Search results for: encrypted traffic classification
1337 Fuzzy Sentiment Analysis of Customer Product Reviews
Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad
Abstract:
As a result of the growth of the web, people are able to express their views and opinions. They can now post reviews of products at merchant sites and express their views on almost anything in internet forums, discussion groups, and blogs. Therefore, the number of product reviews has grown rapidly. The large numbers of reviews make it difficult for manufacturers or businesses to automatically classify them into different semantic orientations (positive, negative, and neutral). For sentiment classification, most existing methods utilize a list of opinion words whereas this paper proposes a fuzzy approach for evaluating sentiments expressed in customer product reviews, to predict the strength levels (e.g. very weak, weak, moderate, strong and very strong) of customer product reviews by combinations of adjective, adverb and verb. The proposed fuzzy approach has been tested on eight benchmark datasets and obtained 74% accuracy, which leads to help the organization with a more clear understanding of customer's behavior in support of business planning process.Keywords: fuzzy logic, customer product review, sentiment analysis
Procedia PDF Downloads 3671336 Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios
Authors: Philip Feig, Klaus Gschwendtner, Julian Schatz, Frank Diermeyer
Abstract:
Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety.Keywords: accident research, accident scenarios, ADAS, effectiveness, property damage analysis
Procedia PDF Downloads 3421335 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment
Authors: Elena Puica
Abstract:
This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM
Procedia PDF Downloads 1181334 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: ensembles, false positives, feature selection, one side class algorithm
Procedia PDF Downloads 2931333 The Underground Ecosystem of Credit Card Frauds
Authors: Abhinav Singh
Abstract:
Point Of Sale (POS) malwares have been stealing the limelight this year. They have been the elemental factor in some of the biggest breaches uncovered in past couple of years. Some of them include • Target: A Retail Giant reported close to 40 million credit card data being stolen • Home Depot : A home product Retailer reported breach of close to 50 million credit records • Kmart: A US retailer recently announced breach of 800 thousand credit card details. Alone in 2014, there have been reports of over 15 major breaches of payment systems around the globe. Memory scrapping malwares infecting the point of sale devices have been the lethal weapon used in these attacks. These malwares are capable of reading the payment information from the payment device memory before they are being encrypted. Later on these malwares send the stolen details to its parent server. These malwares are capable of recording all the critical payment information like the card number, security number, owner etc. All these information are delivered in raw format. This Talk will cover the aspects of what happens after these details have been sent to the malware authors. The entire ecosystem of credit card frauds can be broadly classified into these three steps: • Purchase of raw details and dumps • Converting them to plastic cash/cards • Shop! Shop! Shop! The focus of this talk will be on the above mentioned points and how they form an organized network of cyber-crime. The first step involves buying and selling of the stolen details. The key point to emphasize are : • How is this raw information been sold in the underground market • The buyer and seller anatomy • Building your shopping cart and preferences • The importance of reputation and vouches • Customer support and replace/refunds These are some of the key points that will be discussed. But the story doesn’t end here. As of now the buyer only has the raw card information. How will this raw information be converted to plastic cash? Now comes in picture the second part of this underground economy where-in these raw details are converted into actual cards. There are well organized services running underground that can help you in converting these details into plastic cards. We will discuss about this technique in detail. At last, the final step involves shopping with the stolen cards. The cards generated with the stolen details can be easily used to swipe-and-pay for purchased goods at different retail shops. Usually these purchases are of expensive items that have good resale value. Apart from using the cards at stores, there are underground services that lets you deliver online orders to their dummy addresses. Once the package is received it will be delivered to the original buyer. These services charge based on the value of item that is being delivered. The overall underground ecosystem of credit card fraud works in a bulletproof way and it involves people working in close groups and making heavy profits. This is a brief summary of what I plan to present at the talk. I have done an extensive research and have collected good deal of material to present as samples. Some of them include: • List of underground forums • Credit card dumps • IRC chats among these groups • Personal chat with big card sellers • Inside view of these forum owners. The talk will be concluded by throwing light on how these breaches are being tracked during investigation. How are credit card breaches tracked down and what steps can financial institutions can build an incidence response over it.Keywords: POS mawalre, credit card frauds, enterprise security, underground ecosystem
Procedia PDF Downloads 4401332 Assessing Environmental Urban Sustainability Using Multivariate Analysis: A Case of Nagpur, India
Authors: Anusha Vaddiraj Pallapu
Abstract:
Measuring urban sustainable development is at the forefront in contributing to overall sustainability, and it refers to attaining social equity, environmental protection and minimizing the impacts of urbanization. Assessing performance of urban issues ranging from larger consumption of natural resources by humans in terms of lifestyle to creating a polluted nearby environment, social and even economic dimensions of sustainability major issues observed such as water quality, transportation, management of solid waste and traffic pollution. However, relying on the framework of the project to do the goals of sustainable development or minimization of urban impacts through management practices is not enough to deal with the present urban issues. The aim of the sustainability is to know how severely the resources are depleted because of human consumption and how issues are characterized. The paper aims to assign benchmarks for the selected sustainability indicators for research, and analysis is done through multivariate analysis in Indian context a case of Nagpur city to identify the play role of each urban issues in the overall sustainability. The main objectives of this paper are to examine the indicators over by time basis on various scenarios and how benchmarking is used, what and which categories of values should be considered as the performance of indicators function.Keywords: environmental sustainability indicators, principal component analysis, urban sustainability, urban clusters, benchmarking
Procedia PDF Downloads 3461331 Assisting Dating of Greek Papyri Images with Deep Learning
Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou
Abstract:
Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.Keywords: image classification, papyri images, dating
Procedia PDF Downloads 791330 Permanent Deformation Resistance of Asphalt Mixtures with Red Mud as a Filler
Authors: Liseane Padilha Thives, Mayara S. S. Lima, João Victor Staub De Melo, Glicério Trichês
Abstract:
Red mud is a waste resulting from the processing of bauxite to alumina, the raw material of the production of aluminum. The large quantity of red mud generated and inadequately disposed in the environment has motivated researchers to develop methods for reinsertion of this waste into the productive cycle. This work aims to evaluate the resistance to permanent deformation of dense asphalt mixtures with red mud filler. The red mud was characterized by tests of X-ray diffraction, fluorescence, specific mass, laser granulometry, pH and scanning electron microscopy. For the analysis of the influence of the quantity of red mud in the mechanical performance of asphalt mixtures, a total filler content of 7% was established. Asphalt mixtures with 3%, 5% and 7% red mud were produced. A conventional mixture with 7% stone powder filler was used as reference. The asphalt mixtures were evaluated for performance to permanent deformation in the French Rutting Tester (FRT) traffic simulator. The mixture with 5% red mud presented greater resistance to permanent deformation with rutting depth at 30,000 cycles of 3.50%. The asphalt mixtures with red mud presented better performance, with reduction of the rutting of 12.63 to 42.62% in relation to the reference mixture. This study confirmed the viability of reinserting the red mud in the production chain and possible usage in the construction industry. The red mud as filler in asphalt mixtures is a reuse option of this waste and mitigation of the disposal problems, as well as being an environmentally friendly alternative.Keywords: asphalt mixtures, permanent deformation, red mud, pavements
Procedia PDF Downloads 2911329 Behavioral Finance in Hundred Keywords
Authors: Ramon Hernán, Maria Teresa Corzo
Abstract:
This study examines the impact and contribution of the main journals in the discipline of behavioral finance to determine the state of the art of the discipline and the growth lines and concepts studied to date. This is a unique and novel study given that a review of the discipline has not been carried out through the keywords of the articles that allows visualizing through this component of the research, which are the main topics of discussion and the relationships that arise between the concepts discussed. To carry out this study, 3,876 articles have been taken as a reference, which includes 15,859 keywords from the main journals responsible for the growth of the discipline.; Journal of Behavioral Finance, Review of Behavioral Finance, Journal of Behavioral and Experimental Economics, Journal of Behavioral and Experimental Economics and Review of Behavioral Finance. The results indicate which are the topics most covered in the discipline throughout the period from 2000 to 2020, how these concepts have been dealt with on a recurring basis along with others throughout the aforementioned period and how the different concepts have been grouped based on the keywords established by the authors for the classification of their articles with a network diagram to complete the analysis.Keywords: behavioral finance, keywords, co-words, top journals, data visualization
Procedia PDF Downloads 1951328 Aircraft Automatic Collision Avoidance Using Spiral Geometric Approach
Authors: M. Orefice, V. Di Vito
Abstract:
This paper provides a description of a Collision Avoidance algorithm that has been developed starting from the mathematical modeling of the flight of insects, in terms of spirals and conchospirals geometric paths. It is able to calculate a proper avoidance manoeuver aimed to prevent the infringement of a predefined distance threshold between ownship and the considered intruder, while minimizing the ownship trajectory deviation from the original path and in compliance with the aircraft performance limitations and dynamic constraints. The algorithm is designed in order to be suitable for real-time applications, so that it can be considered for the implementation in the most recent airborne automatic collision avoidance systems using the traffic data received through an ADS-B IN device. The presented approach is able to take into account the rules-of-the-air, due to the possibility to select, through specifically designed decision making logic based on the consideration of the encounter geometry, the direction of the calculated collision avoidance manoeuver that allows complying with the rules-of-the-air, as for instance the fundamental right of way rule. In the paper, the proposed collision avoidance algorithm is presented and its preliminary design and software implementation is described. The applicability of this method has been proved through preliminary simulation tests performed in a 2D environment considering single intruder encounter geometries, as reported and discussed in the paper.Keywords: ADS-B Based Application, Collision Avoidance, RPAS, Spiral Geometry.
Procedia PDF Downloads 2431327 Understanding Mudrocks and Their Shear Strength Deterioration Associated with Inundation
Authors: Haslinda Nahazanan, Afshin Asadi, Zainuddin Md. Yusoff, Nik Nor Syahariati Nik Daud
Abstract:
Mudrocks is considered as a problematic material due to their unexpected behaviour specifically when they are contacting with water or being exposed to the atmosphere. Many instability problems of cutting slopes were found lying on high slaking mudrocks. It has become one of the major concerns to geotechnical engineer as mudrocks cover up to 50% of sedimentary rocks in the geologic records. Mudrocks display properties between soils and rocks which can be very hard to understand. Therefore, this paper aims to review the definition, mineralogy, geo-chemistry, classification and engineering properties of mudrocks. As water has become one of the major factors that will rapidly change the behaviour of mudrocks, a review on the shear strength of mudrocks in Derbyshire has been made using a fully automated hydraulic stress path testing system under three states: dry, short-term inundated and long-term inundated. It can be seen that the strength of mudrocks has deteriorated as it condition changed from dry to short-term inundated and finally to long-term inundated.Keywords: mudrocks, sedimentary rocks, inundation, shear strength
Procedia PDF Downloads 2381326 Dynamics of Hybrid Language in Urban and Rural Uttar Pradesh India
Authors: Divya Pande
Abstract:
The dynamics of culture expresses itself in language. Even after India got independence in 1947 English subtly crept in the language of the masses with a silent and powerful flow towards the vernacular. The culture contact resulted in learning and emergence of a new language across the Hindi speaking belt of Northern and Central India. The hybrid words thus formed displaced the original word and got contextualized and absorbed in the language of the common masses. The research paper explores the interesting new vocabulary used extensively in the urban and rural districts of the state of Uttar- Pradesh which is the most populous state of India. The paper adopts a two way classification- formal and contextual for the analysis of the hybrid vocabulary of the linguistic items where one element is necessarily from the English language and the other from the Hindi. The new vocabulary represents languages of the wider world cutting across the geographical and the cultural barriers. The paper also broadly points out to the Hinglish commonly used in the state.Keywords: assimilation, culture contact, Hinglish, hybrid words
Procedia PDF Downloads 4031325 Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain
Authors: Juliza Hidayati, Sawarni Hasibuan
Abstract:
PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%.Keywords: palm oil, value chain, value added, supply chain
Procedia PDF Downloads 3731324 In-Depth Analysis of Involved Factors to Car-Motorcycle Accidents in Budapest City
Authors: Danish Farooq, Janos Juhasz
Abstract:
Car-motorcycle accidents have been observed higher in recent years, which caused mainly riders’ fatalities and serious injuries. In-depth crash investigation methods aim to investigate the main factors which are likely involved in fatal road accidents and injury outcomes. The main objective of this study is to investigate the involved factors in car-motorcycle accidents in Budapest city. The procedure included statistical analysis and data sampling to identify car-motorcycle accidents by dominant accident types based on collision configurations. The police report was used as a data source for specified accidents, and simulation models were plotted according to scale (M 1:200). Car-motorcycle accidents were simulated in Virtual Crash software for 5 seconds before the collision. The simulation results showed that the main involved factors to car-motorcycle accidents were human behavior and view obstructions. The comprehensive, in-depth analysis also found that most of the car drivers and riders were unable to perform collision avoidance manoeuvres before the collision. This study can help the traffic safety authorities to focus on simulated involved factors to solve road safety issues in car-motorcycle accidents. The study also proposes safety measures to improve safe movements among road users.Keywords: car motorcycle accidents, in-depth analysis, microscopic simulation, safety measures
Procedia PDF Downloads 1521323 The Investigation of the Active Constituents, Danshen for Angiogenesis
Authors: Liang Zhou, Xiaojing Zhu, Yin Lu
Abstract:
Danshen can induce the angiogenesis in advanced ischemic heart disease while inhibiting the angiogenesis in cancer. Additionally, Danshen mainly contains two groups of ingredients: the hydrophilic phenolic acids (danshensu, caffeic acid and salvianolic acid B), and the lipophilic tanshinones (dihydrotanshinone I, tanshinone II A, and cryptotanshinone). The lipophilic tanshinones reduced the VEGF- and bFGF-induced proliferation of HUVECs in dose-dependent manner, but cannot perform in others. Conversely, caffeic acid and salvianolic acid B had the opposite effect. Danshensu inhibited the VEGF- and bFGF-induced migration of HUVECs, and others were not. Most of them interrupted the forming capillary-like structures of HUVECs, except the danshensu and caffeic acid. Oppositely, caffeic acid enhanced the ability of forming capillary-like structures of HUVECs. Ultimately, the lipophilic tanshinones, danshensu and salvianolic acid B inhibited the angiogenesis, whereas the caffeic acid induced the angiogenesis. These data provide useful information for the classification of ingredients of Danshen for angiogenesis.Keywords: angiogenesis, Danshen, HUVECs, ingredients
Procedia PDF Downloads 3981322 TransDrift: Modeling Word-Embedding Drift Using Transformer
Authors: Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, Srikanta Bedathur
Abstract:
In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However, as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of the transformer, our model accurately learns the dynamics of the embedding drift and predicts future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.Keywords: NLP applications, transformers, Word2vec, drift, word embeddings
Procedia PDF Downloads 951321 A Network-Theorical Perspective on Music Analysis
Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria
Abstract:
The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.Keywords: computational musicology, mathematical music modelling, music analysis, style classification
Procedia PDF Downloads 1061320 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine
Procedia PDF Downloads 2941319 Patent Protection for AI Innovations
Authors: Srinivas Nerella
Abstract:
This study explores the significance of patent protection for artificial intelligence (AI) innovations in the pharmaceutical sector, emphasizing applications in drug discovery, personalized medicine, and clinical trial optimization. The challenges of patenting AI-driven inventions are outlined, focusing on the classification of algorithms as abstract ideas, meeting the non-obviousness standard, and issues around defining inventorship. The methodology includes examining case studies and existing patents, with an emphasis on how companies like Benevolent AI and Insilico Medicine have successfully secured patent rights. Findings demonstrate that a strategic approach to patent protection is essential, with particular attention to showcasing AI’s technical contributions to pharmaceutical advancements. Conclusively, the study underscores the critical role of understanding patent law and innovation strategies in leveraging intellectual property rights in the rapidly advancing field of AI-driven pharmaceuticals.Keywords: artificial intelligence, pharmaceutical industry, patent protection, drug discovery, personalized medicine, clinical trials, intellectual property, non-obviousness
Procedia PDF Downloads 21318 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 811317 Evaluation of Groundwater Suitability for Irrigation Purposes: A Case Study for an Arid Region
Authors: Mustafa M. Bob, Norhan Rahman, Abdalla Elamin, Saud Taher
Abstract:
The objective of this study was to assess the suitability of Madinah city groundwater for irrigation purposes. Of the twenty three wells that were drilled in different locations in the city for the purposes of this study, twenty wells were sampled for water quality analyses. The United States Department of Agriculture (USDA) classification of irrigation water that is based on Sodium hazard (SAR) and salinity hazard was used for suitability assessment. In addition, the residual sodium carbonate (RSC) was calculated for all samples and also used for irrigation suitability assessment. Results showed that all groundwater samples are in the acceptable quality range for irrigation based on RSC values. When SAR and salinity hazard were assessed, results showed that while all groundwater samples (except one) fell in the acceptable range of SAR, they were either in the high or very high salinity zone which indicates that care should be taken regarding the type of soil and crops in the study area.Keywords: irrigation suitability, TDS, salinity, SAR
Procedia PDF Downloads 3741316 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 4681315 Automated Detection of Women Dehumanization in English Text
Authors: Maha Wiss, Wael Khreich
Abstract:
Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.Keywords: gender bias, machine learning, NLP, women dehumanization
Procedia PDF Downloads 811314 Human Factors Simulation Approach to Analyze Older Drivers’ Performance in Intersections Left-Turn Scenarios
Authors: Yassir AbdelRazig, Eren Ozguven, Ren Moses
Abstract:
While there exists a greater understanding of the differences between the driving behaviors of older and younger drivers, there is still a need to further understand how the two groups perform when attempting to perform complex intersection maneuvers. This paper looks to determine if, and to what extent, these differences exist when drivers encounter permissive left-hand turns, pedestrian traffic, two and four-lane intersections, heavy fog, and night conditions. The study will utilize a driving simulator to develop custom drivable scenarios containing one or more of the previously mentioned conditions. 32 younger and 32 older (+65 years) participants perform driving simulation scenarios and have their velocity, time to the nearest oncoming vehicle, accepted and rejected gaps, etc., recorded. The data collected from the simulator is analyzed via Raff’s method and logistic regression in order to determine and compare the critical gaps values of the two cohorts. Out of the parameters considered for this study, only the age of the driver, their experience (if they are a younger driver), the size of a gap, and the presence of pedestrians on the crosswalk proved significant. The results did not support the hypothesis that older drivers would be significantly more conservative in their critical gaps judgment and acceptance.Keywords: older drivers, simulation, left-turn, human factors
Procedia PDF Downloads 2491313 Credit Risk Evaluation Using Genetic Programming
Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira
Abstract:
Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.Keywords: credit risk assessment, rule generation, genetic programming, feature selection
Procedia PDF Downloads 3551312 Vector-Based Analysis in Cognitive Linguistics
Authors: Chuluundorj Begz
Abstract:
This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space
Procedia PDF Downloads 5221311 Blockchain for Transport: Performance Simulations of Blockchain Network for Emission Monitoring Scenario
Authors: Dermot O'Brien, Vasileios Christaras, Georgios Fontaras, Igor Nai Fovino, Ioannis Kounelis
Abstract:
With the rise of the Internet of Things (IoT), 5G, and blockchain (BC) technologies, vehicles are becoming ever increasingly connected and are already transmitting substantial amounts of data to the original equipment manufacturers (OEMs) servers. This data could be used to help detect mileage fraud and enable more accurate vehicle emissions monitoring. This would not only help regulators but could enable applications such as permitting efficient drivers to pay less tax, geofencing for air quality improvement, as well as pollution tolling and trading platforms for transport-related businesses and EU citizens. Other applications could include traffic management and shared mobility systems. BC enables the transmission of data with additional security and removes single points of failure while maintaining data provenance, identity ownership, and the possibility to retain varying levels of privacy depending on the requirements of the applied use case. This research performs simulations of vehicles interacting with European member state authorities and European Commission BC nodes that are running hyperleger fabric and explores whether the technology is currently feasible for transport applications such as the emission monitoring use-case.Keywords: future transportation systems, technological innovations, policy approaches for transportation future, economic and regulatory trends, blockchain
Procedia PDF Downloads 1791310 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue
Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni
Abstract:
Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM
Procedia PDF Downloads 3341309 Open-Source YOLO CV For Detection of Dust on Solar PV Surface
Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden
Abstract:
Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing
Procedia PDF Downloads 381308 Hierarchical Control Structure to Control the Power Distribution System Components in Building Systems
Authors: Hamed Sarbazy, Zohre Gholipour Haftkhani, Ali Safari, Pejman Hosseiniun
Abstract:
Scientific and industrial progress in the past two decades has resulted in energy distribution systems based on power electronics, as an enabling technology in various industries and building management systems can be considered. Grading and standardization module power electronics systems and its use in a distributed control system, a strategy for overcoming the limitations of using this system. The purpose of this paper is to investigate strategies for scheduling and control structure of standard modules is a power electronic systems. This paper introduces the classical control methods and disadvantages of these methods will be discussed, The hierarchical control as a mechanism for distributed control structure of the classification module explains. The different levels of control and communication between these levels are fully introduced. Also continue to standardize software distribution system control structure is discussed. Finally, as an example, the control structure will be presented in a DC distribution system.Keywords: application management, hardware management, power electronics, building blocks
Procedia PDF Downloads 523