Search results for: Chieh-Lun Cheng
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 482

Search results for: Chieh-Lun Cheng

302 Construct the Fur Input Mixed Model with Activity-Based Benefit Assessment Approach of Leather Industry

Authors: M. F. Wu, F. T. Cheng

Abstract:

Leather industry is the most important traditional industry to provide the leather products in the world for thousand years. The fierce global competitive environment and common awareness of global carbon reduction make livestock supply quantities falling, salt and wet blue leather material reduces and the price skyrockets significantly. Exchange rate fluctuation led sales revenue decreasing which due to the differences of export exchanges and compresses the overall profitability of leather industry. This paper applies activity-based benefit assessment approach to build up fitness fur input mixed model, fur is Wet Blue, which concerned with four key factors: the output rate of wet blue, unit cost of wet blue, yield rate and grade level of Wet Blue to achieve the low cost strategy under given unit price of leather product condition of the company. The research findings indicate that applying this model may improve the input cost structure, decrease numbers of leather product inventories and to raise the competitive advantages of the enterprise in the future.

Keywords: activity-based benefit assessment approach, input mixed, output rate, wet blue

Procedia PDF Downloads 374
301 The Impact of Financial News and Press Freedom on Abnormal Returns around Earnings Announcements in Greater China

Authors: Yu-Chen Wei, Yang-Cheng Lu, I-Chi Lin

Abstract:

This study examines the impacts of news sentiment and press freedom on abnormal returns during the earnings announcement in greater China including the Shanghai, Shenzhen and Taiwan stock markets. The news sentiment ratio is calculated by using the content analysis of semantic orientation. The empirical results show that news released prior to the event date may decrease the cumulative abnormal returns prior to the earnings announcement regardless of whether it is released in China or Taiwan. By contrast, companies with optimistic financial news may increase the cumulative abnormal returns during the announcement date. Furthermore, the difference in terms of press freedom is considered in greater China to compare the impact of press freedom on abnormal returns. The findings show that, the freer the press is, the more negatively significant will be the impact of news on the abnormal returns, which means that the press freedom may decrease the ability of the news to impact the abnormal returns. The intuition is that investors may receive alternative news related to each company in the market with greater press freedom, which proves the efficiency of the market and reduces the possible excess returns.

Keywords: news, press freedom, Greater China, earnings announcement, abnormal returns

Procedia PDF Downloads 392
300 The Design of Intelligent Passenger Organization System for Metro Stations Based on Anylogic

Authors: Cheng Zeng, Xia Luo

Abstract:

Passenger organization has always been an essential part of China's metro operation and management. Facing the massive passenger flow, stations need to improve their intelligence and automation degree by an appropriate integrated system. Based on the existing integrated supervisory control system (ISCS) and simulation software (Anylogic), this paper designs an intelligent passenger organization system (IPOS) for metro stations. Its primary function includes passenger information acquisition, data processing and computing, visualization management, decision recommendations, and decision response based on interlocking equipment. For this purpose, the logical structure and intelligent algorithms employed are particularly devised. Besides, the structure diagram of information acquisition and application module, the application of Anylogic, the case library's function process are all given by this research. Based on the secondary development of Anylogic and existing technologies like video recognition, the IPOS is supposed to improve the response speed and address capacity in the face of emergent passenger flow of metro stations.

Keywords: anylogic software, decision-making support system, intellectualization, ISCS, passenger organization

Procedia PDF Downloads 173
299 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations

Authors: Xiao Zhou, Jianlin Cheng

Abstract:

A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.

Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining

Procedia PDF Downloads 463
298 Effect of Acoustical Performance Detection and Evaluation in Music Practice Rooms on Teaching

Authors: Hsu-Hui Cheng, Peng-Chian Chen, Shu-Yuan Chang, Jie-Ying Zhang

Abstract:

Activities in the music practice rooms range from playing, listening, rehearsing to music performing. The good room acoustics in a music practice room enables a music teacher to teach more effectively subtle concepts such as intonation, articulation, balance, dynamics and tone production. A poor acoustical environment would deeply affect the development of basic musical skills of music students. Practicing in the music practice room is an essential daily activity for music students; consequently, music practice rooms are very important facilities in a music school or department. The purpose of this survey is to measure and analyze the acoustic condition of piano practice rooms at the department of music in Zhaoqing University and accordingly apply a more effective teaching method to music students. The volume of the music practice room is approximately 25 m³, and it has existing curtains and some wood hole sound-absorbing panels. When all small music practice rooms are in constant use for teaching, it was found that the values of the background noise at 45, 46, 42, 46, 45 dB(A) in the small music practice room ( the doors and windows were close), respectively. The noise levels in the small music practice room to higher than standard levels (35dB(A)).

Keywords: acoustical performance, music practice room, noise level, piano room

Procedia PDF Downloads 224
297 Factors Influencing the Continuance Usage of Online Mobile Payment Apps: A Case Study of WECHAT Users in China

Authors: Isaac Kofi Mensah, Jianing Mi, Feng Cheng

Abstract:

This research paper seeks to investigate the factors determining the continuance usage of online mobile payment applications among WECHAT users in China. Technology Acceptance Model (TAM) and the Diffusion of Innovation (DOI) theory would both be applied as the theoretical foundation for this study. A developed instrument would be administered to the targeted sample of 1000 WECHAT Users in the City of Harbin, China, through an online questionnaire administration platform. Factors such as perceived usefulness, perceived ease of use, perceived service quality, social influence, trust in the internet, internet self-efficacy, relative advantage, compatibility, and complexity would be explored to determine its significant impact on the continuance intention to use mobile payment apps. This study is at the development and implementation stage. The successful completion of this research article would not only provide an insightful understanding of the factors influencing the decision of WECHAT users in China to use mobile payment applications but also enrich the e-commerce adoption literature.

Keywords: diffusion of innovation (DOI), e-commerce, mobile payment, technology acceptance model (TAM), WECHAT

Procedia PDF Downloads 191
296 Design of Target Selection for Pedestrian Autonomous Emergency Braking System

Authors: Tao Song, Hao Cheng, Guangfeng Tian, Chuang Xu

Abstract:

An autonomous emergency braking system is an advanced driving assistance system that enables vehicle collision avoidance and pedestrian collision avoidance to improve vehicle safety. At present, because the pedestrian target is small, and the mobility is large, the pedestrian AEB system is faced with more technical difficulties and higher functional requirements. In this paper, a method of pedestrian target selection based on a variable width funnel is proposed. Based on the current position and predicted position of pedestrians, the relative position of vehicle and pedestrian at the time of collision is calculated, and different braking strategies are adopted according to the hazard level of pedestrian collisions. In the CNCAP standard operating conditions, comparing the method of considering only the current position of pedestrians and the method of considering pedestrian prediction position, as well as the method based on fixed width funnel and variable width funnel, the results show that, based on variable width funnel, the choice of pedestrian target will be more accurate and the opportunity of the intervention of AEB system will be more reasonable by considering the predicted position of the pedestrian target and vehicle's lateral motion.

Keywords: automatic emergency braking system, pedestrian target selection, TTC, variable width funnel

Procedia PDF Downloads 156
295 Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition

Authors: Chiou-Yng Lee, Wen-Yo Lee, Chieh-Tsai Wu, Cheng-Chen Yang

Abstract:

Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit-level and digit-level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very-large-scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications.

Keywords: digit-serial systolic multiplier, elliptic curve cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial basis (SPB), pairing computation

Procedia PDF Downloads 360
294 Preparation and Characterization of Nanostructured FeN Electrocatalyst for Air Cathode Microbial Fuel Cell (MFC)

Authors: Md. Maksudur Rahman Khan, Chee Wai Woon, Huei Ruey Ong, Vignes Rasiah, Chin Kui Cheng, Kar Min Chan, E. Baranitharan

Abstract:

The present work represents a preparation of non-precious iron-based electrocatalyst (FeN) for ORR in air-cathode microbial fuel cell by pyrolysis treatment. Iron oxalate which recovered from the industrial wastewater and Phenanthroline (Phen) were used as the iron and nitrogen precursors, respectively in preparing FeN catalyst. The performance of as prepared catalyst (FeN) was investigated in a single chambered air cathode MFC in which anaerobic sludge was used as inoculum and palm oil mill effluent as substrate. The maximum open circuit potential (OCV) and the highest power density recorded were 0.543 V and 4.9 mW/m2, respectively. Physical characterization of FeN was elucidated by using Brunauner Emmett Teller (BET), X-Ray Diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) while the electrochemical properties were characterized by cyclic voltammetry (CV) analysis. The presence of biofilm on anode surface was examined using FESEM and confirmed using Infrared Spectroscopy and Thermogravimetric Analysis. The findings of this study demonstrated that FeN is electrochemically active and further modification is needed to increase the ORR catalytic activity.

Keywords: iron based catalyst, microbial fuel cells, oxygen reduction reaction, palm oil mill effluent

Procedia PDF Downloads 332
293 Astaxanthin Induces Cytotoxicity through Down-Regulating Rad51 Expression in Human Lung Cancer Cells

Authors: Jyh-Cheng Chen, Tai-Jing Wang, Yun-Wei Lin

Abstract:

Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Treatment with astaxanthin decreased Rad51 expression and phospho-AKT protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector significantly rescued the decreased Rad51 protein and mRNA levels in astaxanthin-treated NSCLC cells. Combined treatment with PI3K inhibitors (LY294002 or wortmannin) and astaxanthin further decreased the Rad51 expression in NSCLC cells. Knockdown of Rad51 enhanced astaxanthin-induced cytotoxicity and growth inhibition in NSCLC cells. These findings may have implications for the rational design of future drug regimens incorporating astaxanthin for the treatment of NSCLC.

Keywords: astaxanthin, cytotoxicity, AKT, non-small cell lung cancer, PI3K

Procedia PDF Downloads 293
292 Dyeing of Polyester/Cotton Blends with Reverse-Micelle Encapsulated High Energy Disperse/Reactive Dye Mixture

Authors: Chi-Wai Kan, Yanming Wang, Alan Yiu-Lun Tang, Cheng-Hao Lee Lee

Abstract:

Dyeing of polyester/cotton blend fabrics in various polyester/cotton percentages (32/68, 40/60 and 65/35) was investigated using (poly(ethylene glycol), PEG) based reverse-micelle. High energy disperse dyes and warm type reactive dyes were encapsulated and applied on polyester/cotton blend fabrics in a one bath one step dyeing process. Comparison of reverse micellar-based and aqueous-based (water-based) dyeing was conducted in terms of colour reflectance. Experimental findings revealed that the colour shade of the dyed fabrics in reverse micellar non-aqueous dyeing system at a lower dyeing temperature of 98°C is slightly lighter than that of conventional aqueous dyeing system in two-step process (130oC for disperse dyeing and 70°C for reactive dyeing). The exhaustion of dye in polyester-cotton blend fabrics, in terms of colour reflectance, were found to be highly fluctuated at dyeing temperature of 98°C.

Keywords: one-bath dyeing, polyester/cotton blends, disperse/reactive dyes, reverse micelle

Procedia PDF Downloads 150
291 Exploring Gaming-Learning Interaction in MMOG Using Data Mining Methods

Authors: Meng-Tzu Cheng, Louisa Rosenheck, Chen-Yen Lin, Eric Klopfer

Abstract:

The purpose of the research is to explore some of the ways in which gameplay data can be analyzed to yield results that feedback into the learning ecosystem. Back-end data for all users as they played an MMOG, The Radix Endeavor, was collected, and this study reports the analyses on a specific genetics quest by using the data mining techniques, including the decision tree method. In the study, different reasons for quest failure between participants who eventually succeeded and who never succeeded were revealed. Regarding the in-game tools use, trait examiner was a key tool in the quest completion process. Subsequently, the results of decision tree showed that a lack of trait examiner usage can be made up with additional Punnett square uses, displaying multiple pathways to success in this quest. The methods of analysis used in this study and the resulting usage patterns indicate some useful ways that gameplay data can provide insights in two main areas. The first is for game designers to know how players are interacting with and learning from their game. The second is for players themselves as well as their teachers to get information on how they are progressing through the game, and to provide help they may need based on strategies and misconceptions identified in the data.

Keywords: MMOG, decision tree, genetics, gaming-learning interaction

Procedia PDF Downloads 357
290 High Density Polyethylene Biocomposites Reinforced with Hydroxyapatite Nanorods and Carbon Nanofibers for Joint Replacements

Authors: Chengzhu Liao, Jianbo Zhang, Haiou Wang, Jing Ming, Huili Li, Yanyan Li, Hua Cheng, Sie Chin Tjong

Abstract:

Since Bonfield’s group’s pioneer work, there has been growing interest amongst the materials scientists, biomedical engineers and surgeons in the use of novel biomaterials for the treatment of bone defects and injuries. This study focuses on the fabrication, mechanical characterization and biocompatibility evaluation of high density polyethylene (HDPE) reinforced with hydroxyapatite nanorods (HANR) and carbon nanofibers (CNF). HANRs of 20 wt% and CNFs of 0.5-2 wt% were incorporated into HDPE to form biocomposites using traditional melt-compounding and injection molding techniques. The mechanical measurements show that CNF additions greatly improve the tensile strength and Young’s modulus of HDPE and HDPE-20% nHA composites. Meanwhile, the nHA and CNF fillers were found to be effective to improve dimensional and thermal stability of HDPE. The results of osteoblast cell cultivation and dimethyl thiazolyl diphenyl thiazolyl tetrazolium (MTT) tests showed that the HDPE/ CNF-nHA nanocomposites are biocompatible. Such HDPE/ CNF-nHA hybrids are found to be potential biomaterials for making orthopedic joint/bone replacements.

Keywords: biocompatibility, biocomposite, carbon nanofiber, high density polyethylene, hydroxyapatite

Procedia PDF Downloads 301
289 Implementation of a Photo-Curable 3D Additive Manufacturing Technology with Grey Capability by Using Piezo Ink-jets

Authors: Ming-Jong Tsai, Y. L. Cheng, Y. L. Kuo, S. Y. Hsiao, J. W. Chen, P. H. Liu, D. H. Chen

Abstract:

The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi.

Keywords: 3D printing, additive manufacturing, color, photo-curable, Piezo type ink-jet, UV Resin

Procedia PDF Downloads 559
288 The Study of Elementary School Teacher’s Behavior of Using E-books by UTAUT Model

Authors: Tzong-Shing Cheng, Chen Pei Chen, Shu-Wei Chen

Abstract:

The purpose of this research is to apply Unified Theory of Acceptance and Use of Technology (UTAUT) model to investigate the factors that influence elementary school teacher’s behavior of using e-books. Based on the literature review, a questionnaire was modified and used to test the elementary school teachers in Changhua. A total of 420 questionnaires were administered and 364 of them were returned, including 328 valid and 36 invalid questionnaires. The effective response rate is 78%. The methods of data analysis include descriptive statistics, factor analysis, Pearson’s correlation coefficient, one way analysis of variance (ANOVA) and simple regression analysis. The results show that: 1. There were significant difference in the Elementary school teachers’ “Performance Expectancy”, “Effort Expectancy”, “Social Influence”, and “Facilitating Conditions” depending on their different “Demographic Variables”. 2. “Performance Expectancy” and “Behavioral Intention to Use” are positively correlated. 3. “Effort Expectancy” and “Behavioral Intention to Use” are positively correlated. 4. There was no significant relationship between “Social Influence” and “Behavioral Intention to Use”. 5. There was significant relationship between “Facilitating Conditions” and “Use Behavior”.

Keywords: e-books, UTAUT, elementary school teacher, behavioral intention to use

Procedia PDF Downloads 611
287 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study

Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu

Abstract:

With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.

Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray

Procedia PDF Downloads 728
286 A Multivariate 4/2 Stochastic Covariance Model: Properties and Applications to Portfolio Decisions

Authors: Yuyang Cheng, Marcos Escobar-Anel

Abstract:

This paper introduces a multivariate 4/2 stochastic covariance process generalizing the one-dimensional counterparts presented in Grasselli (2017). Our construction permits stochastic correlation not only among stocks but also among volatilities, also known as co-volatility movements, both driven by more convenient 4/2 stochastic structures. The parametrization is flexible enough to separate these types of correlation, permitting their individual study. Conditions for proper changes of measure and closed-form characteristic functions under risk-neutral and historical measures are provided, allowing for applications of the model to risk management and derivative pricing. We apply the model to an expected utility theory problem in incomplete markets. Our analysis leads to closed-form solutions for the optimal allocation and value function. Conditions are provided for well-defined solutions together with a verification theorem. Our numerical analysis highlights and separates the impact of key statistics on equity portfolio decisions, in particular, volatility, correlation, and co-volatility movements, with the latter being the least important in an incomplete market.

Keywords: stochastic covariance process, 4/2 stochastic volatility model, stochastic co-volatility movements, characteristic function, expected utility theory, veri cation theorem

Procedia PDF Downloads 149
285 One-Shot Text Classification with Multilingual-BERT

Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao

Abstract:

Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.

Keywords: OSML, BERT, text classification, one shot

Procedia PDF Downloads 99
284 Development and Validation of the 'Short Form BASIC Scale' Psychotic Tendencies Subscale

Authors: Chia-Chun Wu, Ying-Yao Cheng

Abstract:

The purpose of this study was developing the 'short-form BASIC scale' psychotic tendencies subscale so as to provide a more efficient, economical and effective way to assess the mental health of recruits. 1749 students from Naval Recruit Training Center participated in this study. The multidimensional constructs of psychotic tendencies subscale include four dimensions: schizophrenic tendencies, manic tendencies, depression tendencies, and suicidal ideation. We cut down the 36-item psychotic tendencies subscale to 25 items by using multidimension Rasch techniques. They were applied to assess model-data fit and to provide the validity evidence of the short form BASIC scale of psychotic tendencies subscale. The person separation reliabilities of the measures from four dimensions were .70, .67, .74 and .57, respectively. In addition, there is a notable correlation between the length version and short version of schizophrenic tendencies (scaled .89), manic tendencies (.96), depression tendencies (.97) and suicidal ideation (.97). The results have indicated that the development of the study of short-form scale sufficient to replace the original scale. Therefore, it is suggested that short-form basic scale is used to assess the mental health with participants being more willing to answer questions to ensure the validation of assessments.

Keywords: BASIC scale, military, Rasch analysis, short-form scale

Procedia PDF Downloads 360
283 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng

Abstract:

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.

Keywords: electro-rheological fluid, semi-active vibration control, shock absorber, type 2 fuzzy control

Procedia PDF Downloads 446
282 The Profitability Management Mechanism of Leather Industry-Based on the Activity-Based Benefit Approach

Authors: Mei-Fang Wu, Shu-Li Wang, Tsung-Yueh Lu, Feng-Tsung Cheng

Abstract:

Strengthening core competitiveness is the main goal of enterprises in a fierce competitive environment. Accurate cost information is a great help for managers in dealing with operation strategies. This paper establishes a profitability management mechanism that applies the Activity-Based Benefit approach (ABBA) to solve the profitability for each customer from the market. ABBA provides financial and non-financial information for the operation, but also indicates what resources have expired in the operational process. The customer profit management model shows the level of profitability of each customer for the company. The empirical data were gathered from a case company operating in the leather industry in Taiwan. The research findings indicate that 30% of customers create little profit for the company as a result of asking for over 5% of sales discounts. Those customers ask for sales discount because of color differences of leather products. This paper provides a customer’s profitability evaluation mechanism to help enterprises to greatly improve operating effectiveness and promote operational activity efficiency and overall operation profitability.

Keywords: activity-based benefit approach, customer profit analysis, leather industry, profitability management mechanism

Procedia PDF Downloads 304
281 Research on the Online Learning Activities Design and Students’ Experience Based on APT Model

Authors: Wang Yanli, Cheng Yun, Yang Jiarui

Abstract:

Due to the separation of teachers and students, online teaching during the COVID-19 epidemic was faced with many problems, such as low enthusiasm of students, distraction, low learning atmosphere, and insufficient interaction between teachers and students. The essay designed the elaborate online learning activities of the course 'Research Methods of Educational Science' based on the APT model from three aspects of multiple assessment methods, a variety of teaching methods, and online learning environment and technology. Student's online learning experience was examined from the perception of online course, the perception of the online learning environment, and satisfaction after the course’s implementation. The research results showed that students have a positive overall evaluation of online courses, a high degree of engagement in learning, positive acceptance of online learning, and high satisfaction with it, but students hold a relatively neutral attitude toward online learning. And some dimensions in online learning experience were found to have positive influence on students' satisfaction with online learning. We suggest making the good design of online courses, selecting proper learning platforms, and conducting blended learning to improve students’ learning experience. This study has both theoretical and practical significance for the design, implementation, effect feedback, and sustainable development of online teaching in the post-epidemic era.

Keywords: APT model, online learning, online learning activities, learning experience

Procedia PDF Downloads 133
280 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 102
279 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method

Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage

Abstract:

Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.

Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square

Procedia PDF Downloads 381
278 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 104
277 A Study on the Stabilization of the Swell Behavior of Basic Oxygen Furnace Slag by Using Geopolymer Technology

Authors: K. Y. Lin, W. H. Lee, T. W. Cheng, S. W. Huang

Abstract:

Basic Oxygen Furnace (BOF) Slag is a by-product of iron making. It has great engineering properties, such as, high hardness and density, high compressive strength, low abrasion ratio, and can replace natural aggregate for building materials. However, the main problem for BOF slag is expansion, due to it contains free lime or free magnesium. The purpose of this study was to stabilize the BOF slag by using geopolymeric technology, hoping can prevent BOF slag expansion. Geopolymer processes contain a large amount of free silicon. These free silicon can react with free-lime or free magnesium oxide in BOF slag, and thus to form stable compound, therefore inhibit the expansion of the BOF slag. In this study for the successful preparation of geopolymer mortar with BOF slag, and their main properties are analyzed with regard to their use as building materials. Autoclave is used to study the volume stability of these geopolymer mortar. Finally, the compressive strength of geopolymer mortar with BOF slag can be reached 33MPa in 28 days. After autoclave testing, the volume expansion does not exceed 0.2%. Even after the autoclave test, the compressive strength can increase to 35MPa. According to the research results can be proved that using geopolymer technology for stabilizing BOF slag is very effective.

Keywords: BOF slag, autoclave test, geopolymer, swell behavior

Procedia PDF Downloads 135
276 Using Closed Frequent Itemsets for Hierarchical Document Clustering

Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu

Abstract:

Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.

Keywords: FIHC, documents clustering, ontology, closed frequent itemset

Procedia PDF Downloads 397
275 Hsa-miR-326 Functions as a Tumor Suppressor in Non-Small Cell Lung Cancer through Targeting CCND1

Authors: Cheng-Cao Sun, Shu-Jun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, De-Jia Li

Abstract:

Hsa-miRNA-326 (miR-326) has recently been discovered having anticancer efficacy in different organs. However, the role of miR-326 on non-small cell lung cancer (NSCLC) is still ambiguous. In this study, we investigated the role of miR-326 on the development of NSCLC. The results indicated that miR-326 was significantly down-regulated in primary tumor tissues and very low levels were found in NSCLC cell lines. Ectopic expression of miR-326 in NSCLC cell lines significantly suppressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibition of cyclin D1, cyclin D2, CDK4, and up-regulation of p57(Kip2) and p21(Waf1/Cip1). In addition, miR-326 induced apoptosis, as indicated by concomitantly with up-regulation of key apoptosis protein cleaved caspase-3, and down-regulation of anti-apoptosis protein Bcl2. Moreover, miR-326 inhibited cellular migration and invasiveness through inhibition of matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene CCND1 was revealed to be a putative target of miR-326, which was inversely correlated with miR-326 expression in NSCLC. Taken together, our results demonstrated that miR-326 played a pivotal role on NSCLC through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic CCND1.

Keywords: hsa-miRNA-326 (miR-326), cyclin D1, non-small cell lung cancer (NSCLC), proliferation, apoptosis

Procedia PDF Downloads 305
274 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network

Authors: Cheng Fang, Lingwei Quan, Cunyue Lu

Abstract:

Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.

Keywords: computer vision, pose estimation, pose tracking, Siamese network

Procedia PDF Downloads 151
273 Stray Light Reduction Methodology by a Sinusoidal Light Modulation and Three-Parameter Sine Curve Fitting Algorithm for a Reflectance Spectrometer

Authors: Hung Chih Hsieh, Cheng Hao Chang, Yun Hsiang Chang, Yu Lin Chang

Abstract:

In the applications of the spectrometer, the stray light that comes from the environment affects the measurement results a lot. Hence, environment and instrument quality control for the stray reduction is critical for the spectral reflectance measurement. In this paper, a simple and practical method has been developed to correct a spectrometer's response for measurement errors arising from the environment's and instrument's stray light. A sinusoidal modulated light intensity signal was incident on a tested sample, and then the reflected light was collected by the spectrometer. Since a sinusoidal signal modulated the incident light, the reflected light also had a modulated frequency which was the same as the incident signal. Using the three-parameter sine curve fitting algorithm, we can extract the primary reflectance signal from the total measured signal, which contained the primary reflectance signal and the stray light from the environment. The spectra similarity between the extracted spectra by this proposed method with extreme environment stray light is 99.98% similar to the spectra without the environment's stray light. This result shows that we can measure the reflectance spectra without the affection of the environment's stray light.

Keywords: spectrometer, stray light, three-parameter sine curve fitting, spectra extraction

Procedia PDF Downloads 246