Search results for: critical solution temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16573

Search results for: critical solution temperature

14533 Simulation Tools for Training in the Case of Energy Sector Crisis

Authors: H. Malachova, A. Oulehlova, D. Rezac

Abstract:

Crisis preparedness training is the best possible strategy for identifying weak points, understanding vulnerability, and finding possible strategies for mitigation of blackout consequences. Training represents an effective tool for developing abilities and skills to cope with crisis situations. This article builds on the results of the research carried out in the field of preparation, realization, process, and impacts of training on subjects of energy sector critical infrastructure as a part of crisis preparedness. The research has revealed that the subjects of energy sector critical infrastructure have not realized training and therefore are not prepared for the restoration of the energy supply and black start after blackout regardless of the fact that most subjects state blackout and subsequent black start as key dangers. Training, together with mutual communication and processed crisis documentation, represent a basis for successful solutions for dealing with emergency situations. This text presents the suggested model of SIMEX simulator as a tool which supports managing crisis situations, containing training environment. Training models, possibilities of constructive simulation making use of non-aggregated as well as aggregated entities and tools of communication channels of individual simulator nodes have been introduced by the article.

Keywords: communication, energetic critical infrastructure, training, simulation

Procedia PDF Downloads 383
14532 Influence of Different Thicknesses on Mechanical and Corrosion Properties of a-C:H Films

Authors: S. Tunmee, P. Wongpanya, I. Toda, X. L. Zhou, Y. Nakaya, N. Konkhunthot, S. Arakawa, H. Saitoh

Abstract:

The hydrogenated amorphous carbon films (a-C:H) were deposited on p-type Si (100) substrates at different thicknesses by radio frequency plasma enhanced chemical vapor deposition technique (rf-PECVD). Raman spectra display asymmetric diamond-like peaks, representative of the a-C:H films. The decrease of intensity ID/IG ratios revealed the sp3 content arise at different thicknesses of the a-C:H films. In terms of mechanical properties, the high hardness and elastic modulus values show the elastic and plastic deformation behaviors related to sp3 content in amorphous carbon films. Electro chemical properties showed that the a-C:H films exhibited excellent corrosion resistance in air-saturated 3.5 wt% NaCl solution for pH 2 at room temperature. Thickness increasing affected the small sp2 clusters in matrix, restricting the velocity transfer and exchange of electrons. The deposited a-C:H films exhibited excellent mechanical properties and corrosion resistance.

Keywords: thickness, mechanical properties, electrochemical corrosion properties, a-C:H film

Procedia PDF Downloads 446
14531 Effect of Machining Induced Microstructure Changes on the Edge Formability of Titanium Alloys at Room Temperature

Authors: James S. Kwame, E. Yakushina, P. Blackwell

Abstract:

The challenges in forming titanium alloys at room temperature are well researched and are linked both to the limitations imposed by the basic crystal structure and their ability to form texture during plastic deformation. One major issue of concern for the sheet forming of titanium alloys is their high sensitivity to surface inhomogeneity. Various machining processes are utilised in preparing sheet hole edges for edge flanging applications. However, the response of edge forming tendencies of titanium to different edge surface finishes is not well investigated. The hole expansion test is used in this project to elucidate the impact of abrasive water jet (AWJ) and electro-discharge machining (EDM) cutting techniques on the edge formability of CP-Ti (Grade 2) and Ti-3Al-2.5V alloys at room temperature. The results show that the quality of the edge surface finish has a major effect on the edge formability of the materials. The work also found that the variations in the edge forming performance are mainly the result of the influence of machining induced edge surface defects.

Keywords: titanium alloys, hole expansion test, edge formability, non-conventional machining

Procedia PDF Downloads 137
14530 A Study of Evaporative Heat Loss from the Skin of Baby Elephants (Elephas maximus maximus) at Elephant Transit Home

Authors: G .D. B. N. Kulasaooriya, H. B. S. Ariyarathne, I. Abeygunawardene, A. A. J. Rafarathne, B. V. Perera

Abstract:

Elephant is the largest resident of the wild and has small surface to volume ratio as well as less number of sweat glands which cause challenges to the thermoregulation of this mammal. However, this megaherbivore has adopted specialised meachanisms to maintain its thermal balance through behavioral adaptations, ear flapping and well anastomosed arterioles and venules of the ear. Nevertheless, little is known on the involvement of the skin in the process of thermoregulation. The present study was undertaken to monitor the water evaporation rate from the skin of unrestrained wild elephant calves throughout the day and to understand its importance in the thermoregulation. Seven baby elephants housed in the elephant transit home, Udawalawe were used. Ambient temparature, relative humidity (RH) and radiation heat load was monitored throughout the day of the study period. Similarly, surface temparature of the skin was taken at six points including lateral ear pinna, lateral body and the rump during the same period. The skin water evaporation was also measured from the same sites using cobolt chloride method. The surface are of the skin was determined by assigning geometrical shapes to each body part. The results showed that the ambient temperature gradually increased with the day reaching maximum around 3.00 pm. The relative humidity was lowest early in the morning. The radiation heat load did not show any significant change in the study period. The skin temperature was different among lateral ear pinna, lateral body and the rump where the highest temperature was on the rump and the lowest on the lateral ear pinna. The skin temperature gradually increase with increasing ambient temperature but there was not a strong correlation (R2 =53.53) between these two. The skin temperature had strong correlation with RH (p<0.05 R2 =70.84% ) but a significant relationship was not considered since the radiation heat load was not varying in large scale. The skin evaporative water loss had a weak negative correlation with ambient temperature (correlation coefficient= -0.01) whereas strong positive correlation with RH (correlation coefficient= 25.275 ) and no corelation with radiation heat load. It also appeared that skin water loss increases as the skin temperature increased. In the present study, it was observed that on average, skin of the baby elephant looses 403 g/m2/h of water. Based on these observations it can be concluded that a large volume of water is evaporated from the skin of baby elephants and evaporative heat loss may be contributing significantly to the thermoregulation. However, further investigation on the influence of environmental factors on evaporative heat loss has to be conducted to understand the thermoregulatory mechanisms of the baby elephant.

Keywords: thermoregulation, behavioral adaptations, evaporation, elephant

Procedia PDF Downloads 378
14529 Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin

Authors: M. Dehghan, R. Al-Mahaidi, I. Sbarski

Abstract:

An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP)-strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite.

Keywords: carbon fiber reinforced polymer, epoxy, multi-walled carbon nanotube, DMA, glass transition temperature

Procedia PDF Downloads 343
14528 Co-Pyrolysis of Bituminous Coal with Peat by Thermogravimetric Analysis

Authors: Ceren Efe, Hale Sütçü

Abstract:

In this study, the pyrolysis of bituminous coal, peat and their blends formed by mixing various ratios of them were examined by thermogravimetric analysis method. Thermogravimetric analyses of peat, bituminous coal and their blends in the proportions of 25 %, 50 % and 75 % were performed at heating rate of 10 °C/min and from the room temperature until to 800 °C temperature, in a nitrogen atmosphere of 100 ml/min. Kinetic parameters for the pyrolysis process were calculated using Coats&Redfern kinetic model.

Keywords: bituminous coal, peat, pyrolysis, thermogravimetric analysis, Coats&Redfern

Procedia PDF Downloads 262
14527 The Use of Secondary Crystallization in Cement-Based Composites

Authors: Nikol Žižková, Šárka Keprdová, Rostislav Drochytka

Abstract:

The paper focuses on the study of the properties of cement-based composites produced using secondary crystallization (crystalline additive). In this study, cement mortar made with secondary crystallization was exposed to an aggressive environment and the influence of secondary crystallization on the degradation of the cementitious composite was investigated. The results indicate that the crystalline additive contributed to increasing the resistance of the cement-based composite to the attack of the selected environments (sodium sulphate solution and ammonium chloride solution).

Keywords: secondary crystallization, cement-based composites, durability, degradation of the cementitious composite

Procedia PDF Downloads 399
14526 Effect of Quenching Medium on the Hardness of Dual Phase Steel Heat Treated at a High Temperature

Authors: Tebogo Mabotsa, Tamba Jamiru, David Ibrahim

Abstract:

Dual phase(DP) steel consists essentially of fine grained equiaxial ferrite and a dispersion of martensite. Martensite is the primary precipitate in DP steels, it is the main resistance to dislocation motion within the material. The objective of this paper is to present a relation between the intercritical annealing holding time and the hardness of a dual phase steel. The initial heat treatment involved heating the specimens to 1000oC and holding the sample at that temperature for 30 minutes. After the initial heat treatment, the samples were heated to 770oC and held for a varying amount of time at constant temperature. The samples were held at 30, 60, and 90 minutes respectively. After heating and holding the samples at the austenite-ferrite phase field, the samples were quenched in water, brine, and oil for each holding time. The experimental results proved that an equation for predicting the hardness of a dual phase steel as a function of the intercritical holding time is possible. The relation between intercritical annealing holding time and hardness of a dual phase steel heat treated at high temperatures is parabolic in nature. Theoretically, the model isdependent on the cooling rate because the model differs for each quenching medium; therefore, a universal hardness equation can be derived where the cooling rate is a variable factor.

Keywords: quenching medium, annealing temperature, dual phase steel, martensite

Procedia PDF Downloads 82
14525 Electronic Resources and Information Literacy in Higher Education Library

Authors: Nirmal Singh, Rajesh Kumar

Abstract:

Abstract- Information literacy aims to develop both critical understanding and active participation in scholars. It enables scholars to interpret and make informed judgments as users of information sources, and it also enables them to become producers of information in their own right, and thereby to become more powerful participants in society. Information literacy is about developing people‘s critical and creative abilities. Digital media – and particularly the Internet – significantly increase the potential for such active participation of the individual, provided scholars have the means and training to effectively access and use them. This paper provides definition, standards and importance of information literacy (IL). Keywords: Information literacy, Digital Media, Training, Communications Technologies.

Keywords: Information literacy, Digital Media, Training, , Communications Technologies

Procedia PDF Downloads 159
14524 Determination of the Oxidative Potential of Organic Materials: Method Development

Authors: Jui Afrin, Akhtarul Islam

Abstract:

In this paper, the solution of glucose, yeast and glucose yeast mixture are being used as sample solution for determining the chemical oxygen demand (COD). In general COD determination method used to determine the different rang of oxidative potential. But in this work has shown to determine the definite oxidative potential for different concentration for known COD value and wanted to see the difference between experimental value and the theoretical value for evaluating the method drawbacks. In this study, made the values of oxidative potential like 400 mg/L, 500 mg/L, 600 mg/L, 700 mg/L and 800mg/L for various sample solutions and determined the oxidative potential according to our developed method. Plotting the experimental COD values vs. sample solutions of various concentrations in mg/L to draw the curve. From these curves see that the curves for glucose solution is not linear; its deviate from linearity for the lower concentration and the reason for this deviation is unknown. If these drawback can be removed this method can be effectively used to determine Oxidative Potential of Industrial wastewater (such as: Leather industry wastewater, Municipal wastewater, Food industry wastewater, Textile wastewater, Pharmaceuticals waste water) that’s why more experiment and study required.

Keywords: bod (biological oxygen demand), cod (chemical oxygen demand), oxidative potential, titration, waste water, development

Procedia PDF Downloads 229
14523 Spectroscopy Study of Jatropha curcas Seed Oil for Pharmaceutical Applications

Authors: Bashar Mudhaffar Abdullah, Hasniza Zaman Huri, Nany Hairunisa

Abstract:

This study was carried out to determine the thermal properties and spectroscopy study of Malaysian Jatropha curcas seed oil. The J. curcas seed oil physicochemical properties such as free fatty acid (FFA %), acid value, saponification value, iodine value, unsaponifiable matter, and viscosity (cp) gave values of 1.89±0.10%, 3.76±0.07, 203.36±0.36 mg/g, 4.90±0.25, 1.76±0.03%, and 32, respectively. Gas chromatography (GC) was used to determine the fatty acids (FAs) composition. J. curcas seed oil is consisting of saturated FAs (19.55%) such as palmitic (13.19%), palmitoleic (0.40%), and stearic (6.36%) acids and unsaturated FAs (80.42%) such as oleic (43.32%) and linoleic (36.70%) acids. The thermal properties using differential scanning calorimetry (DSC) showed that crystallized TAG was observed at -6.79°C. The melting curves displayed three major exothermic regions of J. curcas seed oil, monounsaturated (lower-temperature peak) at -31.69°C, di-unsaturated (medium temperature peak) at -20.23°C and tri-unsaturated (higher temperature peak) at -12.72°C. The results of this study showed that the J. curcas seed oil is a plausible source of polyunsaturated fatty acid (PUFA) to be developed in the future for pharmaceutical applications.

Keywords: Jatropha curcas seed oil, thermal properties, crystallization, melting, spectroscopy

Procedia PDF Downloads 478
14522 Production of Sr-Ferrite Sub-Micron Powder by Conventional and Sol-Gel Auto-Combustion Methods

Authors: M. Ghobeiti-Hasab

Abstract:

Magnetic powder of Sr-ferrite was prepared by conventional and sol-gel auto-combustion methods. In conventional method, strontium carbonate and ferric oxide powders were mixed together and then mixture was calcined. In sol-gel auto-combustion method, a solution containing strontium nitrate, ferric nitrate and citric acid was heated until the combustion took place automatically; then, as-burnt powder was calcined. Thermal behavior, phase identification, morphology and magnetic properties of powders obtained by these two methods were compared by DTA, XRD, SEM, and VSM techniques. According to the results of DTA analysis, formation temperature of Sr-ferrite obtained by conventional and sol-gel auto-combustion methods were 1300 °C and 1000 °C, respectively. XRD results confirmed the formation of pure Sr-ferrite at the mentioned temperatures. Plate and hexagonal-shape particles of Sr-ferrite were observed using SEM. The Sr-ferrite powder obtained by sol-gel auto-combustion method had saturation magnetization of 66.03 emu/g and coercivity of 5731 Oe in comparison with values of 58.20 emu/g and 4378 Oe obtained by conventional method.

Keywords: Sr-ferrite, sol-gel, magnetic properties, calcination

Procedia PDF Downloads 238
14521 Impact of Drought on Agriculture in the Upper Middle Gangetic Plain in India

Authors: Reshmita Nath

Abstract:

In this study, we investigate the spatiotemporal characteristics of drought in India and its impact on agriculture during the summer season (April to September). For our analysis, we have used Standardized Precipitation Evapotranspiration Index (SPEI) datasets between 1982 and 2012 at six-month timescale. Based on the criteria SPEI<-1 we obtain the vulnerability map and have found that the Humid subtropical Upper Middle Gangetic Plain (UMGP) region is highly drought prone with an occurrence frequency of 40-45%. This UMGP region contributes at least 18-20% of India’s annual cereal production. Not only the probability, but the region becomes more and more drought-prone in the recent decades. Moreover, the cereal production in the UMGP has experienced a gradual declining trend from 2000 onwards and this feature is consistent with the increase in drought affected areas from 20-25% to 50-60%, before and after 2000, respectively. The higher correlation coefficient (-0.69) between the changes in cereal production and drought affected areas confirms that at least 50% of the agricultural (cereal) losses is associated with drought. While analyzing the individual impact of precipitation and surface temperature anomalies on SPEI (6), we have found that in the UMGP region surface temperature plays the primary role in lowering of SPEI. The linkage is further confirmed by the correlation analysis between the SPEI (6) and surface temperature rise, which exhibits strong negative values in the UMGP region. Higher temperature might have caused more evaporation and drying, which therefore increases the area affected by drought in the recent decade.

Keywords: drought, agriculture, SPEI, Indo-Gangetic plain

Procedia PDF Downloads 258
14520 Corrosion Behavior of Induced Stress Duplex Stainless Steel in Chloride Environment

Authors: Serge Mudinga Lemika, Samuel Olukayode Akinwamide, Aribo Sunday, Babatunde Abiodun Obadele, Peter Apata Olubambi

Abstract:

Use of Duplex stainless steel has become predominant in applications where excellent corrosion resistance is of utmost importance. Corrosion behavior of duplex stainless steel induced with varying stress in a chloride media were studied. Characterization of as received 2205 duplex stainless steels were carried out to reveal its structure and properties tensile sample produced from duplex stainless steel was initially subjected to tensile test to obtain the yield strength. Stresses obtained by various percentages (20, 40, 60 and 80%) of the yield strength was induced in DSS samples. Corrosion tests were carried out in magnesium chloride solution at room temperature. Morphologies of cracks observed with optical and scanning electron microscope showed that samples induced with higher stress had its austenite and ferrite grains affected by pitting.

Keywords: duplex stainless steel, hardness, nanoceramics, spark plasma sintering

Procedia PDF Downloads 307
14519 An Investigation of the Weak Localization, Electron-Electron Interaction and the Superconducting Fluctuations in a Weakly Disordered Granular Aluminum Film

Authors: Rukshana Pervin

Abstract:

We report a detailed study on the transport properties of a 40 nm thick granular aluminum film. As measured by temperature-dependent resistance R(T), a resistance peak is observed before the transition to superconductivity, which indicates that the diffusion channel is subjected to weak localization and electron-electron interaction, and the superconductor channel is subjected to SC fluctuations (SCFs). The zero-magnetic field transport measurement demonstrated that Electron-Electron Interaction (EEI), weak localization, and SCFs are closely related in this granular aluminum film. The characteristic temperature at which SCFs emerge on the sample is determined by measuring the R(T) during cooling. The SCF of the film is studied in terms of the direct contribution of the Aslamazov-Larkin's fluctuation Cooper pair density and the indirect contribution of the Maki-Thomson's quasiparticle pair density. In this sample, the rise in R(T) above the SCF characteristic temperature indicates the WL and/or EEI. Comparative analyses are conducted on how the EEI and WL contribute to the upturn in R(T).

Keywords: fluctuation superconductivity, weak localization, thermal deposition, electron-electron interaction

Procedia PDF Downloads 56
14518 High Piezoelectric and Magnetic Performance Achieved in the Lead-free BiFeO3-BaTiO3 Cceramics by Defect Engineering

Authors: Muhammad Habib, Xuefan Zhou, Lin Tang, Guoliang Xue, Fazli Akram, Dou Zhang

Abstract:

Defect engineering approach is a well-established approach for the customization of functional properties of perovskite ceramics. In modern technology, the high multiferroic properties for elevated temperature applications are greatly demanding. In this work, the Bi-nonstoichiometric lead-free 0.67Biy-xSmxFeO3-0.33BaTiO3 ceramics (Sm-doped BF-BT for Bi-excess; y = 1.03 and Bi-deficient; y = 0.975 with x = 0.00, 0.04 and 0.08) were design for the high-temperature multiferroic property. Enhanced piezoelectric (d33  250 pC/N and d33* 350 pm/V) and magnetic properties (Mr  0.25 emu/g) with a high Curie temperature (TC  465 ℃) were obtained in the Bi-deficient pure BF-BT ceramics. With Sm-doping (x = 0.04), the TC decrease to 350 ℃ a significant improvement occurred in the d33* to 504 pm/V and 450 pm/V for Bi-excess and Bi-deficient compositions, respectively. The structural origin of the enhanced piezoelectric strain performance is related to the soft ferroelectric effect by Sm-doping and reversible phase transition from the short-range relaxor ferroelectric state to the long-range order under the applied electric field. However, a slight change occurs in the Mr 0.28 emu/g value with Sm-doping for Bi-deficient ceramics, whereas the Bi-excess ceramics shows completely paramagnetic behavior. Hence, the origin of high magnetic properties in the Bi-deficient BF-BT ceramics is mainly attributed to the proposed double exchange mechanism. We believe that this strategy will provide a new perspective for the development of lead-free multiferroic ceramics for high-temperature applications.

Keywords: BiFeO3-BaTiO3, lead-free piezoceramics, magnetic properties, defect engineering

Procedia PDF Downloads 134
14517 Health and Climate Changes: "Ippocrate" a New Alert System to Monitor and Identify High Risk

Authors: A. Calabrese, V. F. Uricchio, D. di Noia, S. Favale, C. Caiati, G. P. Maggi, G. Donvito, D. Diacono, S. Tangaro, A. Italiano, E. Riezzo, M. Zippitelli, M. Toriello, E. Celiberti, D. Festa, A. Colaianni

Abstract:

Climate change has a severe impact on human health. There is a vast literature demonstrating temperature increase is causally related to cardiovascular problem and represents a high risk for human health, but there are not study that improve a solution. In this work, it is studied how the clime influenced the human parameter through the analysis of climatic conditions in an area of the Apulia Region: Capurso Municipality. At the same time, medical personnel involved identified a set of variables useful to define an index describing health condition. These scientific studies are the base of an innovative alert system, IPPOCRATE, whose aim is to asses climate risk and share information to population at risk to support prevention and mitigation actions. IPPOCRATE is an e-health system, it is designed to provide technological support to analysis of health risk related to climate and provide tools for prevention and management of critical events. It is the first integrated system of prevention of human risk caused by climate change. IPPOCRATE calculates risk weighting meteorological data with the vulnerability of monitored subjects and uses mobile and cloud technologies to acquire and share information on different data channels. It is composed of four components: Multichannel Hub. Multichannel Hub is the ICT infrastructure used to feed IPPOCRATE cloud with a different type of data coming from remote monitoring devices, or imported from meteorological databases. Such data are ingested, transformed and elaborated in order to be dispatched towards mobile app and VoIP phone systems. IPPOCRATE Multichannel Hub uses open communication protocols to create a set of APIs useful to interface IPPOCRATE with 3rd party applications. Internally, it uses non-relational paradigm to create flexible and highly scalable database. WeHeart and Smart Application The wearable device WeHeart is equipped with sensors designed to measure following biometric variables: heart rate, systolic blood pressure and diastolic blood pressure, blood oxygen saturation, body temperature and blood glucose for diabetic subjects. WeHeart is designed to be easy of use and non-invasive. For data acquisition, users need only to wear it and connect it to Smart Application by Bluetooth protocol. Easy Box was designed to take advantage from new technologies related to e-health care. EasyBox allows user to fully exploit all IPPOCRATE features. Its name, Easy Box, reveals its purpose of container for various devices that may be included depending on user needs. Territorial Registry is the IPPOCRATE web module reserved to medical personnel for monitoring, research and analysis activities. Territorial Registry allows to access to all information gathered by IPPOCRATE using GIS system in order to execute spatial analysis combining geographical data (climatological information and monitored data) with information regarding the clinical history of users and their personal details. Territorial Registry was designed for different type of users: control rooms managed by wide area health facilities, single health care center or single doctor. Territorial registry manages such hierarchy diversifying the access to system functionalities. IPPOCRATE is the first e-Health system focused on climate risk prevention.

Keywords: climate change, health risk, new technological system

Procedia PDF Downloads 868
14516 A Genetic Algorithm Approach to Solve a Weaving Job Scheduling Problem, Aiming Tardiness Minimization

Authors: Carolina Silva, João Nuno Oliveira, Rui Sousa, João Paulo Silva

Abstract:

This study uses genetic algorithms to solve a job scheduling problem in a weaving factory. The underline problem regards an NP-Hard problem concerning unrelated parallel machines, with sequence-dependent setup times. This research uses real data regarding a weaving industry located in the North of Portugal, with a capacity of 96 looms and a production, on average, of 440000 meters of fabric per month. Besides, this study includes a high level of complexity once most of the real production constraints are applied, and several real data instances are tested. Topics such as data analyses and algorithm performance are addressed and tested, to offer a solution that can generate reliable and due date results. All the approaches will be tested in the operational environment, and the KPIs monitored, to understand the solution's impact on the production, with a particular focus on the total number of weeks of late deliveries to clients. Thus, the main goal of this research is to develop a solution that allows for the production of automatically optimized production plans, aiming to the tardiness minimizing.

Keywords: genetic algorithms, textile industry, job scheduling, optimization

Procedia PDF Downloads 157
14515 Study of the Feasibility of Submerged Arc Welding(SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius

Authors: Ajay Biswas, Swapan Bhaumik, Saurav Datta, Abhijit Bhowmik

Abstract:

A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. voltage, wire feed rate, travel speed, and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.

Keywords: submerged arc welding, zero degree celsius, Taguchi’s design of experiment, geometry of weldment

Procedia PDF Downloads 449
14514 Feasibility Study of Submerged Arc Welding (SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius

Authors: Ajay Biswas, Abhijit Bhowmik, Saurav Datta, Swapan Bhaumik

Abstract:

A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. Voltage, wire feed rate, travel speed and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.

Keywords: geometry of weldment, submerged arc welding, Taguchi’s design of experiment, zero degree Celsius

Procedia PDF Downloads 433
14513 Process Modified Geopolymer Concrete: A Sustainable Material for Green Construction Technology

Authors: Dibyendu Adak, Saroj Mandal

Abstract:

The fly ash based geopolymer concrete generally requires heat activation after casting, which has been considered as an important limitation for its practical application. Such limitation can be overcome by a modification in the process at the time of mixing of ingredients (fly and activator fluid) for geopolymer concrete so that curing can be made at ambient temperature. This process modified geopolymer concrete shows an appreciable improvement in structural performance compared to conventional heat cured geopolymer concrete and control cement concrete. The improved durability performance based on water absorption, sulphate test, and RCPT is also noted. The microstructural properties analyzed through Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques show the better interaction of fly ash and activator solution at early ages for the process modified geopolymer concrete. This accelerates the transformation of the amorphous phase of fly ash to the crystalline phase.

Keywords: fly ash, geopolymer concrete, process modification, structural properties, durability, micro-structures

Procedia PDF Downloads 163
14512 MIM and Experimental Studies of the Thermal Drift in an Ultra-High Precision Instrument for Dimensional Metrology

Authors: Kamélia Bouderbala, Hichem Nouira, Etienne Videcoq, Manuel Girault, Daniel Petit

Abstract:

Thermal drifts caused by the power dissipated by the mechanical guiding systems constitute the main limit to enhance the accuracy of an ultra-high precision cylindricity measuring machine. For this reason, a high precision compact prototype has been designed to simulate the behaviour of the instrument. It ensures in situ calibration of four capacitive displacement probes by comparison with four laser interferometers. The set-up includes three heating wires for simulating the powers dissipated by the mechanical guiding systems, four additional heating wires located between each laser interferometer head and its respective holder, 19 Platinum resistance thermometers (Pt100) to observe the temperature evolution inside the set-up and four Pt100 sensors to monitor the ambient temperature. Both a Reduced Model (RM), based on the Modal Identification Method (MIM) was developed and optimized by comparison with the experimental results. Thereafter, time dependent tests were performed under several conditions to measure the temperature variation at 19 fixed positions in the system and compared to the calculated RM results. The RM results show good agreement with experiment and reproduce as well the temperature variations, revealing the importance of the RM proposed for the evaluation of the thermal behaviour of the system.

Keywords: modal identification method (MIM), thermal behavior and drift, dimensional metrology, measurement

Procedia PDF Downloads 396
14511 Food Package Design To Preserve The Food Temperature

Authors: Sugiono, Wuwus Ardiatna, Himma Firdaus, Nanang Kusnandar, Bayu Utomo, Jimmy Abdel Kadar

Abstract:

This study was aimed to explore the best design of single-used hot food packaging through various package designs. It examined how designed packages keep some local hot food reasonably longer than standard packages. The food packages were realized to consist of the outer and the inner layers of food-grade materials. The packages were evaluated to keep the hot food decreased to the minimum temperature of safe food. This study revealed a significant finding that the transparent plastic box with thin film aluminum foil is the best package.

Keywords: hot food, local food, one used, packaging, aluminum foil

Procedia PDF Downloads 149
14510 VISSIM Modeling of Driver Behavior at Connecticut Roundabouts

Authors: F. Clara Fang, Hernan Castaneda

Abstract:

The Connecticut Department of Transportation (ConnDOT) has constructed four roundabouts in the State of Connecticut within the past ten years. VISSIM traffic simulation software was utilized to analyze these roundabouts during their design phase. The queue length and level of service observed in the field appear to be better than predicted by the VISSIM model. The objectives of this project are to: identify VISSIM input variables most critical to accurate modeling; recommend VISSIM calibration factors; and, provide other recommendations for roundabout traffic operations modeling. Traffic data were collected at these roundabouts using Miovision Technologies. Cameras were set up to capture vehicle circulating activity and entry behavior for two weekdays. A large sample size of filed data was analyzed to achieve accurate and statistically significant results. The data extracted from the videos include: vehicle circulating speed; critical gap estimated by Maximum Likelihood Method; peak hour volume; follow-up headway; travel time; and, vehicle queue length. A VISSIM simulation of existing roundabouts was built to compare both queue length and travel time predicted from simulation with measured in the field. The research investigated a variety of simulation parameters as calibration factors for describing driver behaviors at roundabouts. Among them, critical gap is the most effective calibration variable in roundabout simulation. It has a significant impact to queue length, particularly when the volume is higher. The results will improve the design of future roundabouts in Connecticut and provide decision makers with insights on the relationship between various choices and future performance.

Keywords: driver critical gap, roundabout analysis, simulation, VISSIM modeling

Procedia PDF Downloads 290
14509 Removal of Toxic Ni++ Ions from Wastewater by Nano-Bentonite

Authors: A. M. Ahmed, Mona A. Darwish

Abstract:

Removal of Ni++ ions from aqueous solution by sorption ontoNano-bentonite was investigated. Experiments were carried out as a function amount of Nano-bentonite, pH, concentration of metal, constant time, agitation speed and temperature. The adsorption parameter of metal ions followed the Langmuir Freundlich adsorption isotherm were applied to analyze adsorption data. The adsorption process has fit pseudo-second order kinetic models. Thermodynamics parameters e.g.ΔG*, ΔS °and ΔH ° of adsorption process have also been calculated and the sorption process was found to be endothermic. The adsorption process has fit pseudo-second order kinetic models. Langmuir and Freundich adsorption isotherm models were applied to analyze adsorption data and both were found to be applicable to the adsorption process. Thermodynamic parameters, e.g., ∆G °, ∆S ° and ∆H ° of the on-going adsorption process have also been calculated and the sorption process was found to be endothermic. Finally, it can be seen that Bentonite was found to be more effective for the removal of Ni (II) same with some experimental conditions.

Keywords: waste water, nickel, bentonite, adsorption

Procedia PDF Downloads 258
14508 Sustainable Pavements with Reflective and Photoluminescent Properties

Authors: A.H. Martínez, T. López-Montero, R. Miró, R. Puig, R. Villar

Abstract:

An alternative to mitigate the heat island effect is to pave streets and sidewalks with pavements that reflect incident solar energy, keeping their surface temperature lower than conventional pavements. The “Heat island mitigation to prevent global warming by designing sustainable pavements with reflective and photoluminescent properties (RELUM) Project” has been carried out with this intention in mind. Its objective has been to develop bituminous mixtures for urban pavements that help in the fight against global warming and climate change, while improving the quality of life of citizens. The technology employed has focused on the use of reflective pavements, using bituminous mixes made with synthetic bitumens and light pigments that provide high solar reflectance. In addition to this advantage, the light surface colour achieved with these mixes can improve visibility, especially at night. In parallel and following the latter approach, an appropriate type of treatment has also been developed on bituminous mixtures to make them capable of illuminating at night, giving rise to photoluminescent applications, which can reduce energy consumption and increase road safety due to improved night-time visibility. The work carried out consisted of designing different bituminous mixtures in which the nature of the aggregate was varied (porphyry, granite and limestone) and also the colour of the mixture, which was lightened by adding pigments (titanium dioxide and iron oxide). The reflectance of each of these mixtures was measured, as well as the temperatures recorded throughout the day, at different times of the year. The results obtained make it possible to propose bituminous mixtures whose characteristics can contribute to the reduction of urban heat islands. Among the most outstanding results is the mixture made with synthetic bitumen, white limestone aggregate and a small percentage of titanium dioxide, which would be the most suitable for urban surfaces without road traffic, given its high reflectance and the greater temperature reduction it offers. With this solution, a surface temperature reduction of 9.7°C is achieved at the beginning of the night in the summer season with the highest radiation. As for luminescent pavements, paints with different contents of strontium aluminate and glass microspheres have been applied to asphalt mixtures, and the luminance of all the applications designed has been measured by exciting them with electric bulbs that simulate the effect of sunlight. The results obtained at this stage confirm the ability of all the designed dosages to emit light for a certain time, varying according to the proportions used. Not only the effect of the strontium aluminate and microsphere content has been observed, but also the influence of the colour of the base on which the paint is applied; the lighter the base, the higher the luminance. Ongoing studies are focusing on the evaluation of the durability of the designed solutions in order to determine their lifetime.

Keywords: heat island, luminescent paints, reflective pavement, temperature reduction

Procedia PDF Downloads 30
14507 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates

Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery

Abstract:

Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.

Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop

Procedia PDF Downloads 95
14506 Plackett-Burman Design for Microencapsulation of Blueberry Bioactive Compounds

Authors: Feyza Tatar, Alime Cengiz, Dilara Sandikçi, Muhammed Dervisoglu, Talip Kahyaoglu

Abstract:

Blueberries are known for their bioactive properties such as high anthocyanin contents, antioxidant activities and potential health benefits. However, anthocyanins are sensitive to environmental conditions during processes. The objective of this study was to evaluate the effects of spray drying conditions on the blueberry microcapsules by Plackett-Burman experimental design. Inlet air temperature (120 and 180°C), feed pump rate (20% and 40%), DE of maltodextrin (6 and 15 DE), coating concentration (10% and 30%) and source of blueberry (Duke and Darrow) were independent variables, tested at high (+1) and low (-1) levels. Encapsulation efficiency (based on total phenol) of blueberry microcapsules was the dependent variable. In addition, anthocyanin content, antioxidant activity, water solubility, water activity and bulk density were measured for blueberry powders. The antioxidant activity of blueberry powders ranged from 72 to 265 mmol Trolox/g and anthocyanin content was changed from 528 to 5500 mg GAE/100g. Encapsulation efficiency was significantly affected (p<0.05) by inlet air temperature and coating concentration. Encapsulation efficiency increased with increasing inlet air temperature and decreasing coating concentration. The highest encapsulation efficiency could be produced by spray drying at 180°C inlet air temperature, 40% pump rate, 6 DE of maltodextrin, 13% maltodextrin concentration and source of duke blueberry.

Keywords: blueberry, microencapsulation, Plackett-Burman design, spray drying

Procedia PDF Downloads 287
14505 Nature of a Supercritical Mesophase

Authors: Hamza Javar Magnier, Leslie V. Woodcock

Abstract:

It has been reported that at temperatures above the critical there is no “continuity of liquid and gas”, as originally hypothesized by van der Waals. Rather, both gas and liquid phases, with characteristic properties as such, extend to supercritical temperatures. Each phase is bounded by the locus of a percolation transition, i.e. a higher-order thermodynamic phase change associated with percolation of gas clusters in a large void, or liquid interstitial vacancies in a large cluster. Between these two-phase bounds, it is reported there exists a mesophase that resembles an otherwise homogeneous dispersion of gas micro-bubbles in liquid (foam) and a dispersion of liquid micro-droplets in gas (mist). Such a colloidal-like state of a pure one-component fluid represents a hitherto unchartered equilibrium state of matter besides pure solid, liquid or gas. Here we provide compelling evidence, from molecular dynamics (MD) simulations, for the existence of this supercritical mesophase and its colloidal nature. We report preliminary results of computer simulations for a model fluid using a simplistic representation of atoms or molecules, i.e. a hard-core repulsion with an attraction so short that the atoms are referred to as “adhesive spheres”. Molecular clusters, and hence percolation transitions, are unambiguously defined. Graphics of color-coded clusters show colloidal characteristics of the supercritical mesophase.

Keywords: critical phenomena, mesophase, supercritical, square-well, critical parameters

Procedia PDF Downloads 426
14504 An Application of Remote Sensing for Modeling Local Warming Trend

Authors: Khan R. Rahaman, Quazi K. Hassan

Abstract:

Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).

Keywords: local warming, climate change, urban area, Alberta, Canada

Procedia PDF Downloads 339