Search results for: shared frailty survival models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8677

Search results for: shared frailty survival models

6637 After Schubert’s Winterreise: Contemporary Aesthetic Journeys

Authors: Maria de Fátima Lambert

Abstract:

Following previous studies about Writing and Seeing, this paper focuses on the aesthetic assumptions within the concept of Winter Journey (Voyage d’Hiver/Winterreise) both in Georges Perec’s Saga and the Oulipo Group vis-à-vis with the creations by William Kentridge and Michael Borremans. The aesthetic and artistic connections are widespread. Nevertheless, we can identify common poetical principles shared by these different authors, not only according to the notion of ekphrasis, but also following the procedures of contemporary creation in literature and visual arts. The analysis of the ongoing process of the French writers as individuals and as group and the visual artists’ acting might contribute for another crossed definition of contemporary conception. The same title/theme was a challenge and a goal for them. Let’s wonder how deep the concept encouraged them and which symbolic upbringings were directing their poetical achievements. The idea of an inner journey became the main point, and got “over” and “across” a shared path worth to be followed. The authors were chosen due to the resilient contents of their visual and written images, and looking for the reasons that might had driven their conceptual basis to be. In Pérec’s “Winter Journey” as for the following fictions by Jacques Roubaud, Hervé le Tellier, Jacques Jouet and Hugo Vernier (that emerges from Perec’s fiction and becomes a real author) powerful aesthetic and enigmatic reflections grow connected with a poetic (and aesthetic) understanding of Walkscapes. They might be assumed as ironic fictions and poetical drifts. Outstanding from different logics, the overwhelming impact of Winterreise Lied by Schubert after Wilhelm Müller’s poems is a major reference in present authorship creations. Both Perec and Oulipo’s author’s texts are powerfully ekphrastic, although we should not forget they follow goals, frameworks and identities. When acting as a reader, they induce powerful imageries - cinematic or cinematographic - that flow in our minds. It was well-matched with William Kentridge animated video Winter Journey (2014) and the creations (sharing the same title) of Michael Borremans (2014) for the KlaraFestival, Bozar, Cité de la musique, in Belgium. Both were taken by the foremost Schubert’s Winterreise. Several metaphors fulfil new Winter Journeys (or Travels) that were achieved in contemporary art and literature, as it once succeeded in the 19th century. Maybe the contemporary authors and artists were compelled by the consciousness of nothingness, although outstanding different aesthetics and ontological sources. The unbearable knowledge of the road’s end, and also the urge of fulfilling the void might be a common element to all of them. As Schopenhauer once wrote, after all, Art is the only human subjective power that we can call upon in life. These newer aesthetic meanings, released from these winter journeys are surely open to wider approaches that might happen in other poetic makings to be.

Keywords: Aesthetic, voyage D’Hiver, George Perec & Oulipo, William Kentridge & Michael Borreman, Schubert's Winterreise

Procedia PDF Downloads 206
6636 Analyzing Global User Sentiments on Laptop Features: A Comparative Study of Preferences Across Economic Contexts

Authors: Mohammadreza Bakhtiari, Mehrdad Maghsoudi, Hamidreza Bakhtiari

Abstract:

The widespread adoption of laptops has become essential to modern lifestyles, supporting work, education, and entertainment. Social media platforms have emerged as key spaces where users share real-time feedback on laptop performance, providing a valuable source of data for understanding consumer preferences. This study leverages aspect-based sentiment analysis (ABSA) on 1.5 million tweets to examine how users from developed and developing countries perceive and prioritize 16 key laptop features. The analysis reveals that consumers in developing countries express higher satisfaction overall, emphasizing affordability, durability, and reliability. Conversely, users in developed countries demonstrate more critical attitudes, especially toward performance-related aspects such as cooling systems, battery life, and chargers. The study employs a mixed-methods approach, combining ABSA using the PyABSA framework with expert insights gathered through a Delphi panel of ten industry professionals. Data preprocessing included cleaning, filtering, and aspect extraction from tweets. Universal issues such as battery efficiency and fan performance were identified, reflecting shared challenges across markets. However, priorities diverge between regions, while users in developed countries demand high-performance models with advanced features, those in developing countries seek products that offer strong value for money and long-term durability. The findings suggest that laptop manufacturers should adopt a market-specific strategy by developing differentiated product lines. For developed markets, the focus should be on cutting-edge technologies, enhanced cooling solutions, and comprehensive warranty services. In developing markets, emphasis should be placed on affordability, versatile port options, and robust designs. Additionally, the study highlights the importance of universal charging solutions and continuous sentiment monitoring to adapt to evolving consumer needs. This research offers practical insights for manufacturers seeking to optimize product development and marketing strategies for global markets, ensuring enhanced user satisfaction and long-term competitiveness. Future studies could explore multi-source data integration and conduct longitudinal analyses to capture changing trends over time.

Keywords: consumer behavior, durability, laptop industry, sentiment analysis, social media analytics

Procedia PDF Downloads 15
6635 Factors Affecting M-Government Deployment and Adoption

Authors: Saif Obaid Alkaabi, Nabil Ayad

Abstract:

Governments constantly seek to offer faster, more secure, efficient and effective services for their citizens. Recent changes and developments to communication services and technologies, mainly due the Internet, have led to immense improvements in the way governments of advanced countries carry out their interior operations Therefore, advances in e-government services have been broadly adopted and used in various developed countries, as well as being adapted to developing countries. The implementation of advances depends on the utilization of the most innovative structures of data techniques, mainly in web dependent applications, to enhance the main functions of governments. These functions, in turn, have spread to mobile and wireless techniques, generating a new advanced direction called m-government. This paper discusses a selection of available m-government applications and several business modules and frameworks in various fields. Practically, the m-government models, techniques and methods have become the improved version of e-government. M-government offers the potential for applications which will work better, providing citizens with services utilizing mobile communication and data models incorporating several government entities. Developing countries can benefit greatly from this innovation due to the fact that a large percentage of their population is young and can adapt to new technology and to the fact that mobile computing devices are more affordable. The use of models of mobile transactions encourages effective participation through the use of mobile portals by businesses, various organizations, and individual citizens. Although the application of m-government has great potential, it does have major limitations. The limitations include: the implementation of wireless networks and relative communications, the encouragement of mobile diffusion, the administration of complicated tasks concerning the protection of security (including the ability to offer privacy for information), and the management of the legal issues concerning mobile applications and the utilization of services.

Keywords: e-government, m-government, system dependability, system security, trust

Procedia PDF Downloads 381
6634 Self-Awareness on Social Work Courses: A Study of Students Perceptions of Teaching Methods in an English University

Authors: Deborah Amas

Abstract:

Global accreditation standards require Higher Education Institutions to ensure social work students develop self-awareness by reflecting on their personal values and critically evaluating how these influence their thinking for professional practice. The knowledge base indicates there are benefits and vulnerabilities for students when they self-reflect and more needs to be understood about the learning environments that nurture self-awareness. The connection between teaching methods and self-awareness is of interest in this paper which reports findings from an on-line survey with students on BA and MA qualifying social work programs in an English university (n=120). Students were asked about the importance of self-awareness and their experiences of teaching methods for self-reflection. Generally, students thought that self-awareness is of high importance in their education. Students also shared stories that illuminated deeper feelings about the potential risks associated with self-disclosure. The findings indicate that students appreciate safe opportunities for self-reflection, but can be wary of associated assessments or feeling judged. The research supports arguments to qualitatively improve facilitation of self-awareness through the curriculum.

Keywords: reflection, self-awareness, self-reflection, social work education

Procedia PDF Downloads 300
6633 The Future of Insurance: P2P Innovation versus Traditional Business Model

Authors: Ivan Sosa Gomez

Abstract:

Digitalization has impacted the entire insurance value chain, and the growing movement towards P2P platforms and the collaborative economy is also beginning to have a significant impact. P2P insurance is defined as innovation, enabling policyholders to pool their capital, self-organize, and self-manage their own insurance. In this context, new InsurTech start-ups are emerging as peer-to-peer (P2P) providers, based on a model that differs from traditional insurance. As a result, although P2P platforms do not change the fundamental basis of insurance, they do enable potentially more efficient business models to be established in terms of ensuring the coverage of risk. It is therefore relevant to determine whether p2p innovation can have substantial effects on the future of the insurance sector. For this purpose, it is considered necessary to develop P2P innovation from a business perspective, as well as to build a comparison between a traditional model and a P2P model from an actuarial perspective. Objectives: The objectives are (1) to represent P2P innovation in the business model compared to the traditional insurance model and (2) to establish a comparison between a traditional model and a P2P model from an actuarial perspective. Methodology: The research design is defined as action research in terms of understanding and solving the problems of a collectivity linked to an environment, applying theory and best practices according to the approach. For this purpose, the study is carried out through the participatory variant, which involves the collaboration of the participants, given that in this design, participants are considered experts. For this purpose, prolonged immersion in the field is carried out as the main instrument for data collection. Finally, an actuarial model is developed relating to the calculation of premiums that allows for the establishment of projections of future scenarios and the generation of conclusions between the two models. Main Contributions: From an actuarial and business perspective, we aim to contribute by developing a comparison of the two models in the coverage of risk in order to determine whether P2P innovation can have substantial effects on the future of the insurance sector.

Keywords: Insurtech, innovation, business model, P2P, insurance

Procedia PDF Downloads 92
6632 Colocalization Analysis to Understand Yttrium Uptake in Saxifraga paniculata Using Complementary Imaging Technics

Authors: Till Fehlauer, Blanche Collin, Bernard Angeletti, Andrea Somogyi, Claire Lallemand, Perrine Chaurand, Cédric Dentant, Clement Levard, Jerome Rose

Abstract:

Over the last decades, yttrium (Y) has gained importance in high-tech applications. It is an essential part of alloys and compounds used for lasers, displays, or cell phones, for example. Due to its chemical similarities with the lanthanides, Y is often considered a rare earth element (REE). Despite their increased usage, the environmental behavior of REEs remains poorly understood. Especially regarding their interactions with plants, many uncertainties exist. On the one hand, Y is known to have a negative effect on root development and germination, but on the other hand, it appears to promote plant growth at low concentrations. In order to understand these phenomena, a precise knowledge is necessary about how Y is absorbed by the plant and how it is handled once inside the organism. Contradictory studies exist, stating that due to a similar ionic radius, Y and the other REEs might be absorbed through Ca²⁺-channels, while others suspect that Y has a shared pathway with Al³⁺. In this study, laser ablation coupled ICP-MS, and synchrotron-based micro-X-ray fluorescence (µXRF, beamline Nanoscopium, SOLEIL, France) have been used in order to localize Y within the plant tissue and identify associated elements. The plant used in this study is Saxifraga paniculata, a rugged alpine plant that has shown an affinity for Y in previous studies (in prep.). Furthermore, Saxifraga paniculata performs guttation, which means that it possesses phloem sap secreting openings on the leaf surface that serve to regulate root pressure. These so-called hydathodes could provide special insights in elemental transport in plants. The plants have been grown on Y doped soil (500mg/kg DW) for four months. The results showed that Y was mainly concentrated in the roots of Saxifraga paniculata (260 ± 85mg/kg), and only a small amount was translocated to the leaves (10 ± 7.8mg/kg). µXRF analysis indicated that within the root transects, the majority of Y remained in the epidermis and hardly penetrated the stele. Laser ablation coupled ICP-MS confirmed this finding and showed a positive correlation in the roots between Y, Fe, Al, and to a lesser extent Ca. In the stem transect, Y was mainly detected in a hotspot of approximately 40µm in diameter situated in the endodermis area. Within the stem and especially in the hotspot, Y was highly colocalized with Al and Fe. Similar-sized Y hotspots have been detected in/on the leaves. All of them were strongly colocalized with Al and Fe, except for those situated within the hydathodes, which showed no colocalization with any of the measured elements. Accordingly, a relation between Y and Ca during root uptake remains possible, whereas a correlation to Fe and Al appears to be dominant in the aerial parts, suggesting common storage compartments, the formation of complexes, or a shared pathway during translocation.

Keywords: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Phytoaccumulation, Rare earth elements, Saxifraga paniculata, Synchrotron-based micro-X-ray fluorescence, Yttrium

Procedia PDF Downloads 148
6631 The Relations between Language Diversity and Similarity and Adults' Collaborative Creative Problem Solving

Authors: Z. M. T. Lim, W. Q. Yow

Abstract:

Diversity in individual problem-solving approaches, culture and nationality have been shown to have positive effects on collaborative creative processes in organizational and scholastic settings. For example, diverse graduate and organizational teams consisting of members with both structured and unstructured problem-solving styles were found to have more creative ideas on a collaborative idea generation task than teams that comprised solely of members with either structured or unstructured problem-solving styles. However, being different may not always provide benefits to the collaborative creative process. In particular, speaking different languages may hinder mutual engagement through impaired communication and thus collaboration. Instead, sharing similar languages may have facilitative effects on mutual engagement in collaborative tasks. However, no studies have explored the relations between language diversity and adults’ collaborative creative problem solving. Sixty-four Singaporean English-speaking bilingual undergraduates were paired up into similar or dissimilar language pairs based on the second language they spoke (e.g., for similar language pairs, both participants spoke English-Mandarin; for dissimilar language pairs, one participant spoke English-Mandarin and the other spoke English-Korean). Each participant completed the Ravens Progressive Matrices Task individually. Next, they worked in pairs to complete a collaborative divergent thinking task where they used mind-mapping techniques to brainstorm ideas on a given problem together (e.g., how to keep insects out of the house). Lastly, the pairs worked on a collaborative insight problem-solving task (Triangle of Coins puzzle) where they needed to flip a triangle of ten coins around by moving only three coins. Pairs who had prior knowledge of the Triangle of Coins puzzle were asked to complete an equivalent Matchstick task instead, where they needed to make seven squares by moving only two matchsticks based on a given array of matchsticks. Results showed that, after controlling for intelligence, similar language pairs completed the collaborative insight problem-solving task faster than dissimilar language pairs. Intelligence also moderated these relations. Among adults of lower intelligence, similar language pairs solved the insight problem-solving task faster than dissimilar language pairs. These differences in speed were not found in adults with higher intelligence. No differences were found in the number of ideas generated in the collaborative divergent thinking task between similar language and dissimilar language pairs. In conclusion, sharing similar languages seem to enrich collaborative creative processes. These effects were especially pertinent to pairs with lower intelligence. This provides guidelines for the formation of groups based on shared languages in collaborative creative processes. However, the positive effects of shared languages appear to be limited to the insight problem-solving task and not the divergent thinking task. This could be due to the facilitative effects of other factors of diversity as found in previous literature. Background diversity, for example, may have a larger facilitative effect on the divergent thinking task as compared to the insight problem-solving task due to the varied experiences individuals bring to the task. In conclusion, this study contributes to the understanding of the effects of language diversity in collaborative creative processes and challenges the general positive effects that diversity has on these processes.

Keywords: bilingualism, diversity, creativity, collaboration

Procedia PDF Downloads 317
6630 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials

Authors: Behzad Behnia, Noah LaRussa-Trott

Abstract:

In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.

Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model

Procedia PDF Downloads 141
6629 Phenomena-Based Approach for Automated Generation of Process Options and Process Models

Authors: Parminder Kaur Heer, Alexei Lapkin

Abstract:

Due to global challenges of increased competition and demand for more sustainable products/processes, there is a rising pressure on the industry to develop innovative processes. Through Process Intensification (PI) the existing and new processes may be able to attain higher efficiency. However, very few PI options are generally considered. This is because processes are typically analysed at a unit operation level, thus limiting the search space for potential process options. PI performed at more detailed levels of a process can increase the size of the search space. The different levels at which PI can be achieved is unit operations, functional and phenomena level. Physical/chemical phenomena form the lowest level of aggregation and thus, are expected to give the highest impact because all the intensification options can be described by their enhancement. The objective of the current work is thus, generation of numerous process alternatives based on phenomena, and development of their corresponding computer aided models. The methodology comprises: a) automated generation of process options, and b) automated generation of process models. The process under investigation is disintegrated into functions viz. reaction, separation etc., and these functions are further broken down into the phenomena required to perform them. E.g., separation may be performed via vapour-liquid or liquid-liquid equilibrium. A list of phenomena for the process is formed and new phenomena, which can overcome the difficulties/drawbacks of the current process or can enhance the effectiveness of the process, are added to the list. For instance, catalyst separation issue can be handled by using solid catalysts; the corresponding phenomena are identified and added. The phenomena are then combined to generate all possible combinations. However, not all combinations make sense and, hence, screening is carried out to discard the combinations that are meaningless. For example, phase change phenomena need the co-presence of the energy transfer phenomena. Feasible combinations of phenomena are then assigned to the functions they execute. A combination may accomplish a single or multiple functions, i.e. it might perform reaction or reaction with separation. The combinations are then allotted to the functions needed for the process. This creates a series of options for carrying out each function. Combination of these options for different functions in the process leads to the generation of superstructure of process options. These process options, which are formed by a list of phenomena for each function, are passed to the model generation algorithm in the form of binaries (1, 0). The algorithm gathers the active phenomena and couples them to generate the model. A series of models is generated for the functions, which are combined to get the process model. The most promising process options are then chosen subjected to a performance criterion, for example purity of product, or via a multi-objective Pareto optimisation. The methodology was applied to a two-step process and the best route was determined based on the higher product yield. The current methodology can identify, produce and evaluate process intensification options from which the optimal process can be determined. It can be applied to any chemical/biochemical process because of its generic nature.

Keywords: Phenomena, Process intensification, Process models , Process options

Procedia PDF Downloads 232
6628 Mergers and Acquisitions in the Banking Sector: The West African Experience

Authors: Sunday Odunaiya

Abstract:

The statistics of banks in operation in this current dispensation compared to some decades ago has brought about a lot of changes on the face of the financial system. The demand of customers, technological advancement, and government policies among others has therefore generated a lot of heat for financial sector’s growth, sustenance and survival. This paper discusses mergers and acquisitions (M&A) in banking sector using West Africa as a yardstick of evaluation. It explains rigorously the conditions that warrant mergers and acquisitions in the banking sector, its effect, and how to ensure mergers and acquisitions effectiveness in the banking sector. The conceptual and empirical review of the relevant literature were done systematically while value-increasing and value-decreasing theories were used to substantiate the discourse. Findings of this paper show that mergers and acquisitions is a practical and conscious activity in Nigeria, Ghana and Ivory Coast from earliest time till date with tremendous turnaround in the financial sector. It was found out that M&A is consensually arrived at by the targets and the acquirer on a value-based account. In other words, merger and acquisition is a deliberate decision reached by the management of such bank for a ‘just cause’.

Keywords: acquisitions, merger, management, financial sector

Procedia PDF Downloads 276
6627 Recurrent Neural Networks with Deep Hierarchical Mixed Structures for Chinese Document Classification

Authors: Zhaoxin Luo, Michael Zhu

Abstract:

In natural languages, there are always complex semantic hierarchies. Obtaining the feature representation based on these complex semantic hierarchies becomes the key to the success of the model. Several RNN models have recently been proposed to use latent indicators to obtain the hierarchical structure of documents. However, the model that only uses a single-layer latent indicator cannot achieve the true hierarchical structure of the language, especially a complex language like Chinese. In this paper, we propose a deep layered model that stacks arbitrarily many RNN layers equipped with latent indicators. After using EM and training it hierarchically, our model solves the computational problem of stacking RNN layers and makes it possible to stack arbitrarily many RNN layers. Our deep hierarchical model not only achieves comparable results to large pre-trained models on the Chinese short text classification problem but also achieves state of art results on the Chinese long text classification problem.

Keywords: nature language processing, recurrent neural network, hierarchical structure, document classification, Chinese

Procedia PDF Downloads 68
6626 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon

Authors: Layan Moussa, Darine Salam, Samir Mustapha

Abstract:

Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.

Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination

Procedia PDF Downloads 101
6625 A Practical Survey on Zero-Shot Prompt Design for In-Context Learning

Authors: Yinheng Li

Abstract:

The remarkable advancements in large language models (LLMs) have brought about significant improvements in natural language processing tasks. This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts, including discrete, continuous, few-shot, and zero-shot, and their impact on LLM performance. We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods, to optimize LLM performance across diverse tasks. Our review covers key research studies in prompt engineering, discussing their methodologies and contributions to the field. We also delve into the challenges faced in evaluating prompt performance, given the absence of a single ”best” prompt and the importance of considering multiple metrics. In conclusion, the paper highlights the critical role of prompt design in harnessing the full potential of LLMs and provides insights into the combination of manual design, optimization techniques, and rigorous evaluation for more effective and efficient use of LLMs in various Natural Language Processing (NLP) tasks.

Keywords: in-context learning, prompt engineering, zero-shot learning, large language models

Procedia PDF Downloads 83
6624 The Potential of 48V HEV in Real Driving

Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay

Abstract:

This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation.

Keywords: customer use, dimensioning, hybrid electric vehicles, vehicle simulation, 48V hybrid system

Procedia PDF Downloads 507
6623 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: recognition, CNN, Yi character, divergence

Procedia PDF Downloads 165
6622 Wind Interference Effects on Various Plan Shape Buildings Under Wind Load

Authors: Ritu Raj, Hrishikesh Dubey

Abstract:

This paper presents the results of the experimental investigations carried out on two intricate plan shaped buildings to evaluate aerodynamic performance of the building. The purpose is to study the associated environment arising due to wind forces in isolated and interference conditions on a model of scale 1:300 with a prototype having 180m height. Experimental tests were carried out at the boundary layer wind tunnel considering isolated conditions with 0° to 180° isolated wind directions and four interference conditions of twin building (separately for both the models). The research has been undertaken in Terrain Category-II, which is the most widely available terrain in India. A comparative assessment of the two models is performed out in an attempt to comprehend the various consequences of diverse conditions that may emerge in real-life situations, as well as the discrepancies amongst them. Experimental results of wind pressure coefficients of Model-1 and Model-2 shows good agreement with various wind incidence conditions with minute difference in the magnitudes of mean Cp. On the basis of wind tunnel studies, it is distinguished that the performance of Model-2 is better than Model-1in both isolated as well as interference conditions for all wind incidences and orientations respectively.

Keywords: interference factor, tall buildings, wind direction, mean pressure-coefficients

Procedia PDF Downloads 128
6621 Transforming Urban Living: How Co-Living Solutions Address Social Isolation, Foster Community, and Offer Innovative Approaches to Housing Challenges in Modern Cities

Authors: Yujie Lei

Abstract:

This article examines the evolving concept of urban living through the lens of co-living spaces, focusing on Liverpool. It explores how co-living can address challenges such as rising urban isolation, housing affordability, and social autism, particularly among younger generations. The research aims to understand how these spaces can mitigate social isolation and maximize urban space use. Using a case study approach, the study examines models like Superloft, co-office spaces, and platforms like Airbnb. Findings reveal that Liverpool’s co-living initiatives have gained popularity, offering flexibility and community engagement. This concept has the potential for expansion, not only for the younger generation but also for elderly communities, fostering intergenerational living. The dissertation concludes that co-living offers a sustainable alternative to traditional housing models, aligning with digital-age lifestyles that prioritize flexibility and community. It presents a promising framework for shaping the future of urban development.

Keywords: co-living, urban design, social isolation, urban development, housing challenges

Procedia PDF Downloads 26
6620 Ethnic Conflict Dynamics in the Ethiopian Federation: Case of the Oromo-Somali Conflict

Authors: Takele Bekele Bayu

Abstract:

Though Ethiopia is an ancient country with ethnocultural and linguistic diversity, modern Ethiopia came into being in the second half of the 19th century under the military expansion of King Menelik II. Since then, the subsequent political system in the country failed to recognize and accommodate the country’s ethnolinguistic diversity. However, in 1991 the new government led by the Ethiopian People's Revolutionary Democratic Front (EPRDF) adopted federal-state structuring whereby constitutionally recognized and institutionally accommodated the country’s diversity. This investigation aimed to analyze drivers of ethnic conflict and its dynamism along the Eastern shared border of the Somali and Oromia regional administrations within the federal framework. The paper employed a comparative research design, adopted mixed research methods, and used survey questionnaires and focus group discussions (FGDs) for data collection. The study found that the Somali-Oromo conflict is complex and the dynamics and the sources of conflict in the study areas are similar.

Keywords: Ethiopia, Oromo, Somali, ethnic conflict, federalism

Procedia PDF Downloads 73
6619 Biological Evaluation of Some Modern Titanium Alloys for Dental Implants

Authors: Roxana Maria Angelescu, Raluca Ion, Anişoara Cîmpean, Doina Răducanu, Mariana Lucia Angelescu

Abstract:

In an attempt to find titanium alloys that fulfill the requirements for mechanical and biological compatibility, laboratory and material related tests were performed during the years, as well as preclinical and clinical trials. The multidisciplinary scientific research facilitates the global evaluation of biocompatibility and osseointegration regarding the dental implant alloys. The aim of this study was to determine the in vitro biocompatibility of three modern titanium alloys: Ti-31.7Nb-6.21Zr-1.4Fe-0.16O (wt%), Ti-36.5Nb-4.5Zr-3Ta-0.16O (wt%) and Ti-20Nb-5Ta (wt%), in order to establish whether the use of these titanium alloys can have any toxic or injurious effects on biological systems. The commonly used Ti-6Al-4V alloy was investigated as a reference material. The behavior of MC3T3-E1 pre-osteoblasts on all these four metallic surfaces was evaluated. The tests of immunofluorescence, cytotoxicity and cellular proliferation lead to the conclusion that the newly-developed titanium alloys elicit a good cellular response in terms of cellular survival, adhesion, morphology and proliferative potential as well.

Keywords: biocompatibility tests, dental implants, titanium alloys, biomedical engineering

Procedia PDF Downloads 502
6618 Comparative Study on Daily Discharge Estimation of Soolegan River

Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu

Abstract:

Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.

Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming

Procedia PDF Downloads 561
6617 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic

Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink

Abstract:

Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.

Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction

Procedia PDF Downloads 161
6616 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 130
6615 Flow Analysis for Different Pelton Turbine Bucket by Applying Computation Fluid Dynamic

Authors: Sedat Yayla, Azhin Abdullah

Abstract:

In the process of constructing hydroelectric power plants, the Pelton turbine, which is characterized by its simple manufacturing and construction, is performed in high head and low water flow. Parameters of the turbine have to be comprised in the designing process for obtaining hydraulic turbine with the highest efficiency during different operating conditions. The present investigation applied three-dimensional computational fluid dynamics (CFD). In addition, the bucket of Pelton turbine models with different splitter angle and inlet velocity values were examined for determining the force and visualizing the flow pattern on the bucket. The study utilized two diverse bucket models at various inlet velocities (20, 25, 30,35and 40m/s) and four different splitter angles (55, 75,90and 115 degree) for finding out the impacts of every single parameter on the effective force on the bucket. The acquired outcomes revealed that there is a linear relationship between force and inlet velocity on the bucket. Furthermore, the results also uncovered that the relationship between splitter angle and force on the bucket is linear until 90 degree.

Keywords: bucket design, computational fluid dynamics (CFD), free surface flow, two-phase flow, volume of fluid (VOF)

Procedia PDF Downloads 271
6614 Seismic Behaviour of CFST-RC Columns

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Concrete Filled Steel Tube (CFST) columns are widely used in Civil Engineering Structures due to their abundant properties. CFST-RC column is a built up column in which CFST members are connected with RC web. The CFST-RC column has excellent static and earthquake resistant properties, such as high strength, high ductility and large energy absorption capacity. CFST-RC columns have been adopted as piers in Ganhaizi Bridge in high seismic risk zone with a highest pier of 107m. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. Under cyclic loading, the hysteretic performance of CFST-RC columns, such as failure modes, ductility, load displacement hysteretic curves, energy absorption capacity, strength and stiffness degradation are studied in this paper.

Keywords: CFST, cyclic load, Ganhaizi bridge, seismic performance

Procedia PDF Downloads 246
6613 Evaluating the Social Learning Processes Involved in Developing Community-Informed Wildfire Risk Reduction Strategies in the Prince Albert Forest Management Area

Authors: Carly Madge, Melanie Zurba, Ryan Bullock

Abstract:

The Boreal Forest has experienced some of the most drastic climate change-induced temperature rises in Canada, with average winter temperatures increasing by 3°C since 1948. One of the main concerns of the province of Saskatchewan, and particularly wildfire managers, is the increased risk of wildfires due to climate change. With these concerns in mind Sakaw Askiy Management Inc., a forestry corporation located in Prince Albert, Saskatchewan with operations in the Boreal Forest biome, is developing wildfire risk reduction strategies that are supported by the shareholders of the corporation as well as the stakeholders of the Prince Albert Forest Management Area (which includes citizens, hunters, trappers, cottage owners, and outfitters). In the past, wildfire management strategies implemented through harvesting have been received with skepticism by some community members of Prince Albert. Engagement of the stakeholders of the Prince Albert Management Area through the development of the wildfire risk reduction strategies aims to reduce this skepticism and rebuild some of the trust that has been lost between industry and community. This research project works with the framework of social learning, which is defined as the learning that occurs when individuals come together to form a group with the purpose of understanding environmental challenges and determining appropriate responses to them. The project evaluates the social learning processes that occur through the development of the risk reduction strategies and how the learning has allowed Sakaw to work towards implementing the strategies into their forest harvesting plans. The incorporation of wildfire risk reduction strategies works to increase the adaptive capacity of Sakaw, which in this case refers to the ability to adjust to climate change, moderate potential damages, take advantage of opportunities, and cope with consequences. Using semi-structured interviews and wildfire workshop meetings shareholders and stakeholders shared their knowledge of wildfire, their main wildfire concerns, and changes they would like to see made in the Prince Albert Forest Management Area. Interviews and topics discussed in the workshops were inductively coded for themes related to learning, adaptive capacity, areas of concern, and preferred methods of wildfire risk reduction strategies. Analysis determined that some of the learning that has occurred has resulted through social interactions and the development of networks oriented towards wildfire and wildfire risk reduction strategies. Participants have learned new knowledge and skills regarding wildfire risk reduction. The formation of wildfire networks increases access to information on wildfire and the social capital (trust and strengthened relations) of wildfire personnel. Both factors can be attributed to increases in adaptive capacity. Interview results were shared with the General Manager of Sakaw, where the areas of concern and preferred strategies of wildfire risk reduction will be considered and accounted for in the implementation of new harvesting plans. This research also augments the growing conceptual and empirical evidence of the important role of learning and networks in regional wildfire risk management efforts.

Keywords: adaptive capacity, community-engagement, social learning, wildfire risk reduction

Procedia PDF Downloads 147
6612 A Generative Adversarial Framework for Bounding Confounded Causal Effects

Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu

Abstract:

Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.

Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning

Procedia PDF Downloads 191
6611 Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition

Authors: Redouane Tlemsani, Redouane, Belkacem Kouninef, Abdelkader Benyettou

Abstract:

In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables).

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, networks

Procedia PDF Downloads 618
6610 Customer Satisfaction and Retention Strategies in Marketing

Authors: Hassan Adedoyin Rasaq

Abstract:

The marketing efforts of the present day business is not just geared towards meeting the consumer’s needs at a price, but ensuring good customer satisfaction, and strategizing on how to retain such customers. Customer satisfaction and retention is achievable through the co-ordination of the marketing mixes; Product, Price, Promotion and Place; Relationship Marketing; After-Sales Service; Rebates/Discounts/Price reduction policy and Total Quality Management (TQM). A first-hand customer, If well satisfied, will become a company’s repeat customer, proceeds to become a client and goes further to become an advocate of the company by applauding the company’s products/services and encouraging others to buy from it. It is the objective of this paper, therefore, to guide business organizations on how to enhance customer satisfaction, and retain existing customers as a means of long-term survival in marketing. The responses of 72 randomly selected Marketing personnel spread across three (3) food and beverage companies in Nigeria were analyzed. One hypothesis was tested using a one-way analysis of variance (ANOVA) statistical tool, and it was discovered that Relationship marketing contributed to organizational profitability and growth.

Keywords: customer satisfaction, retention strategies, marketing, marketing mixes

Procedia PDF Downloads 552
6609 Indian Women’s Inner-World and Female Protest in Githa Hariharan's Novel ‘The Thousand Faces of Night’

Authors: Hanaa Sameen Ameen Bajilan

Abstract:

Gender statuses are inherently unequal; it is difficult to establish equality between men and women in the light of traditional inequalities across the world. This research focuses on the similarities and differences among women from different generations different kinds of educational backgrounds and highlights the conflict experiences of the characters in Githa Hariharan's novel ‘The Thousand Faces of Night’ The purpose is to show how women are suffering and are being humiliated in a male-dominated society. The paper depicts how women in India grapple from male domination aggressiveness as well as the cultural, social and religious controlling in the society they live in. The paper also seeks to explore the importance of Knowledge as a powerful component that produces positive effects at the level of desire. The paper is based on the theories of Simone Beauvoir, Pierre Bourdieu, Edward Said, Rene Descartes and Amy Bhatt. Finally, the paper emphasizes on survival against hegemonic regimes and Indian women's hope for a better life.

Keywords: equality, gender, Githa Hariharan, humiliation

Procedia PDF Downloads 154
6608 Mapping Interrelationships among Key Sustainability Drivers: A Strategic Framework for Enhanced Entrepreneurial Sustainability among MSME

Authors: Akriti Chandra, Gourav Dwivedi, Seema Sharma, Shivani

Abstract:

This study investigates the adoption of green business (GB) models within a circular economy framework (CEBM) for Micro Small and Medium Enterprise (MSME), given the rising importance of sustainable practices. The research begins by exploring the shift from linear business models towards resource-efficient, sustainable models, emphasizing the benefits of the circular economy. The study's literature review identifies 60 influential factors impacting the shift to green businesses, grouped as internal and external drivers. However, there is a research gap in examining these factors' interrelationships and operationalizing them within MSMEs. To address this gap, the study employs Total Interpretive Structural Modelling (TISM) to establish a hierarchical structure of factors influencing GB and circular economy business model (CEBM) adoption. Findings reveal that factors like green innovation and market competitiveness are particularly impactful. Using Systems Theory, which views organizations as complex adaptive systems, the study contextualizes these drivers within MSMEs, proposing a framework for a sustainable business model adoption. The study concludes with significant implications for policymakers, suggesting that the identified factors and their hierarchical relationships can guide policy formulation for a broader transition to green business practices. This work also invites further research, recommending larger, quantitative studies to empirically validate these factors and explore practical challenges in implementing CEBMs.

Keywords: green business (GB), circular economy business model (CEBM), micro small and medium enterprise (MSME), total interpretive structural modelling (TISM), systems theory

Procedia PDF Downloads 13