Search results for: automated cleaning machines
1673 A Mechanism of Reusable, Portable, and Reliable Script Generator on Android
Authors: Kuei-Chun Liu, Yu-Yu Lai, Ching-Hong Wu
Abstract:
A good automated testing tool could reduce as much as possible the manual work done by testers. Traditional record-replay testing tool provides an automated testing solution by recording mouse coordinates as test scripts, but it will be easily broken if any change of resolutions. Therefore, more and more testers design multiple test scripts to automate the testing process for different devices. In order to improve the traditional record-replay approach and reduce the effort that the testers spending on writing test scripts, we propose an approach for generating the Android application test scripts based on accessibility service without connecting to a computer. This approach simulates user input actions and replays them correctly even at the different conditions such as the internet connection is unstable when the device under test, the different resolutions on Android devices. In this paper, we describe how to generate test scripts automatically and make a comparison with existing tools for Android such as Robotium, Appium, UIAutomator, and MonkeyTalk.Keywords: accessibility service, Appium, automated testing, MonkeyTalk, Robotium, testing, UIAutomator
Procedia PDF Downloads 3781672 Effects of AI-driven Applications on Bank Performance in West Africa
Authors: Ani Wilson Uchenna, Ogbonna Chikodi
Abstract:
This study examined the impact of artificial intelligence driven applications on banks’ performance in West Africa using Nigeria and Ghana as case studies. Specifically, the study examined the extent to which deployment of smart automated teller machine impacts the banks’ net worth within the reference period in Nigeria and Ghana. It ascertained the impact of point of sale on banks’ net worth within the reference period in Nigeria and Ghana. Thirdly, it verified the extent to which webpay services can influence banks’ performance in Nigeria and Ghana and finally, determined the impact of mobile pay services on banks’ performance in Nigeria and Ghana. The study used automated teller machine (ATM), Point of sale services (POS), Mobile pay services (MOP) and Web pay services (WBP) as proxies for explanatory variables while Bank net worth was used as explained variable for the study. The data for this study were sourced from central bank of Nigeria (CBN) Statistical Bulletin as well as Bank of Ghana (BoGH) Statistical Bulletin, Ghana payment systems oversight annual report and world development indicator (WDI). Furthermore, the mixed order of integration observed from the panel unit test result justified the use of autoregressive distributed lag (ARDL) approach to data analysis which the study adopted. While the cointegration test showed the existence of cointegration among the studied variables, bound test result justified the presence of long-run relationship among the series. Again, ARDL error correction estimate established satisfactory (13.92%) speed of adjustment from long run disequilibrium back to short run dynamic relationship. The study found that while Automated teller machine (ATM) had statistically significant impact on bank net worth (BNW) of Nigeria and Ghana, point of sale services application (POS) statistically and significantly impact on bank net worth within the study period, mobile pay services application was statistically significant in impacting the changes in the bank net worth of the countries of study while web pay services (WBP) had no statistically significant impact on bank net worth of the countries of reference. The study concluded that artificial intelligence driven application have significant an positive impact on bank performance with exception of web pay which had negative impact on bank net worth. The study recommended that management of banks both in Nigerian and Ghanaian should encourage more investments in AI-powered smart ATMs aimed towards delivering more secured banking services in order to increase revenue, discourage excessive queuing in the banking hall, reduced fraud and minimize error in processing transaction. Banks within the scope of this study should leverage on modern technologies to checkmate the excesses of the private operators POS in order to build more confidence on potential customers. Government should convert mobile pay services to a counter terrorism tool by ensuring that restrictions on over-the-counter withdrawals to a minimum amount is maintained and place sanctions on withdrawals above that limit.Keywords: artificial intelligence (ai), bank performance, automated teller machines (atm), point of sale (pos)
Procedia PDF Downloads 121671 Intelligent Quality Management System on the Example оf Bread Baking
Authors: Irbulat Utepbergenov, Lyazzat Issabekova, Shara Toybayeva
Abstract:
This article discusses quality management using the bread baking process as an example. The baking process must be strictly controlled and repeatable. Automation and monitoring of quality management systems can help. After baking bread, quality control of the finished product should be carried out. This may include an evaluation of appearance, weight, texture, and flavor. It is important to continuously work to improve processes and products based on data and feedback from the quality management system. A method and model of automated quality management and an intelligent automated management system based on intelligent technologies are proposed, which allow to automate the processes of QMS implementation and support and improve the validity, efficiency, and effectiveness of management decisions by automating a number of functions of decision makers and staff. This project is supported by the grant of the Ministry of Education and Science of the Republic of Kazakhstan (Zhas Galym project No. AR 13268939 Research and development of digital technologies to ensure consistency of the carriers of normative documents of the quality management system).Keywords: automated control system, quality management, efficiency evaluation, bakery oven, intelligent system
Procedia PDF Downloads 391670 Icephobic and Hydrophobic Behaviour of Laser Patterned Transparent Coatings
Authors: Bartłomiej Przybyszewski, Rafał Kozera, Anna Boczkowska, Maciej Traczyk, Paulina Kozera, Malwina Liszewska, Daria Pakuła
Abstract:
The goal of the work was to reduce or completely eliminate the accumulation of dirt, snow and ice build-up on transparent coatings by achieving self-cleaning and icephobic properties. The research involved the use of laser surface texturing technology for chemically modified coatings of the epoxy materials group and their hybrids used to protect glass surfaces. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. An attractive approach to the topic was the development of efficient and, most importantly, durable coatings with self-cleaning and ice-phobic properties that reduced or avoided dirt build-up and adhesion of water, snow and ice. With a view to the future industrial application of the developed technologies, all methods meet the requirements in terms of their practical use on a large scale.Keywords: icephobic coatings, hydrophobic coatings, transparent coatings, laser patterning
Procedia PDF Downloads 1061669 Challenges for IoT Adoption in India: A Study Based on Foresight Analysis for 2025
Authors: Shruti Chopra, Vikas Rao Vadi
Abstract:
In the era of the digital world, the Internet of Things (IoT) has been receiving significant attention. Its ubiquitous connectivity between humans, machines to machines (M2M) and machines to humans provides it a potential to transform the society and establish an ecosystem to serve new dimensions to the economy of the country. Thereby, this study has attempted to identify the challenges that seem prevalent in IoT adoption in India through the literature survey. Further, the data has been collected by taking the opinions of experts to conduct the foresight analysis and it has been analyzed with the help of scenario planning process – Micmac, Mactor, Multipol, and Smic-Prob. As a methodology, the study has identified the relationship between variables through variable analysis using Micmac and actor analysis using Mactor, this paper has attempted to generate the entire field of possibilities in terms of hypotheses and construct various scenarios through Multipol. And lastly, the findings of the study include final scenarios that are selected using Smic-Prob by assigning the probability to all the scenarios (including the conditional probability). This study may help the practitioners and policymakers to remove the obstacles to successfully implement the IoT in India.Keywords: Internet of Thing (IoT), foresight analysis, scenario planning, challenges, policymaking
Procedia PDF Downloads 1471668 Development of Fire Douse Vehicle
Authors: Nikhil Verma, Akshay Kant Mishra, Rishabh Rastogi, Bikarama Prasad Yadav
Abstract:
Emerging fire incidents are the protuberant contributor out turning into life loss, property damage and importantly firefighters. It insinuates that a firefighting and rescue operation of the existing equipment or apparatus and their proficiency is limited, particularly in annihilating firefighting environments. The proposed methodology will help in developing a technology which can be useful in minimizing the risks and losses due to fire. In this paper, design and development of combat mini vehicle comprising of multi-purpose nozzle system is proposed which can target diverse fires simultaneously at distinct time and location. Basically, the system is semi-automated type protection system which can be manoeuvred by controller. Designing of robust vehicle based on semi-automated protection type system is consummated using SolidWorks platform. Concept of developing a robust vehicle will help to fight fires in multiple directions reducing the time required to douse multiple fires.Keywords: fire douse vehicle, multiple fires, multi-purpose nozzle, semi-automated system
Procedia PDF Downloads 1301667 The Development of an Automated Computational Workflow to Prioritize Potential Resistance Variants in HIV Integrase Subtype C
Authors: Keaghan Brown
Abstract:
The prioritization of drug resistance mutations impacting protein folding or protein-drug and protein-DNA interactions within macromolecular systems is critical to the success of treatment regimens. With a continual increase in computational tools to assess these impacts, the need for scalability and reproducibility became an essential component of computational analysis and experimental research. Here it introduce a bioinformatics pipeline that combines several structural analysis tools in a simplified workflow, by optimizing the present computational hardware and software to automatically ease the flow of data transformations. Utilizing preestablished software tools, it was possible to develop a pipeline with a set of pre-defined functions that will automate mutation introduction into the HIV-1 Integrase protein structure, calculate the gain and loss of polar interactions and calculate the change in energy of protein fold. Additionally, an automated molecular dynamics analysis was implemented which reduces the constant need for user input and output management. The resulting pipeline, Automated Mutation Introduction and Analysis (AMIA) is an open source set of scripts designed to introduce and analyse the effects of mutations on the static protein structure as well as the results of the multi-conformational states from molecular dynamic simulations. The workflow allows the user to visualize all outputs in a user friendly manner thereby successfully enabling the prioritization of variant systems for experimental validation.Keywords: automated workflow, variant prioritization, drug resistance, HIV Integrase
Procedia PDF Downloads 771666 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction
Procedia PDF Downloads 1841665 ATM Location Problem and Cash Management in ATM's
Authors: M. Erol Genevois, D. Celik, H. Z. Ulukan
Abstract:
Automated teller machines (ATMs) can be considered among one of the most important service facilities in the banking industry. The investment in ATMs and the impact on the banking industry is growing steadily in every part of the world. The banks take into consideration many factors like safety, convenience, visibility, cost in order to determine the optimum locations of ATMs. Today, ATMs are not only available in bank branches but also at retail locations. Another important factor is the cash management in ATMs. A cash demand model for every ATM is needed in order to have an efficient cash management system. This forecasting model is based on historical cash demand data which is highly related to the ATMs location. So, the location and the cash management problem should be considered together. Although the literature survey on facility location models is quite large, it is surprising that there are only few studies which handle together ATMs location and cash management problem. In order to fulfill the gap, this paper provides a general review on studies, efforts and development in ATMs location and cash management problem.Keywords: ATM location problem, cash management problem, ATM cash replenishment problem, literature review in ATMs
Procedia PDF Downloads 4801664 A Metaheuristic for the Layout and Scheduling Problem in a Job Shop Environment
Authors: Hernández Eva Selene, Reyna Mary Carmen, Rivera Héctor, Barragán Irving
Abstract:
We propose an approach that jointly addresses the layout of a facility and the scheduling of a sequence of jobs. In real production, these two problems are interrelated. However, they are treated separately in the literature. Our approach is an extension of the job shop problem with transportation delay, where the location of the machines is selected among possible sites. The model minimizes the makespan, using the short processing times rule with two algorithms; the first one considers all the permutations for the location of machines, and the second only a heuristic to select some specific permutations that reduces computational time. Some instances are proved and compared with literature.Keywords: layout problem, job shop scheduling problem, concurrent scheduling and layout problem, metaheuristic
Procedia PDF Downloads 6091663 Managing the Magnetic Protection of Workers in Magnetic Resonance Imaging
Authors: Safoin Aktaou, Aya Al Masri, Kamel Guerchouche, Malorie Martin, Fouad Maaloul
Abstract:
Introduction: In the ‘Magnetic Resonance Imaging (MRI)’ department, all workers involved in preparing the patient, setting it up, tunnel cleaning, etc. are likely to be exposed to ‘ElectroMagnetic fields (EMF)’ emitted by the MRI device. Exposure to EMF can cause adverse radio-biological effects to workers. The purpose of this study is to propose an organizational process to manage and control EMF risks. Materials and methods: The study was conducted at seven MRI departments using machines with 1.5 and 3 Tesla magnetic fields. We assessed the exposure of each one by measuring the two electromagnetic fields (static and dynamic) at different distances from the MRI machine both inside and around the examination room. Measurement values were compared with British and American references (those of the UK's ‘Medicines and Healthcare Regulatory Agency (MHRA)’ and the ‘American Radiology Society (ACR)’). Results: Following the results of EMF measurements and their comparison with the recommendations of learned societies, a zoning system that adapts to needs of different MRI services across the country has been proposed. In effect, three risk areas have been identified within the MRI services. This has led to the development of a good practice guide related to the magnetic protection of MRI workers. Conclusion: The guide established by our study is a standard that allows MRI workers to protect themselves against the risk of electromagnetic fields.Keywords: comparison with international references, measurement of electromagnetic fields, magnetic protection of workers, magnetic resonance imaging
Procedia PDF Downloads 1641662 An Effective Route to Control of the Safety of Accessing and Storing Data in the Cloud-Based Data Base
Authors: Omid Khodabakhshi, Amir Rozdel
Abstract:
The subject of cloud computing security research has allocated a number of challenges and competitions because the data center is comprised of complex private information and are always faced various risks of information disclosure by hacker attacks or internal enemies. Accordingly, the security of virtual machines in the cloud computing infrastructure layer is very important. So far, there are many software solutions to develop security in virtual machines. But using software alone is not enough to solve security problems. The purpose of this article is to examine the challenges and security requirements for accessing and storing data in an insecure cloud environment. In other words, in this article, a structure is proposed for the implementation of highly isolated security-sensitive codes using secure computing hardware in virtual environments. It also allows remote code validation with inputs and outputs. We provide these security features even in situations where the BIOS, the operating system, and even the super-supervisor are infected. To achieve these goals, we will use the hardware support provided by the new Intel and AMD processors, as well as the TPM security chip. In conclusion, the use of these technologies ultimately creates a root of dynamic trust and reduces TCB to security-sensitive codes.Keywords: code, cloud computing, security, virtual machines
Procedia PDF Downloads 1911661 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System
Authors: Kaoutar Ben Azzou, Hanaa Talei
Abstract:
Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.Keywords: automated recruitment, candidate screening, machine learning, human resources management
Procedia PDF Downloads 571660 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization
Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi
Abstract:
Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm
Procedia PDF Downloads 821659 Antibacterial and Antioxidant Capacity of Fabric Treated with Purple-Fleshed Sweet Potato Extract
Authors: Kyung Hwa Hong, Eunmi Koh
Abstract:
Wool and cotton fabrics are pretreated by a tannic acid aqueous solution to increase their dyeability and then dyed by Purple-Fleshed Sweet Potato (PSP) extract. The dyed fabrics are then investigated by various analysis techniques. The results revealed that wool and cotton fabrics can be dyed bluish red through the pretreatment and dyeing process. Both wool and cotton fabrics only pretreated with tannic acid display decreased L* value but no significant changes in a* and b* values as the concentration of tannic acid increases. And, as expected, the pretreated fabrics are even darker and show a richer purple color after the dyeing process with the PSP extract. With regard to the colorfastness of wool and cotton fabrics dyed by PSP extract in cleaning circumstances, such as dry-cleaning (for wool) and washing (for cotton), the wool and cotton fabrics had a 4.0 and 4.0 grade of colorfastness to dry-cleaning and washing, respectively. However, they both exhibited significantly inferior colorfastness to light (grade of 1.5). Thus, it was found that there is still a need for improvement with regard to color fastness, particularly against light. On the other hand, the wool and cotton fabrics also showed antibacterial and antioxidant characteristics. In addition, both the wool and cotton fabrics showed potential antibacterial ability (>99%) against Staphylococcus aureus; however, they showed somewhat insufficient antibacterial ability (60.8% for wool and 94.8% for cotton) against Klebsiella pneumoniae. Also, their antioxidant abilities increased up to ca. 90% with an increase in the tannic acid concentration (up to 0.5%). However, after the dyeing process, the antibacterial and antioxidant ability tended to decrease. This is assumed to have occurred because functional moieties such as phenolic acids were detached from the pretreated fabrics into the hot water (the dyeing solution) during the dyeing process. Therefore, further study would be necessary to derive the optimum treatment and dyeing conditions so as to maximize the coloring effect and functionalities of the fabrics.Keywords: antibacterial activity, antioxidant activity, purple-fleshed sweet potato, fabrics
Procedia PDF Downloads 2921658 Advanced Digital Manufacturing: Case Study
Authors: Abdelrahman Abdelazim
Abstract:
Most industries are looking for technologies that are easy to use, efficient and fast to accomplish. To implement these, factories tend to use advanced systems that could alter complicity to simplicity and rudimentary to advancement. Cloud Manufacturing is a new movement that aims to mirror and integrate cloud computing into manufacturing. Amongst cloud manufacturing various advantages are decreasing the human involvements and increasing the dependency on automated machines, which in turns decreases human errors and increases efficiency. A reliable and extraordinary performance processes with minimum errors are highly desired factors of today’s manufacturers. At the glance it seems to be the best alternative, however, the implementation of a cloud system can be very challenging. This work investigates cloud manufacturing in details, it outlines its advantages and disadvantages by converting a local factory in Kuwait to a cloud-ready system. Initially the flow of the factory’s manufacturing process has been analyzed identifying the bottlenecks and illustrating how cloud manufacturing can eliminate them. Following this an automation process has been analyzed and implemented. A comparison between the process before and after the adaptation has been carried out showing the effects on the cost, the output and the efficiency of the process.Keywords: cloud manufacturing, automation, Kuwait industrial sector, advanced digital manufacturing
Procedia PDF Downloads 7711657 Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema and Interface for Mapping and Communication
Authors: Devanjan Bhattacharya, Jitka Komarkova
Abstract:
The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before–through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum.Keywords: geospatial, web-based GIS, geohazard, warning system
Procedia PDF Downloads 4081656 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity
Authors: Dawoon Choi, Jian Li, Yunhyun Cho
Abstract:
Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity
Procedia PDF Downloads 2201655 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 411654 Automatic Verification Technology of Virtual Machine Software Patch on IaaS Cloud
Authors: Yoji Yamato
Abstract:
In this paper, we propose an automatic verification technology of software patches for user virtual environments on IaaS Cloud to decrease verification costs of patches. In these days, IaaS services have been spread and many users can customize virtual machines on IaaS Cloud like their own private servers. Regarding to software patches of OS or middleware installed on virtual machines, users need to adopt and verify these patches by themselves. This task increases operation costs of users. Our proposed method replicates user virtual environments, extracts verification test cases for user virtual environments from test case DB, distributes patches to virtual machines on replicated environments and conducts those test cases automatically on replicated environments. We have implemented the proposed method on OpenStack using Jenkins and confirmed the feasibility. Using the implementation, we confirmed the effectiveness of test case creation efforts by our proposed idea of 2-tier abstraction of software functions and test cases. We also evaluated the automatic verification performance of environment replications, test cases extractions and test cases conductions.Keywords: OpenStack, cloud computing, automatic verification, jenkins
Procedia PDF Downloads 4891653 Two-Stage Flowshop Scheduling with Unsystematic Breakdowns
Authors: Fawaz Abdulmalek
Abstract:
The two-stage flowshop assembly scheduling problem is considered in this paper. There are more than one parallel machines at stage one and an assembly machine at stage two. The jobs will be processed into the flowshop based on Johnson rule and two extensions of Johnson rule. A simulation model of the two-stage flowshop is constructed where both machines at stage one are subject to random failures. Three simulation experiments will be conducted to test the effect of the three job ranking rules on the makespan. Johnson Largest heuristic outperformed both Johnson rule and Johnson Smallest heuristic for two performed experiments for all scenarios where each experiments having five scenarios.Keywords: flowshop scheduling, random failures, johnson rule, simulation
Procedia PDF Downloads 3391652 Highly Automated Trucks In Intermodal Logistics: Findings From a Field Test in Railport and Container Depot Operations in Germany
Authors: Dustin Schöder
Abstract:
The potential benefits of the utilization of highly automated and autonomous trucks in logistics operations are the subject of interest to the entire logistics industry. The benefits of the use of these new technologies were scientifically investigated and implemented in roadmaps. So far, reliable data and experiences from real life use cases are still limited. A German research consortium of both academics and industry developed a highly automated (SAE level 4) vehicle for yard operations at railports and container depots. After development and testing, a several month field test at the DUSS Terminal in Ulm-Dornstadt (Germany) and the nearby DB Intermodal Services Container Depot in Ulm-Dornstadt was conducted. The truck was piloted in a shuttle service between both sites. In a holistic automation approach, the vehicle was integrated into a digital communication platform so that the truck could move autonomously without a driver and his manual interactions with a wide variety of stakeholders. The main goal is to investigate the effects of highly automated trucks in the key processes of container loading, unloading and container relocation on holistic railport yard operation. The field test data were used to investigate changes in process efficiency of key processes of railport and container yard operations. Moreover, effects on the capacity utilization and potentials for smothering peak workloads were analyzed. The results state that process efficiency in the piloted use case was significantly higher. The reason for that could be found in the digitalized data exchange and automated dispatch. However, the field test has shown that the effect is greatly varying depending on the ratio of highly automated and manual trucks in the yard as well as on the congestion level in the loading area. Furthermore, the data confirmed that under the right conditions, the capacity utilization of highly automated trucks could be increased. In regard to the potential for smothering peak workloads, no significant findings could be made based on the limited requirements and regulations of railway operation in Germany. In addition, an empirical survey among railport managers, operational supervisors, innovation managers and strategists (n=15) within the logistics industry in Germany was conducted. The goal was to identify key characteristics of future railports and terminals as well as requirements that railports will have to meet in the future. Furthermore, the railport processes where automation and autonomization make the greatest impact, as well as hurdles and challenges in the introduction of new technologies, have been surveyed. Hence, further potential use cases of highly automated and autonomous applications could be identified, and expectations have been mapped. As a result, a highly detailed and practice-based roadmap towards a ‘terminal 4.0’ was developed.Keywords: highly automated driving, autonomous driving, SAE level 4, railport operations, container depot, intermodal logistics, potentials of autonomization
Procedia PDF Downloads 791651 Superhydrophobic Behavior of SnO₂-TiO₂ Composite Thin Films
Authors: Debarun Dhar Purkayastha, Talinungsang
Abstract:
SnO₂-TiO₂ nanocomposite thin films were prepared by the sol-gel method on borosilicate glass substrate. The films were annealed at a temperature of 300ᵒC, 400ᵒC, and 500ᵒC respectively for 2h in the air. The films obtained were further modified with stearic acid in order to decrease the surface energy. The X-ray diffraction patterns for the SnO₂-TiO₂ thin films after annealing at different temperatures can be indexed to the mixture of TiO₂ (rutile and anatase) and SnO₂ (tetragonal) phases. The average crystallite size calculated from Scherrer’s formula is found to be 6 nm. The SnO₂-TiO₂ thin films were hydrophilic which on modification with stearic acid exhibit superhydrophobic behavior. The increase in hydrophobicity of SnO₂ film with stearic acid modification is attributed to the change in surface energy of the film. The films exhibit superhydrophilic behavior under UV irradiation for 1h. Thus, it is observed that stearic acid modified surfaces are superhydrophobic but convert into superhydrophilic on being subjected to UV irradiation. SnO₂-TiO₂ thin films have potential for self-cleaning applications because of photoinduced hydrophilicity under UV irradiation.Keywords: nanocomposite, self-cleaning, superhydrophobic, surface energy
Procedia PDF Downloads 1801650 Development of Gamma Configuration Stirling Engine Using Polymeric and Metallic Additive Manufacturing for Education
Authors: J. Otegui, M. Agirre, M. A. Cestau, H. Erauskin
Abstract:
The increasing accessibility of mid-priced additive manufacturing (AM) systems offers a chance to incorporate this technology into engineering instruction. Furthermore, AM facilitates the creation of manufacturing designs, enhancing the efficiency of various machines. One example of these machines is the Stirling cycle engine. It encompasses complex thermodynamic machinery, revealing various aspects of mechanical engineering expertise upon closer inspection. In this publication, the application of Stirling Engines fabricated via additive manufacturing techniques will be showcased for the purpose of instructive design and product enhancement. The performance of a Stirling engine's conventional displacer and piston is contrasted. The outcomes of utilizing this instructional tool in teaching are demonstrated.Keywords: 3D printing, additive manufacturing, mechanical design, stirling engine.
Procedia PDF Downloads 511649 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation
Authors: Ali Ashtiani, Hamid Shirazi
Abstract:
This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.Keywords: airport pavement management, crack density, pavement evaluation, pavement management
Procedia PDF Downloads 1851648 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 3571647 A Simplified Model of the Control System with PFM
Authors: Bekmurza H. Aitchanov, Sholpan K. Aitchanova, Olimzhon A. Baimuratov, Aitkul N. Aldibekova
Abstract:
This work considers the automated control system (ACS) of milk quality during its magnetic field processing. For achieving high level of quality control methods were applied transformation of complex nonlinear systems in a linearized system with a less complex structure. Presented ACS is adjustable by seven parameters: mass fraction of fat, mass fraction of dry skim milk residues (DSMR), density, mass fraction of added water, temperature, mass fraction of protein, acidity.Keywords: fluids magnetization, nuclear magnetic resonance, automated control system, dynamic pulse-frequency modulator, PFM, nonlinear systems, structural model
Procedia PDF Downloads 3751646 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction
Authors: Radul Shishkov, Orlin Davchev
Abstract:
The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction
Procedia PDF Downloads 641645 Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting
Authors: Juang R. Matangaran, Qi Adlan
Abstract:
Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area.Keywords: bulk density, logging residue, plantation forest, soil compaction, timber harvesting
Procedia PDF Downloads 4071644 Job Shop Scheduling: Classification, Constraints and Objective Functions
Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah
Abstract:
The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.Keywords: job-shop scheduling, classification, constraints, objective functions
Procedia PDF Downloads 446