the region of interest from the image and then extracted certain features from that Region of interest and trained SVM classifier on those features and then, as a result, our system classifies the image in real-time on their level of hemoglobin. The proposed system has given an accuracy of 70%. We have trained our classifier on a locally gathered dataset of 30 patients.

Keywords: anemia, palpebral conjunctiva, SVM, smartphone

Procedia PDF Downloads 507
4765 A Knowledge-As-A-Service Support Framework for Ambient Learning in Kenya

Authors: Lucy W. Mburu, Richard Karanja, Simon N. Mwendia

Abstract:

Over recent years, learners have experienced a constant need to access on demand knowledge that is fully aligned with the paradigm of cloud computing. As motivated by the global sustainable development goal to ensure inclusive and equitable learning opportunities, this research has developed a framework hinged on the knowledge-as-a-service architecture that utilizes knowledge from ambient learning systems. Through statistical analysis and decision tree modeling, the study discovers influential variables for ambient learning among university students. The main aim is to generate a platform for disseminating and exploiting the available knowledge to aid the learning process and, thus, to improve educational support on the ambient learning system. The research further explores how collaborative effort can be used to form a knowledge network that allows access to heterogeneous sources of knowledge, which benefits knowledge consumers, such as the developers of ambient learning systems.

Keywords: actionable knowledge, ambient learning, cloud computing, decision trees, knowledge as a service

Procedia PDF Downloads 161
4764 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: disentanglement, face detection, generative adversarial networks, video surveillance

Procedia PDF Downloads 130
4763 Effects of Nut Quality and Yield by Raising Poultry in Chestnut Tree Plantation

Authors: Yunmi Park, Mahn-Jo Kim

Abstract:

The purpose of this research is to find out the effect of raising poultry in environment-friendly producing area to fruit quality and crop within chestnut tree yield. This study was conducted on chestnut tree cultivation sites raising poultry at intervals of five to ten days for three years in the mountainous area which was located in the middle corner of Chungcheongbuk-do province, Korea. The quality of chestnut fruit and the control effects of harmful insects have been investigated between the sites raising poultry and control sites for three years. As a result, the harvest yielded were two to five kilograms higher in the chestnut tree cultivation sites raising poultry compared with the control site without poultry. Also, for the purposes of determining the price when selling, the ratio of the biggest fruit is higher by 3% to 14% in the chestnut tree cultivation sites raising poultry. In order to investigate the effects of pest control through raising poultry, the ratio of harmful insect species to treatment sites was relatively low compared to control site. The appreciable result is that the control effect of larvae of the chestnut leaf-cut weevil was higher in the position where raising the poultry of 4 to 5 weeks compared to the position where raising the poultry of 12 weeks. This study found that the spread of poultry in the cultivation of chestnut trees increased the fruit quality by improving the size of fruits and lowering the dosage of harmful insect, chestnut leaf-cut weevil. Also, the eco-friendly chicken produced by these mountainous regions is expected to contribute to enhancing the incomes of the farmers by differentiating themselves from existing products.

Keywords: chestnut tree, environment-friendly, fruit quality, raising poultry

Procedia PDF Downloads 288