Search results for: ILUT function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4976

Search results for: ILUT function

4796 Study on Optimal Control Strategy of PM2.5 in Wuhan, China

Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun

Abstract:

In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.

Keywords: grey relational degree, multiple linear regression, membership function, nonlinear programming

Procedia PDF Downloads 305
4795 Pyrroloquinoline Quinone Enhances the Mitochondrial Function by Increasing Beta-Oxidation and a Balanced Mitochondrial Recycling in Mice Granulosa Cells

Authors: Moustafa Elhamouly, Masayuki Shimada

Abstract:

The production of competent oocytes is essential for reproductivity in mammals. Maintenance of mitochondrial efficiency is required to supply the ATP necessary for granulosa cell proliferation during the follicular development process. Treatment with Pyrroloquinoline quinone (PQQ) has been reported to increase the number of ovulated oocytes and pups per delivery in mice by maintaining healthy mitochondrial function. This study aimed to elucidate how PQQ maintains mitochondrial function during ovarian follicle growth. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ. The effects of PQQ on beta-oxidation, mitochondrial function, mitophagy, and mitochondrial biogenesis were examined. PQQ increased beta-oxidation-related genes and CPT1 protein content in granulosa cells and this was associated with a decreased phosphorylation of P38 signaling protein. Using the fatty acid oxidation assay on the flux analyzer, PQQ increased the reliance of beta-oxidation on the endogenous fatty acids and was associated with a mild UCP-dependant mitochondrial uncoupling, ATP production, mitophagy, and mitochondrial biogenesis. PQQ also increased the expression of endogenous antioxidant enzymes. Thus, PQQ induced beta-oxidation in growing granulosa cells relying on endogenous fatty acids. And reduced the Reactive oxygen species (ROS) production by inducing a mild mitochondrial uncoupling with keeping high mitochondrial function. Damaged mitochondria were recycled by the induced mitophagy and replaced by the increased mitochondrial biogenesis. Collectively, PQQ may enhance reproductivity by maintaining the efficiency of mitochondria to produce enough ATP required for normal folliculogenesis.

Keywords: granulosa cells, mitochondrial uncoupling, mitophagy, pyrroloquinoline quinone (PQQ), reactive oxygen species (ROS).

Procedia PDF Downloads 86
4794 Data Driven Infrastructure Planning for Offshore Wind farms

Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree

Abstract:

The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.

Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data

Procedia PDF Downloads 89
4793 Deleterious SNP’s Detection Using Machine Learning

Authors: Hamza Zidoum

Abstract:

This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.

Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM

Procedia PDF Downloads 383
4792 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm

Authors: Ping Bo, Meng Yunshan

Abstract:

Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.

Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter

Procedia PDF Downloads 328
4791 Structure Function and Violation of Scale Invariance in NCSM: Theory and Numerical Analysis

Authors: M. R. Bekli, N. Mebarki, I. Chadou

Abstract:

In this study, we focus on the structure functions and violation of scale invariance in the context of non-commutative standard model (NCSM). We find that this violation appears in the first order of perturbation theory and a non-commutative version of the DGLAP evolution equation is deduced. Numerical analysis and comparison with experimental data imposes a new bound on the non-commutative parameter.

Keywords: NCSM, structure function, DGLAP equation, standard model

Procedia PDF Downloads 614
4790 Authority and Function of Administrative Organs According to the Constitution: A Construction of Democracy in the Administrative Law of Indonesia

Authors: Andhika Danesjvara, Nur Widyastanti

Abstract:

The constitution regulates the forms, types, and powers of sState organs in a government. The powers of the organs are then regulated in more detail in the legislation. One of these organs is a government organ, headed by a president or by another name that serves as the main organizer of government. The laws and regulations will govern how the organs of government shall exercise their authority and functions. In a modern state, the function of enacting laws or called executive power does not exercise the functions of government alone, but there are other organs that help the government run the country. These organs are often called government agencies, government accelerating bodies, independent regulatory bodies, commissions, councils or other similar names. The legislation also limits the power of officials within the organs to keep from abusing its authority. The main question in this paper is whether organs are the implementation of a democratic country, or as a form of compromise with the power of stakeholders. It becomes important to see how the administrative organs perform their functions. The administrative organs that are bound by government procedures work in the public service; therefore the next question is how far the function of public service is appropriate and not contradictory to the constitution.

Keywords: administrative organs, constitution, democracy, government

Procedia PDF Downloads 314
4789 Global Optimization: The Alienor Method Mixed with Piyavskii-Shubert Technique

Authors: Guettal Djaouida, Ziadi Abdelkader

Abstract:

In this paper, we study a coupling of the Alienor method with the algorithm of Piyavskii-Shubert. The classical multidimensional global optimization methods involves great difficulties for their implementation to high dimensions. The Alienor method allows to transform a multivariable function into a function of a single variable for which it is possible to use efficient and rapid method for calculating the the global optimum. This simplification is based on the using of a reducing transformation called Alienor.

Keywords: global optimization, reducing transformation, α-dense curves, Alienor method, Piyavskii-Shubert algorithm

Procedia PDF Downloads 506
4788 Non-Differentiable Mond-Weir Type Symmetric Duality under Generalized Invexity

Authors: Jai Prakash Verma, Khushboo Verma

Abstract:

In the present paper, a pair of Mond-Weir type non-differentiable multiobjective second-order programming problems, involving two kernel functions, where each of the objective functions contains support function, is formulated. We prove weak, strong and converse duality theorem for the second-order symmetric dual programs under η-pseudoinvexity conditions.

Keywords: non-differentiable multiobjective programming, second-order symmetric duality, efficiency, support function, eta-pseudoinvexity

Procedia PDF Downloads 253
4787 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 103
4786 Value Engineering and Its Impact on Drainage Design Optimization for Penang International Airport Expansion

Authors: R.M. Asyraf, A. Norazah, S.M. Khairuddin, B. Noraziah

Abstract:

Designing a system at present requires a vital, challenging task; to ensure the design philosophy is maintained in economical ways. This paper perceived the value engineering (VE) approach applied in infrastructure works, namely stormwater drainage. This method is adopted in line as consultants have completed the detailed design. Function Analysis System Technique (FAST) diagram and VE job plan, information, function analysis, creative judgement, development, and recommendation phase are used to scrutinize the initial design of stormwater drainage. An estimated cost reduction using the VE approach of 2% over the initial proposal was obtained. This cost reduction is obtained from the design optimization of the drainage foundation and structural system, where the pile design and drainage base structure are optimized. Likewise, the design of the on-site detention tank (OSD) pump was revised and contribute to the cost reduction obtained. This case study shows that the VE approach can be an important tool in optimizing the design to reduce costs.

Keywords: value engineering, function analysis system technique, stormwater drainage, cost reduction

Procedia PDF Downloads 150
4785 RBF Neural Network Based Adaptive Robust Control for Bounded Position/Force Control of Bilateral Teleoperation Arms

Authors: Henni Mansour Abdelwaheb

Abstract:

This study discusses the design of a bounded position/force feedback controller developed to ensure position and force tracking for bilateral teleoperation arms operating with variable delay, and actuator saturation. Also, an adaptive robust Radial Basis Function (RBF) neural network is used to estimate the environment torque. The parameters of the environment torque are then sent from the slave site to the master site as a non-power signal to avoid passivity problems. Moreover, a nonlinear function is applied to each controller term as a smooth saturation function, providing a bounded control signal and preserving the system’s actuators. Lastly, the Lyapunov approach demonstrates the global stability of the controlled system, and numerical experiment results further confirm the validity of the presented strategy.

Keywords: teleoperation manipulators system, time-varying delay, actuator saturation, adaptive robust rbf neural network approximation, uncertainties

Procedia PDF Downloads 82
4784 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 144
4783 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection

Authors: Masahiro Miyaji

Abstract:

When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).

Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety

Procedia PDF Downloads 360
4782 Toward a Characteristic Optimal Power Flow Model for Temporal Constraints

Authors: Zongjie Wang, Zhizhong Guo

Abstract:

While the regular optimal power flow model focuses on a single time scan, the optimization of power systems is typically intended for a time duration with respect to a desired objective function. In this paper, a temporal optimal power flow model for a time period is proposed. To reduce the computation burden needed for calculating temporal optimal power flow, a characteristic optimal power flow model is proposed, which employs different characteristic load patterns to represent the objective function and security constraints. A numerical method based on the interior point method is also proposed for solving the characteristic optimal power flow model. Both the temporal optimal power flow model and characteristic optimal power flow model can improve the systems’ desired objective function for the entire time period. Numerical studies are conducted on the IEEE 14 and 118-bus test systems to demonstrate the effectiveness of the proposed characteristic optimal power flow model.

Keywords: optimal power flow, time period, security, economy

Procedia PDF Downloads 455
4781 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks

Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy

Abstract:

With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.

Keywords: localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI, GPS

Procedia PDF Downloads 344
4780 Overall Function and Symptom Impact of Self-Applied Myofascial Release in Adult Patients With Fibromyalgia. A Seven-Week Pilot Study

Authors: Domenica Tambasco, Riina Bray, Sophia Jaworski, Gillian Grant, Celeste Corkery

Abstract:

Fibromyalgia is a chronic condition characterized by widespread musculoskeletal pain, fatigue, and reduced function. Management of symptoms include medications, physical treatments and mindfulness therapies. Myofascial Release is a modality that has been successfully applied in var-ious musculoskeletal conditions. However, to the author’s best knowledge, it is not yet recog-nized as a self-management therapy option in Fibromyalgia. In this study, we investigated whether Self-applied Myofascial Release (SMR) is associated with overall improved function and symptoms in Fibromyalgia. Methods: Eligible adult patients with a confirmed diagnosis of Fibromyalgia at Women’s College Hospital were recruited to SMR. Sessions ran for 1 hour once a week for 7 weeks, led by the same two Physiotherapists knowledgeable in this physical treat-ment modality. The main outcome measure was an overall impact score for function and symp-toms based on the validated assessment tool for Fibromyalgia, the Revised Fibromyalgia Impact Questionnaire (FIQR), measured pre and post-intervention. Both descriptive and analytical methods were applied and reported. Results: We analyzed results using a paired t-test to deter-mine if there was a statistically significant difference in mean FIQR scores between initial (pre-intervention) and final (post-intervention) scores. A clinically significant difference in FIQR was defined as a reduction in score by 10 or more points. Conclusions: Our pilot study showed that SMR appeared to be a safe and effective intervention for our Fibromyalgia participants and the overall impact on function and symptoms occurred in only 7 weeks. Further studies with larger sample sizes comparing SMR to other physical treatment modalities (such as stretching) in an RCT are recommended.

Keywords: fibromyalgia, myofascial release, physical therapy, FIQR

Procedia PDF Downloads 78
4779 A New Distribution and Application on the Lifetime Data

Authors: Gamze Ozel, Selen Cakmakyapan

Abstract:

We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of real life data set.

Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood

Procedia PDF Downloads 504
4778 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

Authors: Yehjune Heo

Abstract:

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer

Procedia PDF Downloads 140
4777 Theoretical Analysis of the Optical and Solid State Properties of Thin Film

Authors: E. I. Ugwu

Abstract:

Theoretical analysis of the optical and Solid State properties of ZnS thin film using beam propagation technique in which a scalar wave is propagated through the material thin film deposited on a substrate with the assumption that the dielectric medium is section into a homogenous reference dielectric constant term, and a perturbed dielectric term, representing the deposited thin film medium is presented in this work. These two terms, constitute arbitrary complex dielectric function that describes dielectric perturbation imposed by the medium of for the system. This is substituted into a defined scalar wave equation in which the appropriate Green’s Function was defined on it and solved using series technique. The green’s value obtained from Green’s Function was used in Dyson’s and Lippmann Schwinger equations in conjunction with Born approximation method in computing the propagated field for different input regions of field wavelength during which the influence of the dielectric constants and mesh size of the thin film on the propagating field were depicted. The results obtained from the computed field were used in turn to generate the data that were used to compute the band gaps, solid state and optical properties of the thin film such as reflectance, Transmittance and reflectance with which the band gap obtained was found to be in close approximate to that of experimental value.

Keywords: scalar wave, optical and solid state properties, thin film, dielectric medium, perturbation, Lippmann Schwinger equations, Green’s Function, propagation

Procedia PDF Downloads 442
4776 Optimization of the Measure of Compromise as a Version of Sorites Paradox

Authors: Aleksandar Hatzivelkos

Abstract:

The term ”compromise” is mostly used casually within the social choice theory. It is usually used as a mere result of the social choice function, and this omits its deeper meaning and ramifications. This paper is based on a mathematical model for the description of a compromise as a version of the Sorites paradox. It introduces a formal definition of d-measure of divergence from a compromise and models a notion of compromise that is often used only colloquially. Such a model for vagueness phenomenon, which lies at the core of the notion of compromise enables the introduction of new mathematical structures. In order to maximize compromise, different methods can be used. In this paper, we explore properties of a social welfare function TdM (from Total d-Measure), which is defined as a function which minimizes the total sum of d-measures of divergence over all possible linear orderings. We prove that TdM satisfy strict Pareto principle and behaves well asymptotically. Furthermore, we show that for certain domain restrictions, TdM satisfy positive responsiveness and IIIA (intense independence of irrelevant alternatives) thus being equivalent to Borda count on such domain restriction. This result gives new opportunities in social choice, especially when there is an emphasis on compromise in the decision-making process.

Keywords: borda count, compromise, measure of divergence, minimization

Procedia PDF Downloads 139
4775 A System Functions Set-Up through Near Field Communication of a Smartphone

Authors: Jaemyoung Lee

Abstract:

We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.

Keywords: system set-up, near field communication, smartphone, android

Procedia PDF Downloads 340
4774 Welfare Estimation in a General Equilibrium Model with Cities

Authors: Oded Hochman

Abstract:

We first show that current measures of welfare changes in the whole economy do not apply to an economy with cities. In addition, since such measures are defined over a partial equilibrium, they capture only partially the effect of a welfare change. We then define a unique and additive measure that we term the modified economic surplus (mES) which fully captures the welfare effects caused by a change in the price of a nationally traded good. We show that the price change causes, on the one hand a change of land rents in the economy and, on the other hand, an equal change of mES that can be estimated by measuring areas in the price-quantity national demand and supply plane. We construct for each city a cost function from which we derive a city’s and, after aggregation, an economy-wide demand and supply functions of nationwide prices and of either the unearned incomes (Marshalian functions) or the utility levels (compensated functions).

Keywords: city cost function, welfare measures, modified compensated variation, modified economic surplus, unearned income function, differential land rents, city size

Procedia PDF Downloads 327
4773 Design and Analysis of Universal Multifunctional Leaf Spring Main Landing Gear for Light Aircraft

Authors: Meiyuan Zheng, Jingwu He, Yuexi Xiong

Abstract:

A universal multi-function leaf spring main landing gear was designed for light aircraft. The main landing gear combined with the leaf spring, skidding, and wheels enables it to have a good takeoff and landing performance on various grounds such as the hard, snow, grass and sand grounds. Firstly, the characteristics of different landing sites were studied in this paper in order to analyze the load of the main landing gear on different types of grounds. Based on this analysis, the structural design optimization along with the strength and stiffness characteristics of the main landing gear has been done, which enables it to have good takeoff and landing performance on different types of grounds given the relevant regulations and standards. Additionally, the impact of the skidding on the aircraft during the flight was also taken into consideration. Finally, a universal multi-function leaf spring type of the main landing gear suitable for light aircraft has been developed.

Keywords: landing gear, multi-function, leaf spring, skidding

Procedia PDF Downloads 271
4772 Influence of Strengthening of Hip Abductors and External Rotators in Treatment of Patellofemoral Pain Syndrome

Authors: Karima Abdel Aty Hassan Mohamed, Manal Mohamed Ismail, Mona Hassan Gamal Eldein, Ahmed Hassan Hussein, Abdel Aziz Mohamed Elsingerg

Abstract:

Background: Patellofemoral pain (PFP) is a common musculoskeletal pain condition, especially in females. Decreased hip muscle strength has been implicated as a contributing factor, yet the relationships between pain, hip muscle strength and function are not known. Objective: The purpose of this study is to investigate the effects of strengthening hip abductors and lateral rotators on pain intensity, function and hip abductor and hip lateral rotator eccentric and concentric torques in patients with PFPS. Methods: Thirty patients had participated in this study; they were assigned into two experimental groups. With age ranged for eighty to thirty five years. Group A consisted of 15 patients (11females and 4 males) with mean age 20.8 (±2.73) years, received closed kinetic chain exercises program, stretching exercises for tight lower extremity soft tissues, and hip strengthening exercises .Group B consisted of 15 patients (12 females and 3 males) with mean age 21.2(±3.27) years, received closed kinetic chain exercises program and stretching exercises for tight lower extremity soft tissues. Treatment was given 2-3times/week, for 6 weeks. Patients were evaluated pre and post treatment for their pain severity, function of knee joint, hip abductors and external rotators concentric/eccentric peak torque. Result: the results revealed that there were significant differences in pain and function between both groups, while there was improvement for all values for both group. Conclusion: Six weeks rehabilitation program focusing on knee strengthening exercises either supplemented by hip strengthening exercises or not effective in improving function, reducing pain and improving hip muscles torque in patients with PFPS. However, adding hip abduction and lateral rotation strengthening exercises seem to reduce pain and improve function more efficiently.

Keywords: patellofemoral pain syndrome, hip muscles, rehabilitation, isokinetic

Procedia PDF Downloads 453
4771 Kinematic Hardening Parameters Identification with Respect to Objective Function

Authors: Marina Franulovic, Robert Basan, Bozidar Krizan

Abstract:

Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling.

Keywords: genetic algorithm, kinematic hardening, material model, objective function

Procedia PDF Downloads 338
4770 Impact of Safety and Quality Considerations of Housing Clients on the Construction Firms’ Intention to Adopt Quality Function Deployment: A Case of Construction Sector

Authors: Saif Ul Haq

Abstract:

The current study intends to examine the safety and quality considerations of clients of housing projects and their impact on the adoption of Quality Function Deployment (QFD) by the construction firm. Mixed method research technique has been used to collect and analyze the data wherein a survey was conducted to collect the data from 220 clients of housing projects in Saudi Arabia. Then, the telephonic and Skype interviews were conducted to collect data of 15 professionals working in the top ten real estate companies of Saudi Arabia. Data were analyzed by using partial least square (PLS) and thematic analysis techniques. Findings reveal that today’s customer prioritizes the safety and quality requirements of their houses and as a result, construction firms adopt QFD to address the needs of customers. The findings are of great importance for the clients of housing projects as well as for the construction firms as they could apply QFD in housing projects to address the safety and quality concerns of their clients.

Keywords: construction industry, quality considerations, quality function deployment, safety considerations

Procedia PDF Downloads 127
4769 Role of Long Noncoding RNA HULC on Colorectal Carcinoma Progression through Epigenetically Repressing NKD2 Expression

Authors: Shu-Jun Li, Cheng-Cao Sun, De-Jia Li

Abstract:

Recently, long noncoding RNAs (lncRNAs) have been emerged as crucial regulators of human diseases and prognostic markers in numerous of cancers, including colorectal carcinoma (CRC). Here, we identified an oncogenetic lncRNA HULC, which may promote colorectal tumorigenesis. HULC has been found to be up-regulated and acts as oncogene in gastric cancer and hepatocellular carcinoma, but its expression pattern, biological function and underlying mechanism in CRC is still undetermined. Here, we reported that HULC expression is also over-expressed in CRC, and its increased level is associated with poor prognosis and shorter survival. Knockdown of HULC impaired CRC cells proliferation, migration and invasion, facilitated cell apoptosis in vitro, and inhibited tumorigenicity of CRC cells in vivo. Mechanistically, RNA immunoprecipitation (RIP) and RNA pull-down experiment demonstrated that HULC could simultaneously interact with EZH2 to repress underlying targets NKD2 transcription. In addition, rescue experiments determined that HULC oncogenic function is partly dependent on repressing NKD2. Taken together, our findings expound how HULC over-expression endows an oncogenic function in CRC.

Keywords: long noncoding RNA, HULC, NKD2, colorectal carcinoma, proliferation, apoptosis

Procedia PDF Downloads 226
4768 Novel Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we propose a novel inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multi-class. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.

Keywords: bayesian rule, gaussian process classification model with multiclass, gaussian process prior, human action classification, laplace approximation, variational EM algorithm

Procedia PDF Downloads 339
4767 Parameterized Lyapunov Function Based Robust Diagonal Dominance Pre-Compensator Design for Linear Parameter Varying Model

Authors: Xiaobao Han, Huacong Li, Jia Li

Abstract:

For dynamic decoupling of linear parameter varying system, a robust dominance pre-compensator design method is given. The parameterized pre-compensator design problem is converted into optimal problem constrained with parameterized linear matrix inequalities (PLMI); To solve this problem, firstly, this optimization problem is equivalently transformed into a new form with elimination of coupling relationship between parameterized Lyapunov function (PLF) and pre-compensator. Then the problem was reduced to a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a newly constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator was achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation of a turbofan engine PLPV model.

Keywords: linear parameter varying (LPV), parameterized Lyapunov function (PLF), linear matrix inequalities (LMI), diagonal dominance pre-compensator

Procedia PDF Downloads 402