Search results for: high-dimensional data analysis
40040 Evaluation of Student Satisfaction Level Towards Anadolu University E-Services through E-Government Model and Importance Performance Analysis Method
Authors: Emrah Ayhan, Puspa Saananta Irfani, Ömer Doğukan Şahin
Abstract:
Public services, which are important for the order and continuity of social life, have begun to transform into electronic services (E-service) with the development of information and communication technologies in recent years. In particular, as a result of the widespread use of the internet and the increase in citizen demands, it has become necessary to provide public services electronically. In addition to facilitating traditional public services, new types of e-services strengthen the interaction, cooperation, accessibility, transparency, citizen participation (e-governance) and accountability between citizens and the state. In this context, the factors in the literature that are considered to influence the citizens’ satisfaction towards e-services will be examined through the example of student satisfaction with the e-services (Anasis, Mergen, E-mail, library, cafeteria and other transactions) offered by Anadolu University (Eskişehir, Türkiye) through university website and mobile application. The data for the analysis will be obtained from the survey research that will be used to measure user satisfaction with university e-services of 1,000 students studying at 9 different faculties and graduate schools of Anadolu University. These data will be analyzed with a unique methodology that uses the E-GovQual model and Importance Performance Analysis (IPA) methods together. The e-GovQual model serves as a framework for evaluating the quality of e-services, allowing a detailed understanding of students' perceptions. On the other hand, the IPA method will be used to determine the performance level of Anadolu University in the provision of e-services and to understand the areas that require improvement and student expectations. Strategic goals and suggestions will be made to decision-makers, students, and researchers in line with the findings obtained in the research. Thus, it is planned to contribute to e-governance and user satisfaction in educational institutions and to reveal practical implications for optimizing online platforms to better serve student needs.Keywords: e-service, Anadolu university, student satisfaction, e-governance, e-govqual, importance performance analysis
Procedia PDF Downloads 5540039 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 23140038 Wind Farm Power Performance Verification Using Non-Parametric Statistical Inference
Authors: M. Celeska, K. Najdenkoski, V. Dimchev, V. Stoilkov
Abstract:
Accurate determination of wind turbine performance is necessary for economic operation of a wind farm. At present, the procedure to carry out the power performance verification of wind turbines is based on a standard of the International Electrotechnical Commission (IEC). In this paper, nonparametric statistical inference is applied to designing a simple, inexpensive method of verifying the power performance of a wind turbine. A statistical test is explained, examined, and the adequacy is tested over real data. The methods use the information that is collected by the SCADA system (Supervisory Control and Data Acquisition) from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. The study has used data on the monthly output of wind farm in the Republic of Macedonia, and the time measuring interval was from January 1, 2016, to December 31, 2016. At the end, it is concluded whether the power performance of a wind turbine differed significantly from what would be expected. The results of the implementation of the proposed methods showed that the power performance of the specific wind farm under assessment was acceptable.Keywords: canonical correlation analysis, power curve, power performance, wind energy
Procedia PDF Downloads 33640037 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 53740036 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data
Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene
Abstract:
Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging
Procedia PDF Downloads 27040035 Hierarchical Checkpoint Protocol in Data Grids
Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed
Abstract:
Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.Keywords: data grids, fault tolerance, clustering, chandy-lamport
Procedia PDF Downloads 34140034 Structural Health Monitoring using Fibre Bragg Grating Sensors in Slab and Beams
Authors: Pierre van Tonder, Dinesh Muthoo, Kim twiname
Abstract:
Many existing and newly built structures are constructed on the design basis of the engineer and the workmanship of the construction company. However, when considering larger structures where more people are exposed to the building, its structural integrity is of great importance considering the safety of its occupants (Raghu, 2013). But how can the structural integrity of a building be monitored efficiently and effectively. This is where the fourth industrial revolution step in, and with minimal human interaction, data can be collected, analysed, and stored, which could also give an indication of any inconsistencies found in the data collected, this is where the Fibre Bragg Grating (FBG) monitoring system is introduced. This paper illustrates how data can be collected and converted to develop stress – strain behaviour and to produce bending moment diagrams for the utilisation and prediction of the structure’s integrity. Embedded fibre optic sensors were used in this study– fibre Bragg grating sensors in particular. The procedure entailed making use of the shift in wavelength demodulation technique and an inscription process of the phase mask technique. The fibre optic sensors considered in this report were photosensitive and embedded in the slab and beams for data collection and analysis. Two sets of fibre cables have been inserted, one purposely to collect temperature recordings and the other to collect strain and temperature. The data was collected over a time period and analysed used to produce bending moment diagrams to make predictions of the structure’s integrity. The data indicated the fibre Bragg grating sensing system proved to be useful and can be used for structural health monitoring in any environment. From the experimental data for the slab and beams, the moments were found to be64.33 kN.m, 64.35 kN.m and 45.20 kN.m (from the experimental bending moment diagram), and as per the idealistic (Ultimate Limit State), the data of 133 kN.m and 226.2 kN.m were obtained. The difference in values gave room for an early warning system, in other words, a reserve capacity of approximately 50% to failure.Keywords: fibre bragg grating, structural health monitoring, fibre optic sensors, beams
Procedia PDF Downloads 13940033 Development and Psychometric Properties of the Relational Mobility Scale for the Indonesian Population
Authors: Sukaesi Marianti
Abstract:
This study aims to develop the Relational Mobility Scale for the Indonesian population and to investigate its psychometric properties. New items of the scale were created taking into account the Indonesian population which consists of two parallel forms (A and A’). This study uses 30 newly orchestrated items while keeping in mind the characteristics of the targeted population. The scale was administered to 433 public high school students in Malang, Indonesia. Construct validity of its factor structure was demonstrated using exploratory factor analysis and confirmatory factor analysis. The result exhibits that he model fits the data, and that the delayed alternate form method shows acceptable result. Results yielded that 21 items of the three-dimensional Relational Mobility Scale is suitable for measuring relational mobility in high school students of Indonesian population.Keywords: confirmatory factor analysis, delayed alternate form, Indonesian population, relational mobility scale
Procedia PDF Downloads 26840032 The Influence of the Form of Grain on the Mechanical Behaviour of Sand
Authors: Mohamed Boualem Salah
Abstract:
The size and shape of soil particles reflect the formation history of the grains. In turn, the macro scale behavior of the soil mass results from particle level interactions which are affected by particle shape. Sphericity, roundness and smoothness characterize different scales associated to particle shape. New experimental data and data from previously published studies are gathered into two databases to explore the effects of particle shape on packing as well as small and large-strain properties of sandy soils. Data analysis shows that increased particle irregularity (angularity and/or eccentricity) leads to: an increase in emax and emin, a decrease in stiffness yet with increased sensitivity to the state of stress, an increase in compressibility under zero-lateral strain loading, and an increase in critical state friction angle φcs and intercept Γ with a weak effect on slope λ. Therefore, particle shape emerges as a significant soil index property that needs to be properly characterized and documented, particularly in clean sands and gravels. The systematic assessment of particle shape will lead to a better understanding of sand behavior.Keywords: angularity, eccentricity, shape particle, behavior of soil
Procedia PDF Downloads 41340031 The Study of Elementary School Teacher’s Behavior of Using E-books by UTAUT Model
Authors: Tzong-Shing Cheng, Chen Pei Chen, Shu-Wei Chen
Abstract:
The purpose of this research is to apply Unified Theory of Acceptance and Use of Technology (UTAUT) model to investigate the factors that influence elementary school teacher’s behavior of using e-books. Based on the literature review, a questionnaire was modified and used to test the elementary school teachers in Changhua. A total of 420 questionnaires were administered and 364 of them were returned, including 328 valid and 36 invalid questionnaires. The effective response rate is 78%. The methods of data analysis include descriptive statistics, factor analysis, Pearson’s correlation coefficient, one way analysis of variance (ANOVA) and simple regression analysis. The results show that: 1. There were significant difference in the Elementary school teachers’ “Performance Expectancy”, “Effort Expectancy”, “Social Influence”, and “Facilitating Conditions” depending on their different “Demographic Variables”. 2. “Performance Expectancy” and “Behavioral Intention to Use” are positively correlated. 3. “Effort Expectancy” and “Behavioral Intention to Use” are positively correlated. 4. There was no significant relationship between “Social Influence” and “Behavioral Intention to Use”. 5. There was significant relationship between “Facilitating Conditions” and “Use Behavior”.Keywords: e-books, UTAUT, elementary school teacher, behavioral intention to use
Procedia PDF Downloads 61340030 An Observation of the Information Technology Research and Development Based on Article Data Mining: A Survey Study on Science Direct
Authors: Muhammet Dursun Kaya, Hasan Asil
Abstract:
One of the most important factors of research and development is the deep insight into the evolutions of scientific development. The state-of-the-art tools and instruments can considerably assist the researchers, and many of the world organizations have become aware of the advantages of data mining for the acquisition of the knowledge required for the unstructured data. This paper was an attempt to review the articles on the information technology published in the past five years with the aid of data mining. A clustering approach was used to study these articles, and the research results revealed that three topics, namely health, innovation, and information systems, have captured the special attention of the researchers.Keywords: information technology, data mining, scientific development, clustering
Procedia PDF Downloads 27840029 Security in Resource Constraints: Network Energy Efficient Encryption
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC
Procedia PDF Downloads 14540028 Data Mining Techniques for Anti-Money Laundering
Authors: M. Sai Veerendra
Abstract:
Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project on developing a new data mining solution for AML Units in an international investment bank in Ireland, we survey recent data mining approaches for AML. In this paper, we present not only these approaches but also give an overview on the important factors in building data mining solutions for AML activities.Keywords: data mining, clustering, money laundering, anti-money laundering solutions
Procedia PDF Downloads 53740027 A Systematic Review on Orphan Drugs Pricing, and Prices Challenges
Authors: Seyran Naghdi
Abstract:
Background: Orphan drug development is limited by very high costs attributed to the research and development and small size market. How health policymakers address this challenge to consider both supply and demand sides need to be explored for directing the policies and plans in the right way. The price is an important signal for pharmaceutical companies’ profitability and the patients’ accessibility as well. Objective: This study aims to find out the orphan drugs' price-setting patterns and approaches in health systems through a systematic review of the available evidence. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) approach was used. MedLine, Embase, and Web of Sciences were searched via appropriate search strategies. Through Medical Subject Headings (MeSH), the appropriate terms for pricing were 'cost and cost analysis', and it was 'orphan drug production', and 'orphan drug', for orphan drugs. The critical appraisal was performed by the Joanna-Briggs tool. A Cochrane data extraction form was used to obtain the data about the studies' characteristics, results, and conclusions. Results: Totally, 1,197 records were found. It included 640 hits from Embase, 327 from Web of Sciences, and 230 MedLine. After removing the duplicates, 1,056 studies remained. Of them, 924 studies were removed in the primary screening phase. Of them, 26 studies were included for data extraction. The majority of the studies (>75%) are from developed countries, among them, approximately 80% of the studies are from European countries. Approximately 85% of evidence has been produced in the recent decade. Conclusions: There is a huge variation of price-setting among countries, and this is related to the specific pharmacological market structure and the thresholds that governments want to intervene in the process of pricing. On the other hand, there is some evidence on the availability of spaces to reduce the very high costs of orphan drugs development through an early agreement between pharmacological firms and governments. Further studies need to focus on how the governments could incentivize the companies to agree on providing the drugs at lower prices.Keywords: orphan drugs, orphan drug production, pricing, costs, cost analysis
Procedia PDF Downloads 16340026 [Keynote Talk]: Water Resources Vulnerability Assessment to Climate Change in a Semi-Arid Basin of South India
Authors: K. Shimola, M. Krishnaveni
Abstract:
This paper examines vulnerability assessment of water resources in a semi-arid basin using the 4-step approach. The vulnerability assessment framework is developed to study the water resources vulnerability which includes the creation of GIS-based vulnerability maps. These maps represent the spatial variability of the vulnerability index. This paper introduces the 4-step approach to assess vulnerability that incorporates a new set of indicators. The approach is demonstrated using a framework composed of a precipitation data for (1975–2010) period, temperature data for (1965–2010) period, hydrological model outputs and the water resources GIS data base. The vulnerability assessment is a function of three components such as exposure, sensitivity and adaptive capacity. The current water resources vulnerability is assessed using GIS based spatio-temporal information. Rainfall Coefficient of Variation, monsoon onset and end date, rainy days, seasonality indices, temperature are selected for the criterion ‘exposure’. Water yield, ground water recharge, evapotranspiration (ET) are selected for the criterion ‘sensitivity’. Type of irrigation and storage structures are selected for the criterion ‘Adaptive capacity’. These indicators were mapped and integrated in GIS environment using overlay analysis. The five sub-basins, namely Arjunanadhi, Kousiganadhi, Sindapalli-Uppodai and Vallampatti Odai, fall under medium vulnerability profile, which indicates that the basin is under moderate stress of water resources. The paper also explores prioritization of sub-basinwise adaptation strategies to climate change based on the vulnerability indices.Keywords: adaptive capacity, exposure, overlay analysis, sensitivity, vulnerability
Procedia PDF Downloads 31340025 TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams
Authors: Shael Brown, Reza Farivar
Abstract:
Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information.Keywords: machine learning, persistence diagrams, R, statistical inference
Procedia PDF Downloads 8540024 Fueling Efficient Reporting And Decision-Making In Public Health With Large Data Automation In Remote Areas, Neno Malawi
Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Julia Huggins, Fabien Munyaneza
Abstract:
Background: Partners In Health – Malawi introduced one of Operational Researches called Primary Health Care (PHC) Surveys in 2020, which seeks to assess progress of delivery of care in the district. The study consists of 5 long surveys, namely; Facility assessment, General Patient, Provider, Sick Child, Antenatal Care (ANC), primarily conducted in 4 health facilities in Neno district. These facilities include Neno district hospital, Dambe health centre, Chifunga and Matope. Usually, these annual surveys are conducted from January, and the target is to present final report by June. Once data is collected and analyzed, there are a series of reviews that take place before reaching final report. In the first place, the manual process took over 9 months to present final report. Initial findings reported about 76.9% of the data that added up when cross-checked with paper-based sources. Purpose: The aim of this approach is to run away from manually pulling the data, do fresh analysis, and reporting often associated not only with delays in reporting inconsistencies but also with poor quality of data if not done carefully. This automation approach was meant to utilize features of new technologies to create visualizations, reports, and dashboards in Power BI that are directly fished from the data source – CommCare hence only require a single click of a ‘refresh’ button to have the updated information populated in visualizations, reports, and dashboards at once. Methodology: We transformed paper-based questionnaires into electronic using CommCare mobile application. We further connected CommCare Mobile App directly to Power BI using Application Program Interface (API) connection as data pipeline. This provided chance to create visualizations, reports, and dashboards in Power BI. Contrary to the process of manually collecting data in paper-based questionnaires, entering them in ordinary spreadsheets, and conducting analysis every time when preparing for reporting, the team utilized CommCare and Microsoft Power BI technologies. We utilized validations and logics in CommCare to capture data with less errors. We utilized Power BI features to host the reports online by publishing them as cloud-computing process. We switched from sharing ordinary report files to sharing the link to potential recipients hence giving them freedom to dig deep into extra findings within Power BI dashboards and also freedom to export to any formats of their choice. Results: This data automation approach reduced research timelines from the initial 9 months’ duration to 5. It also improved the quality of the data findings from the original 76.9% to 98.9%. This brought confidence to draw conclusions from the findings that help in decision-making and gave opportunities for further researches. Conclusion: These results suggest that automating the research data process has the potential of reducing overall amount of time spent and improving the quality of the data. On this basis, the concept of data automation should be taken into serious consideration when conducting operational research for efficiency and decision-making.Keywords: reporting, decision-making, power BI, commcare, data automation, visualizations, dashboards
Procedia PDF Downloads 11640023 Effect of Micro Credit Access on Poverty Reduction among Small Scale Women Entrepreneurs in Ondo State, Nigeria
Authors: Adewale Oladapo, C. A. Afolami
Abstract:
The study analyzed the effect of micro credit access on poverty reduction among small scale women entrepreneurs in Ondo state, Nigeria. Primary data were collected in a cross-sectional survey of 100 randomly selected woman entrepreneurs. These were drawn in multistage sampling process covering four local government areas (LGAS). Data collected include socio economics characteristics of respondents, access to micro credit, sources of micro credit, and constraints faced by the entrepreneur in sourcing for micro credit. Data were analyzed using descriptive statistics, Foster, Greer and Thorbecke (FGT) index of poverty measure, Gini coefficients and probit regression analysis. The study found that respondents sampled for the survey were within the age range of 31-40 years with mean age 38.6%. Mostly (56.0%) of the respondents were educated to the tune of primary school. Majority (87.0%) of the respondents were married with fairly large household size of (4-5). The poverty index analysis revealed that most (67%) of the sample respondents were poor. The result of the Probit regression analyzed showed that income was a significant variable in micro credit access, while the result of the Gini coefficient revealed a very high income inequality among the respondents. The study concluded that most of the respondents were poor and return on investment (income) was an important variable that increased the chance of respondents in sourcing for micro-credit loan and recommended that income realized by entrepreneur should be properly documented to facilitate loan accessibility.Keywords: entrepreneurs, income, micro-credit, poverty
Procedia PDF Downloads 12840022 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging
Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott
Abstract:
The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging
Procedia PDF Downloads 13540021 Observation and Study of Landslides Affecting the Tangier: Oued Rmel Motorway Segment
Authors: S. Houssaini, L. Bahi
Abstract:
The motorway segment between Tangier and Oued R’mel has experienced, since the beginning of building works, significant instability and landslides linked to a number of geological, hydrogeological and geothermic factors affecting the different formations. The landslides observed are not fully understood, despite many studies conducted on this segment. This study aims at producing new methods to better explain the phenomena behind the landslides, taking into account the geotechnical and geothermic contexts. This analysis builds up on previous studies and geotechnical data collected in the field. The final body of data collected shall be processed through the Plaxis software for a better and customizable view of the landslide problems in the area, which will help to find solutions and stabilize land in the area.Keywords: landslides, modeling, risk, stabilization
Procedia PDF Downloads 19840020 A Comparative and Doctrinal Analysis towards the Investigation of a Right to Be Forgotten in Hong Kong
Authors: Jojo Y. C. Mo
Abstract:
Memories are good. They remind us of people, places and experiences that we cherish. But memories cannot be changed and there may well be memories that we do not want to remember. This is particularly true in relation to information which causes us embarrassment and humiliation or simply because it is private – we all want to erase or delete such information. This desire to delete is recently recognised by the Court of Justice of the European Union in the 2014 case of Google Spain SL, Google Inc. v Agencia Española de Protección de Datos, Mario Costeja González in which the court ordered Google to remove links to some information about the complainant which he wished to be removed. This so-called ‘right to be forgotten’ received serious attention and significantly, the European Council and the European Parliament enacted the General Data Protection Regulation (GDPR) to provide a more structured and normative framework for implementation of right to be forgotten across the EU. This development in data protection laws will, undoubtedly, have significant impact on companies and co-operations not just within the EU but outside as well. Hong Kong, being one of the world’s leading financial and commercial center as well as one of the first jurisdictions in Asia to implement a comprehensive piece of data protection legislation, is therefore a jurisdiction that is worth looking into. This article/project aims to investigate the following: a) whether there is a right to be forgotten under the existing Hong Kong data protection legislation b) if not, whether such a provision is necessary and why. This article utilises a comparative methodology based on a study of primary and secondary resources, including scholarly articles, government and law commission reports and working papers and relevant international treaties, constitutional documents, case law and legislation. The author will primarily engage literature and case-law review as well as comparative and doctrinal analyses. The completion of this article will provide privacy researchers with more concrete principles and data to conduct further research on privacy and data protection in Hong Kong and internationally and will provide a basis for policy makers in assessing the rationale and need for a right to be forgotten in Hong Kong.Keywords: privacy, right to be forgotten, data protection, Hong Kong
Procedia PDF Downloads 19040019 Fine-Grained Sentiment Analysis: Recent Progress
Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan
Abstract:
Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, machine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.Keywords: sentiment analysis, fine-grained, machine learning, deep learning
Procedia PDF Downloads 26240018 Geographic Information System-Based Identification of Road Traffic Crash Hotspots on Rural Roads in Oman
Authors: Mohammed Bakhit Kashoob, Mohammed Salim Al-Maashani, Ahmed Abdullah Al-Marhoon
Abstract:
The use of Geographic Information System (GIS) tools in the analysis of traffic crash data can help to identify locations or hotspots with high instances or risk of traffic crashes. The identification of traffic crash hotspots can effectively improve road safety measures. Mapping of road traffic crash hotspots can help the concerned authorities to give priority and take targeted measures and improvements to the road structure at these locations to reduce traffic crashes and fatalities. In Oman, there are countless rural roads that have more risks for traveling vehicles compared to urban roads. The likelihood of traffic crashes as well as fatality rate may increase with the presence of risks that are associated with the rural type of community. In this paper, the traffic crash hotspots on rural roads in Oman are specified using spatial analysis methods in GIS and traffic crash data. These hotspots are ranked based on the frequency of traffic crash occurrence (i.e., number of traffic crashes) and the rate of fatalities. The result of this study presents a map visualization of locations on rural roads with high traffic crashes and high fatalities rates.Keywords: road safety, rural roads, traffic crash, GIS tools
Procedia PDF Downloads 14940017 Regional Adjustment to the Analytical Attenuation Coefficient in the GMPM BSSA 14 for the Region of Spain
Authors: Gonzalez Carlos, Martinez Fransisco
Abstract:
There are various types of analysis that allow us to involve seismic phenomena that cause strong requirements for structures that are designed by society; one of them is a probabilistic analysis which works from prediction equations that have been created based on metadata seismic compiled in different regions. These equations form models that are used to describe the 5% damped pseudo spectra response for the various zones considering some easily known input parameters. The biggest problem for the creation of these models requires data with great robust statistics that support the results, and there are several places where this type of information is not available, for which the use of alternative methodologies helps to achieve adjustments to different models of seismic prediction.Keywords: GMPM, 5% damped pseudo-response spectra, models of seismic prediction, PSHA
Procedia PDF Downloads 7640016 Understanding Mathematics Achievements among U. S. Middle School Students: A Bayesian Multilevel Modeling Analysis with Informative Priors
Authors: Jing Yuan, Hongwei Yang
Abstract:
This paper aims to understand U.S. middle school students’ mathematics achievements by examining relevant student and school-level predictors. Through a variance component analysis, the study first identifies evidence supporting the use of multilevel modeling. Then, a multilevel analysis is performed under Bayesian statistical inference where prior information is incorporated into the modeling process. During the analysis, independent variables are entered sequentially in the order of theoretical importance to create a hierarchy of models. By evaluating each model using Bayesian fit indices, a best-fit and most parsimonious model is selected where Bayesian statistical inference is performed for the purpose of result interpretation and discussion. The primary dataset for Bayesian modeling is derived from the Program for International Student Assessment (PISA) in 2012 with a secondary PISA dataset from 2003 analyzed under the traditional ordinary least squares method to provide the information needed to specify informative priors for a subset of the model parameters. The dependent variable is a composite measure of mathematics literacy, calculated from an exploratory factor analysis of all five PISA 2012 mathematics achievement plausible values for which multiple evidences are found supporting data unidimensionality. The independent variables include demographics variables and content-specific variables: mathematics efficacy, teacher-student ratio, proportion of girls in the school, etc. Finally, the entire analysis is performed using the MCMCpack and MCMCglmm packages in R.Keywords: Bayesian multilevel modeling, mathematics education, PISA, multilevel
Procedia PDF Downloads 33640015 Long-Term Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea
Authors: Bayoumy Mohamed, Khaled Alam El-Din
Abstract:
In the present study, 24 years of gridded sea level anomalies (SLA) from satellite altimetry and sea surface temperature (SST) from advanced very-high-resolution radiometer (AVHRR) daily data (1993-2016) are used. These data have been used to investigate the sea level rising and warming rates of SST, and their spatial distribution in the Mediterranean Sea. The results revealed that there is a significant sea level rise in the Mediterranean Sea of 2.86 ± 0.45 mm/year together with a significant warming of 0.037 ± 0.007 °C/year. The high spatial correlation between sea level and SST variations suggests that at least part of the sea level change reported during the period of study was due to heating of surface layers. This indicated that the steric effect had a significant influence on sea level change in the Mediterranean Sea.Keywords: altimetry, AVHRR, Mediterranean Sea, sea level and SST changes, trend analysis
Procedia PDF Downloads 19440014 An Evaluation Method of Accelerated Storage Life Test for Typical Mechanical and Electronic Products
Authors: Jinyong Yao, Hongzhi Li, Chao Du, Jiao Li
Abstract:
Reliability of long-term storage products is related to the availability of the whole system, and the evaluation of storage life is of great necessity. These products are usually highly reliable and little failure information can be collected. In this paper, an analytical method based on data from accelerated storage life test is proposed to evaluate the reliability index of the long-term storage products. Firstly, singularities are eliminated by data normalization and residual analysis. Secondly, with the pre-processed data, the degradation path model is built to obtain the pseudo life values. Then by life distribution hypothesis, we can get the estimator of parameters in high stress levels and verify failure mechanisms consistency. Finally, the life distribution under the normal stress level is extrapolated via the acceleration model and evaluation of the true average life available. An application example with the camera stabilization device is provided to illustrate the methodology we proposed.Keywords: accelerated storage life test, failure mechanisms consistency, life distribution, reliability
Procedia PDF Downloads 38840013 Analyzing Current Transformer’s Transient and Steady State Behavior for Different Burden’s Using LabVIEW Data Acquisition Tool
Abstract:
Current transformers (CTs) are used to transform large primary currents to a small secondary current. Since most standard equipment’s are not designed to handle large primary currents the CTs have an important part in any electrical system for the purpose of Metering and Protection both of which are integral in Power system. Now a days due to advancement in solid state technology, the operation times of the protective relays have come to a few cycles from few seconds. Thus, in such a scenario it becomes important to study the transient response of the current transformers as it will play a vital role in the operating of the protective devices. This paper shows the steady state and transient behavior of current transformers and how it changes with change in connected burden. The transient and steady state response will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer characteristics with changes in burden will be discussed.Keywords: accuracy, accuracy limiting factor, burden, current transformer, instrument security factor
Procedia PDF Downloads 34340012 Coping Strategies among Caregivers of Children with Autism Spectrum Disorders: A Cluster Analysis
Authors: Noor Ismael, Lisa Mische Lawson, Lauren Little, Murad Moqbel
Abstract:
Background/Significance: Caregivers of children with Autism Spectrum Disorders (ASD) develop coping mechanisms to overcome daily challenges to successfully parent their child. There is variability in coping strategies used among caregivers of children with ASD. Capturing homogeneity among such variable groups may help elucidate targeted intervention approaches for caregivers of children with ASD. Study Purpose: This study aimed to identify groups of caregivers of children with ASD based on coping mechanisms, and to examine whether there are differences among these groups in terms of strain level. Methods: This study utilized a secondary data analysis, and included survey responses of 273 caregivers of children with ASD. Measures consisted of the COPE Inventory and the Caregiver Strain Questionnaire. Data analyses consisted of cluster analysis to group caregiver coping strategies, and analysis of variance to compare the caregiver coping groups on strain level. Results: Cluster analysis results showed four distinct groups with different combinations of coping strategies: Social-Supported/Planning (group one), Spontaneous/Reactive (group two), Self-Supporting/Reappraisal (group three), and Religious/Expressive (group four). Caregivers in group one (Social-Supported/Planning) demonstrated significantly higher levels than the remaining three groups in the use of the following coping strategies: planning, use of instrumental social support, and use of emotional social support, relative to the other three groups. Caregivers in group two (Spontaneous/Reactive) used less restraint relative to the other three groups, and less suppression of competing activities relative to the other three groups as coping strategies. Also, group two showed significantly lower levels of religious coping as compared to the other three groups. In contrast to group one, caregivers in group three (Self-Supporting/Reappraisal) demonstrated significantly lower levels of the use of instrumental social support and the use of emotional social support relative to the other three groups. Additionally, caregivers in group three showed more acceptance, positive reinterpretation and growth coping strategies. Caregivers in group four (Religious/Expressive) demonstrated significantly higher levels of religious coping relative to the other three groups and utilized more venting of emotions strategies. Analysis of Variance results showed no significant differences between the four groups on the strain scores. Conclusions: There are four distinct groups with different combinations of coping strategies: Social-Supported/Planning, Spontaneous/Reactive, Self-Supporting/Reappraisal, and Religious/Expressive. Each caregiver group engaged in a combination of coping strategies to overcome the strain of caregiving.Keywords: autism, caregivers, cluster analysis, coping strategies
Procedia PDF Downloads 28240011 Numerical Analysis of Bearing Capacity of Caissons Subjected to Inclined Loads
Authors: Hooman Dabirmanesh, Mahmoud Ghazavi, Kazem Barkhordari
Abstract:
A finite element modeling for determination of the bearing capacity of caissons subjected to inclined loads is presented in this paper. The model investigates the uplift capacity of the caisson with varying cross sectional area. To this aim, the behavior of the soil is assumed to be elasto-plastic, and its failure is controlled by Modified Cam-Clay failure criterion. The simulation takes into account the couple analysis. The approach is verified using available data from other research work especially centrifuge data. Parametric studies are subsequently performed to investigate the effect of contributing parameters such as aspect ratio of the caisson, the loading rate, the loading direction angle, and points where the external load is applied. In addition, the influence of the caisson geometry is taken into account. The results show the bearing capacity of the caisson increases with increasing the taper angle. Hence, the pullout capacity will increase using the same material. In addition, the bearing capacity of caissons strongly depends on the suction that is generated at tip and in sealed surface on top of caisson. Other results concerning the influencing factors will be presented.Keywords: aspect ratio, finite element method, inclined load, modified Cam clay, taper angle, undrained condition
Procedia PDF Downloads 263