Search results for: 3D transition metal complex
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8692

Search results for: 3D transition metal complex

6652 Thermo-Hydro-Mechanical-Chemical Coupling in Enhanced Geothermal Systems: Challenges and Opportunities

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Geothermal reservoirs (GTRs) have garnered global recognition as a sustainable energy source. The Thermo-Hydro-Mechanical-Chemical (THMC) integration coupling proves to be a practical and effective method for optimizing production in GTRs. The study outcomes demonstrate that THMC coupling serves as a versatile and valuable tool, offering in-depth insights into GTRs and enhancing their operational efficiency. This is achieved through temperature analysis and pressure changes and their impacts on mechanical properties, structural integrity, fracture aperture, permeability, and heat extraction efficiency. Moreover, THMC coupling facilitates potential benefits assessment and risks associated with different geothermal technologies, considering the complex thermal, hydraulic, mechanical, and chemical interactions within the reservoirs. However, THMC-coupling utilization in GTRs presents a multitude of challenges. These challenges include accurately modeling and predicting behavior due to the interconnected nature of processes, limited data availability leading to uncertainties, induced seismic events risks to nearby communities, scaling and mineral deposition reducing operational efficiency, and reservoirs' long-term sustainability. In addition, material degradation, environmental impacts, technical challenges in monitoring and control, accurate assessment of resource potential, and regulatory and social acceptance further complicate geothermal projects. Addressing these multifaceted challenges is crucial for successful geothermal energy resources sustainable utilization. This paper aims to illuminate the challenges and opportunities associated with THMC coupling in enhanced geothermal systems. Practical solutions and strategies for mitigating these challenges are discussed, emphasizing the need for interdisciplinary approaches, improved data collection and modeling techniques, and advanced monitoring and control systems. Overcoming these challenges is imperative for unlocking the full potential of geothermal energy making a substantial contribution to the global energy transition and sustainable development.

Keywords: geothermal reservoirs, THMC coupling, interdisciplinary approaches, challenges and opportunities, sustainable utilization

Procedia PDF Downloads 58
6651 A Near Ambient Pressure X-Ray Photoelectron Spectroscopy Study on Platinum Nanoparticles Supported on Zr-Based Metal Organic Frameworks

Authors: Reza Vakili, Xiaolei Fan, Alex Walton

Abstract:

The first near ambient pressure (NAP)-XPS study of CO oxidation over Pt nanoparticles (NPs) incorporated into Zr-based UiO (UiO for Universitetet i Oslo) MOFs was carried out. For this purpose, the MOF-based Catalysts were prepared by wetness impregnation (WI-PtNPs@UiO-67) and linker design (LD-PtNPs@UiO-67) methods along with PtNPs@ZrO₂ as the control catalyst. Firstly, the as-synthesized catalysts were reduced in situ prior to the operando XPS analysis. The existence of Pt(II) species was proved in UiO-67 by observing Pt 4f core level peaks at a high binding energy of 72.6 ± 0.1 eV. However, by heating the WI-PtNPs@UiO-67 catalyst in situ to 200 °C under vacuum, the higher BE components disappear, leaving only the metallic Pt 4f doublet, confirming the formation of Pt NPs. The complete reduction of LD-PtNPs@UiO-67 is achieved at 250 °C and 1 mbar H₂. To understand the chemical state of Pt NPs in UiO-67 during catalytic turnover, we analyzed the Pt 4f region using operando NAP-XPS in the temperature-programmed measurements (100-260 °C) with reference to PtNPs@ZrO₂ catalyst. CO conversion during NAP-XPS experiments with the stoichiometric mixture shows that LD-PtNPs@UiO-67 has a better CO turnover frequency (TOF, 0.066 s⁻¹ at 260 °C) than the other two (ca. 0.055 s⁻¹). Pt 4f peaks only show one chemical species present at all temperatures, but the core level BE shifts change as a function of reaction temperature, i.e., Pt 4f peak from 71.8 eV at T < 200 °C to 71.2 eV at T > 200 °C. As this higher BE state of 71.8 eV was not observed after in situ reductions of the catalysts and only once the CO/O₂ mixture was introduced, we attribute it to the surface saturation of Pt NPs with adsorbed CO. In general, the quantitative analysis of Pt 4f data from the operando NAP-XPS experiments shows that the surface chemistry of the Pt active phase in the two PtNPs@UiO-67 catalysts is the same, comparable to that of PtNPs@ZrO₂. The observed difference in the catalytic activity can be attributed to the particle sizes of Pt NPs, as well as the dispersion of active phase in the support, which are different in the three catalysts.

Keywords: CO oxidation, heterogeneous catalysis, MOFs, Metal Organic Frameworks, NAP-XPS, Near Ambient Pressure X-ray Photoelectron Spectroscopy

Procedia PDF Downloads 128
6650 Prioritizing Quality Dimensions in ‘Servitised’ Business through AHP

Authors: Mohita Gangwar Sharma

Abstract:

Different factors are compelling manufacturers to move towards the phenomenon of servitization i.e. when firms go beyond giving support to the customers in operating the equipment. The challenges that are being faced in this transition by the manufacturing firms from being a product provider to a product- service provider are multipronged. Product-Service Systems (PSS) lies in between the pure-product and pure-service continuum. Through this study, we wish to understand the dimensions of ‘PSS-quality’. We draw upon the quality literature for both the product and services and through an expert survey for a specific transportation sector using analytical hierarchical process (AHP) derive a conceptual model that can be used as a comprehensive measurement tool for PSS offerings.

Keywords: servitisation, quality, product-service system, AHP

Procedia PDF Downloads 301
6649 The Axonal Connectivity of Motor and Premotor Areas as Revealed through Fiber Dissections: Shedding Light on the Structural Correlates of Complex Motor Behavior

Authors: Spyridon Komaitis, Christos Koutsarnakis, Evangelos Drosos, Aristotelis Kalyvas

Abstract:

This study opts to investigate the intrinsic architecture, morphology, and spatial relationship of the subcortical pathways implicated in the connectivity of the motor/premotor cortex and SMA/pre-SMA complex. Twenty normal, adult, formalin-fixed cerebral hemispheres were explored through the fiber micro-dissection technique. Lateral to medial and medial to lateral dissections focused on the area of interest were performed in a tandem manner and under the surgical microscope. We traced the subcortical architecture, spatial relationships, and axonal connectivity of four major pathways: a) the dorsal component of the SLF (SLF-I) was found to reside in the medial aspect of the hemisphere and seen to connect the precuneus with the SMA and pre-SMA complex, b) the frontal longitudinal system (FLS) was consistently encountered as the natural anterior continuation of the SLF-II and SLF-III and connected the premotor and prefrontal cortices c) the fronto-caudate tract (FCT), a fan-shaped tract, was documented to participate in connectivity of the prefrontal and premotor cortices to the head and body of the caudate nucleus and d) the cortico-tegmental tract(CTT) was invariably recorded to subserve the connectivity of the tegmental area with the fronto-parietal cortex. No hemispheric asymmetries were recorded for any of the implicated pathways. Sub-segmentation systems were also proposed for each of the aforementioned tracts. The structural connectivity and functional specialization of motor and premotor areas in the human brain remain vague to this day as most of the available evidence derives either from animal or tractographic studies. By using the fiber-microdissection technique as our main method of investigation, we provide sound structural evidence on the delicate anatomy of the related white matter pathways.

Keywords: neuroanatomy, premotor, motor, connectivity

Procedia PDF Downloads 120
6648 Avian Ecological Status in the Gadaïne Eco-Complex (Batna, NE Algeria)

Authors: Marref Cherine, Bezzala Adel, Houhamdimoussa

Abstract:

Wetlands represent ecosystems of great importance through their ecological and socio-economic functions and biological diversity, even if they are most threatened by anthropization. This study aimed to contribute to the creation of an inventory of bird species in the Gadaïne eco-complex (Batna, Algeria) from 2019 to 2021. Counts were carried out from 8:00 to 19:00 using a telescope (20 × 60) and a pair of binoculars (10 × 50) and by employing absolute and relative methods. Birds were categorized by phenology, habitat, biogeography, and diet. A total of 80 species in 58 genera and 19 families were observed. Migratory birds were dominant (38%) phenologically, and the birds of Palearctic origin dominated (26.25%) biogeographically. Invertivorous and carnivorous species were the most common (35%). Ecologically, the majority of species were waterbirds (73.75%), which are protected in Algeria. This study highlights the need for the preservation of ecosystem components and the enhancement of biological resources of protected, rare, and key species. We observed 43797 individuals of Marmaronetta angustirostris during our study and reported the nesting of Podiceps nigricollis, Porphyrio porphyrio, and Tadorna ferruginea. For this reason, it is recommended to propose the area as a Ramsar site.

Keywords: biodiversity, avifauna, ecological status, wetlands

Procedia PDF Downloads 56
6647 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 282
6646 Design of a Robot with a Transformable Track System in Tackling Motion Barrier

Authors: Kai-Yi Cho, Fa-Shian Chang, Lih-Tyng Hwang, Chih-Feng Liu, Jeng-Nan Lee, Shun-Min Wang, Jhu-Wei Ji

Abstract:

This paper presents a ground robot which has the tracked transformative structures of the motion mechanism. The robot has a good ability to adapt to the terrain, due to the front end of the track can be deformed, it can more easily pass the more complex area, such as to climb stairs and ramp areas. Usually in the disaster area, where the terrain is generally broken and complicated, there will be many slopes, broken walls, rubble, and obstacles, then if you want the robot through this area, you need to have a good off-road performance for possible complex terrain, this robot with the transformative tracked mechanism has a strong adaptability, it can overcome the limitation of the terrains to be a good rescue robot. Also, the robot has a good flexibility in the shape of contact with the ground; that can adapt the varied terrain by the deformable track, thus able to pass the different terrains, that was verified through the experiments on a test-platform and a field test. The prototype of the robot system has been developed, and experiments are carried out to verify the validity of the proposed design.

Keywords: tracked robot, rescue robot, transformation mechanism, deformable track, hull design

Procedia PDF Downloads 320
6645 Low-Temperature Poly-Si Nanowire Junctionless Thin Film Transistors with Nickel Silicide

Authors: Yu-Hsien Lin, Yu-Ru Lin, Yung-Chun Wu

Abstract:

This work demonstrates the ultra-thin poly-Si (polycrystalline Silicon) nanowire junctionless thin film transistors (NWs JL-TFT) with nickel silicide contact. For nickel silicide film, this work designs to use two-step annealing to form ultra-thin, uniform and low sheet resistance (Rs) Ni silicide film. The NWs JL-TFT with nickel silicide contact exhibits the good electrical properties, including high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this work also compares the electrical characteristics of NWs JL-TFT with nickel silicide and non-silicide contact. Nickel silicide techniques are widely used for high-performance devices as the device scaling due to the source/drain sheet resistance issue. Therefore, the self-aligned silicide (salicide) technique is presented to reduce the series resistance of the device. Nickel silicide has several advantages including low-temperature process, low silicon consumption, no bridging failure property, smaller mechanical stress, and smaller contact resistance. The junctionless thin-film transistor (JL-TFT) is fabricated simply by heavily doping the channel and source/drain (S/D) regions simultaneously. Owing to the special doping profile, JL-TFT has some advantages such as lower thermal the budget which can integrate with high-k/metal-gate easier than conventional MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), longer effective channel length than conventional MOSFETs, and avoidance of complicated source/drain engineering. To solve JL-TFT has turn-off problem, JL-TFT needs ultra-thin body (UTB) structure to reach fully depleted channel region in off-state. On the other hand, the drive current (Iᴅ) is declined as transistor features are scaled. Therefore, this work demonstrates ultra thin poly-Si nanowire junctionless thin film transistors with nickel silicide contact. This work investigates the low-temperature formation of nickel silicide layer by physical-chemical deposition (PVD) of a 15nm Ni layer on the poly-Si substrate. Notably, this work designs to use two-step annealing to form ultrathin, uniform and low sheet resistance (Rs) Ni silicide film. The first step was promoted Ni diffusion through a thin interfacial amorphous layer. Then, the unreacted metal was lifted off after the first step. The second step was annealing for lower sheet resistance and firmly merged the phase.The ultra-thin poly-Si nanowire junctionless thin film transistors NWs JL-TFT with nickel silicide contact is demonstrated, which reveals high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In silicide film analysis, the second step of annealing was applied to form lower sheet resistance and firmly merge the phase silicide film. In short, the NWs JL-TFT with nickel silicide contact has exhibited a competitive short-channel behavior and improved drive current.

Keywords: poly-Si, nanowire, junctionless, thin-film transistors, nickel silicide

Procedia PDF Downloads 231
6644 Tailoring Quantum Oscillations of Excitonic Schrodinger’s Cats as Qubits

Authors: Amit Bhunia, Mohit Kumar Singh, Maryam Al Huwayz, Mohamed Henini, Shouvik Datta

Abstract:

We report [https://arxiv.org/abs/2107.13518] experimental detection and control of Schrodinger’s Cat like macroscopically large, quantum coherent state of a two-component Bose-Einstein condensate of spatially indirect electron-hole pairs or excitons using a resonant tunneling diode of III-V Semiconductors. This provides access to millions of excitons as qubits to allow efficient, fault-tolerant quantum computation. In this work, we measure phase-coherent periodic oscillations in photo-generated capacitance as a function of an applied voltage bias and light intensity over a macroscopically large area. Periodic presence and absence of splitting of excitonic peaks in the optical spectra measured by photocapacitance point towards tunneling induced variations in capacitive coupling between the quantum well and quantum dots. Observation of negative ‘quantum capacitance’ due to a screening of charge carriers by the quantum well indicates Coulomb correlations of interacting excitons in the plane of the sample. We also establish that coherent resonant tunneling in this well-dot heterostructure restricts the available momentum space of the charge carriers within this quantum well. Consequently, the electric polarization vector of the associated indirect excitons collective orients along the direction of applied bias and these excitons undergo Bose-Einstein condensation below ~100 K. Generation of interference beats in photocapacitance oscillation even with incoherent white light further confirm the presence of stable, long-range spatial correlation among these indirect excitons. We finally demonstrate collective Rabi oscillations of these macroscopically large, ‘multipartite’, two-level, coupled and uncoupled quantum states of excitonic condensate as qubits. Therefore, our study not only brings the physics and technology of Bose-Einstein condensation within the reaches of semiconductor chips but also opens up experimental investigations of the fundamentals of quantum physics using similar techniques. Operational temperatures of such two-component excitonic BEC can be raised further with a more densely packed, ordered array of QDs and/or using materials having larger excitonic binding energies. However, fabrications of single crystals of 0D-2D heterostructures using 2D materials (e.g. transition metal di-chalcogenides, oxides, perovskites etc.) having higher excitonic binding energies are still an open challenge for semiconductor optoelectronics. As of now, these 0D-2D heterostructures can already be scaled up for mass production of miniaturized, portable quantum optoelectronic devices using the existing III-V and/or Nitride based semiconductor fabrication technologies.

Keywords: exciton, Bose-Einstein condensation, quantum computation, heterostructures, semiconductor Physics, quantum fluids, Schrodinger's Cat

Procedia PDF Downloads 177
6643 Study on Accumulation of Heavy Metals in Sweet Potato, Grown in Industrially Polluted Regions

Authors: Violina Angelova, Galina Pevicharova

Abstract:

A comparative research had been carried out to allow us to determine the quantities and the centers of accumulation of Pb, Cu, Zn and Cd in the vegetative and reproductive organs of the sweet potatoes and to ascertain the possibilities for growing them on soils, polluted with heavy metals. The experiments were performed on agricultural fields contaminated by the (1) Non-Ferrous-Metal Works near Plovdiv, (2) Lead and Zinc Complex near Kardjali and (3) a copper smelter near Pirdop, Bulgaria. The soils used in this experiment were characterized by acid, neutral and slightly alkaline reaction, loamy texture and a moderate content of organic matter. The total content of Zn, Pb, and Cd was high and exceeded the limit value in agriculture soils. Sweet potatoes were in a 2-year rotation scheme on three blocks in the experimental field. On reaching commercial ripeness the sweet potatoes were gathered and the contents of heavy metals in their different parts – root, tuber (peel and core), leaves and stems, were determined after microwave mineralization. The quantitative measurements were carried out with inductively coupled plasma atomic emission spectroscopy. The contamination of the sweet potatoes was due mainly to the presence of heavy metals in the soil, which entered the plants through their root system, as well as by diffusion through the peel. Pb, Cu, Zn, and Cd were selectively accumulated in the underground parts of the sweet potatoes, and most of all in the root system and the peel. Heavy metals have an impact on the development and productivity of the sweet potatoes. The high anthropogenic contamination leads to an increased assimilation of heavy metals which reduces the yield and the quality of the production of sweet potatoes, as well as leads to decrease of the absolute dry substance and the quantity of sugars in sweet potatoes. Sweet potatoes could be grown on soils, which are light to medium polluted with lead, zinc, and cadmium, as they do not accumulate these elements. On heavily polluted soils, however, (Pb – 1504 mg/kg, Zn – 3322 mg/kg, Cd – 47 mg/kg) the growing of sweet potatoes is not allowed, as the accumulation of Pb and Cd in the core of the potatoes exceeds the Maximum Acceptable Concentration. Acknowledgment: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI DH04/9).

Keywords: heavy metals, polluted soils, sweet potatoes, uptake

Procedia PDF Downloads 199
6642 Application of Mathematical Models for Conducting Long-Term Metal Fume Exposure Assessments for Workers in a Shipbuilding Factory

Authors: Shu-Yu Chung, Ying-Fang Wang, Shih-Min Wang

Abstract:

To conduct long-term exposure assessments are important for workers exposed to chemicals with chronic effects. However, it usually encounters with several constrains, including cost, workers' willingness, and interference to work practice, etc., leading to inadequate long-term exposure data in the real world. In this study, an integrated approach was developed for conducting long-term exposure assessment for welding workers in a shipbuilding factory. A laboratory study was conducted to yield the fume generation rates under various operating conditions. The results and the measured environmental conditions were applied to the near field/far field (NF/FF) model for predicting long term fume exposures via the Monte Carlo simulation. Then, the predicted long-term concentrations were used to determine the prior distribution in Bayesian decision analysis (BDA). Finally, the resultant posterior distributions were used to assess the long-term exposure and serve as basis for initiating control strategies for shipbuilding workers. Results show that the NF/FF model was a suitable for predicting the exposures of metal contents containing in welding fume. The resultant posterior distributions could effectively assess the long-term exposures of shipbuilding welders. Welders' long-term Fe, Mn and Pb exposures were found with high possibilities to exceed the action level indicating preventive measures should be taken for reducing welders' exposures immediately. Though the resultant posterior distribution can only be regarded as the best solution based on the currently available predicting and monitoring data, the proposed integrated approach can be regarded as a possible solution for conducting long term exposure assessment in the field.

Keywords: Bayesian decision analysis, exposure assessment, near field and far field model, shipbuilding industry, welding fume

Procedia PDF Downloads 133
6641 Synthesis and Study of Structural, Morphological, and Electrochemical Properties of Ceria co-doped for SOFC Applications

Authors: Fatima Melit, Nedjemeddine Bounar

Abstract:

Polycrystalline samples of Ce1-xMxO2-δ (x=0.1, 0.15, 0.2)(M=Gd, Y) were prepared by solid-state chemical reaction from mixtures of pre-dried oxides powders of CeO2, Gd2O3 and Y2O3 in the appropriate stoichiometric ratio to explore their use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs). Their crystal structures and ionic conductivities were characterised by X-ray powder diffraction (XRD) and AC complex impedance spectroscopy (EIS). The XRD analyses confirm that all the resulting synthesised co-doped cerium oxide powders are single-phase and crystallise in the cubic structure system with the space group Fm3m. On the one hand, the lattice parameter (a ) of the phases increases with increasing Gd content; on the other hand, with increasing Y-substitution rate, the latter decreases. The results of complex impedance conductivity measurements have shown that doping has a remarkable effect on conductivity. The co-doped cerium phases showed significant ionic conductivity values, making these materials excellent candidates for solid oxide electrolytes at intermediate temperatures.

Keywords: electrolyte, Ceria, X-ray diffraction, EIS, SEM, SOFC

Procedia PDF Downloads 133
6640 CompleX-Machine: An Automated Testing Tool Using X-Machine Theory

Authors: E. K. A. Ogunshile

Abstract:

This paper is aimed at creating an Automatic Java X-Machine testing tool for software development. The nature of software development is changing; thus, the type of software testing tools required is also changing. Software is growing increasingly complex and, in part due to commercial impetus for faster software releases with new features and value, increasingly in danger of containing faults. These faults can incur huge cost for software development organisations and users; Cambridge Judge Business School’s research estimated the cost of software bugs to the global economy is $312 billion. Beyond the cost, faster software development methodologies and increasing expectations on developers to become testers is driving demand for faster, automated, and effective tools to prevent potential faults as early as possible in the software development lifecycle. Using X-Machine theory, this paper will explore a new tool to address software complexity, changing expectations on developers, faster development pressures and methodologies, with a view to reducing the huge cost of fixing software bugs.

Keywords: conformance testing, finite state machine, software testing, x-machine

Procedia PDF Downloads 263
6639 Preparation and Characterization of Anti-Acne Dermal Products Based on Erythromycin β-Cyclodextrin Lactide Complex

Authors: Lacramioara Ochiuz, Manuela Hortolomei, Aurelia Vasile, Iulian Stoleriu, Marcel Popa, Cristian Peptu

Abstract:

Local antibiotherapy is one of the most effective acne therapies. Erythromycin (ER) is a macrolide antibiotic topically administered for over 30 years in the form of gel, ointment or hydroalcoholic solution for the acne therapy. The use of ER as a base for topical dosage forms raises some technological challenges due to the physicochemical properties of this substance. The main disadvantage of ER is the poor water solubility (2 mg/mL) that limits both formulation using hydrophilic bases and skin permeability. Cyclodextrins (CDs) are biocompatible cyclic oligomers of glucose, with hydrophobic core and hydrophilic exterior. CDs are used to improve the bioavailability of drugs by increasing their solubility and/or their rate of dissolution after including the poorly water soluble substances (such as ER) in the hydrophobic cavity of CDs. Adding CDs leads to the increase of solubility and improved stability of the drug substance, increased permeability of substances of low water solubility, decreased toxicity and even to active dose reduction as a result of increased bioavailability. CDs increase skin tolerability by reducing the irritant effect of certain substances. We have included ER to lactide modified β-cyclodextrin, in order to improve the therapeutic effect of topically administered ER. The aims of the present study were to synthesise and describe a new complex with prolonged release of ER with lactide modified β-cyclodextrin (CD-LA_E), to investigate the CD-LA_E complex by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), to analyse the effect of semisolid base on the in vitro and ex vivo release characteristics of ER in the CD-LA_E complex by assessing the permeability coefficient and the release kinetics by fitting on mathematical models. SEM showed that, by complexation, ER changes its crystal structure and enters the amorphous phase. FTIR analysis has shown that certain specific bands of some groups in the ER structure move during the incapsulation process. The structure of the CD-LA_E complex has a molar ratio of 2.12 to 1 between lactide modified β-cyclodextrin and ER. The three semisolid bases (2% Carbopol, 13% Lutrol 127 and organogel based on Lutrol and isopropyl myristate) show a good capacity for incorporating the CD-LA_E complex, having a content of active ingredient ranging from 98.3% to 101.5% as compared to the declared value of 2% ER. The results of the in vitro dissolution test showed that the ER solubility was significantly increased by CDs incapsulation. The amount of ER released from the CD-LA_E gels was in the range of 76.23% to 89.01%, whereas gels based on ER released a maximum percentage of 26.01% ER. The ex vivo dissolution test confirms the increased ER solubility achieved by complexation, and supports the assumption that the use of this process might increase ER permeability. The highest permeability coefficient was obtained in ER released from gel based on 2% Carbopol: in vitro 33.33 μg/cm2/h, and ex vivo 26.82 μg/cm2/h, respectively. The release kinetics of complexed ER is performed by Fickian diffusion, according to the results obtained by fitting the data in the Korsmeyer-Peppas model.

Keywords: erythromycin, acne, lactide, cyclodextrin

Procedia PDF Downloads 259
6638 Assessing Circularity Potentials and Customer Education to Drive Ecologically and Economically Effective Materials Design for Circular Economy - A Case Study

Authors: Mateusz Wielopolski, Asia Guerreschi

Abstract:

Circular Economy, as the counterargument to the ‘make-take-dispose’ linear model, is an approach that includes a variety of schools of thought looking at environmental, economic, and social sustainability. This, in turn, leads to a variety of strategies and often confusion when it comes to choosing the right one to make a circular transition as effective as possible. Due to the close interplay of circular product design, business model and social responsibility, companies often struggle to develop strategies that comply with all three triple-bottom-line criteria. Hence, to transition to circularity effectively, product design approaches must become more inclusive. In a case study conducted with the University of Bayreuth and the ISPO, we correlated aspects of material choice in product design, labeling and technological innovation with customer preferences and education about specific material and technology features. The study revealed those attributes of the consumers’ environmental awareness that directly translate into an increase of purchase power - primarily connected with individual preferences regarding sports activity and technical knowledge. Based on this outcome, we constituted a product development approach that incorporates the consumers’ individual preferences towards sustainable product features as well as their awareness about materials and technology. It allows deploying targeted customer education campaigns to raise the willingness to pay for sustainability. Next, we implemented the customer preference and education analysis into a circularity assessment tool that takes into account inherent company assets as well as subjective parameters like customer awareness. The outcome is a detailed but not cumbersome scoring system, which provides guidance for material and technology choices for circular product design while considering business model and communication strategy to the attentive customers. By including customer knowledge and complying with corresponding labels, companies develop more effective circular design strategies, while simultaneously increasing customers’ trust and loyalty.

Keywords: circularity, sustainability, product design, material choice, education, awareness, willingness to pay

Procedia PDF Downloads 189
6637 Photocatalytic Properties of Pt/Er-KTaO3

Authors: Anna Krukowska, Tomasz Klimczuk, Adriana Zaleska-Medynska

Abstract:

Photoactive materials have attracted attention due to their potential application in the degradation of environmental pollutants to non-hazardous compounds in an eco-friendly route. Among semiconductor photocatalysts, tantalates such as potassium tantalate (KTaO3) is one of the excellent functional photomaterial. However, tantalates-based materials are less active under visible-light irradiation, the enhancement in photoactivity could be improved with the modification of opto-eletronic properties of KTaO3 by doping rare earth metal (Er) and further photodeposition of noble metal nanoparticles (Pt). Inclusion of rare earth element in orthorhombic structure of tantalate can generate one high-energy photon by absorbing two or more incident low-energy photons, which convert visible-light and infrared-light into the ultraviolet-light to satisfy the requirement of KTaO3 photocatalysts. On the other hand, depositions of noble metal nanoparticles on the surface of semiconductor strongly absorb visible-light due to their surface plasmon resonance, in which their conducting electrons undergo a collective oscillation induced by electric field of visible-light. Furthermore, the high dispersion of Pt nanoparticles, which will be obtained by photodeposition process is additional important factor to improve the photocatalytic activity. The present work is aimed to study the effect of photocatalytic process of the prepared Er-doped KTaO3 and further incorporation of Pt nanoparticles by photodeposition. Moreover, the research is also studied correlations between photocatalytic activity and physico-chemical properties of obtained Pt/Er-KTaO3 samples. The Er-doped KTaO3 microcomposites were synthesized by a hydrothermal method. Then photodeposition method was used for Pt loading over Er-KTaO3. The structural and optical properties of Pt/Er-KTaO3 photocatalytic were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), volumetric adsorption method (BET), UV-Vis absorption measurement, Raman spectroscopy and luminescence spectroscopy. The photocatalytic properties of Pt/Er-KTaO3 microcomposites were investigated by degradation of phenol in aqueous phase as model pollutant under visible and ultraviolet-light irradiation. Results of this work show that all the prepared photocatalysis exhibit low BET surface area, although doping of the bare KTaO3 with rare earth element (Er) presents a slight increase in this value. The crystalline structure of Pt/Er-KTaO3 powders exhibited nearly identical positions for the main peak at about 22,8o and the XRD pattern could be assigned to an orthorhombic distorted perovskite structure. The Raman spectra of obtained semiconductors confirmed demonstrating perovskite-like structure. The optical absorption spectra of Pt nanoparticles exhibited plasmon absorption band for main peaks at about 216 and 264 nm. The addition of Pt nanoparticles increased photoactivity compared to Er-KTaO3 and pure KTaO3. Summary optical properties of KTaO3 change with its doping Er-element and further photodeposition of Pt nanoparticles.

Keywords: heterogeneous photocatalytic, KTaO3 photocatalysts, Er3+ ion doping, Pt photodeposition

Procedia PDF Downloads 357
6636 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers

Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek

Abstract:

Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.

Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations

Procedia PDF Downloads 128
6635 Evidence from the Ashanti Region in Ghana: A Correlation Between Principal Instructional Leadership and School Performance in Senior High Schools

Authors: Blessing Dwumah Manu, Dawn Wallin

Abstract:

This study aims to explore school principal instructional leadership capabilities (Robinson, 2010) that support school performance in senior high schools in Ghana’s Northern Region. It explores the ways in which leaders (a) use deep leadership content knowledge to (b) solve complex school-based problems while (c) building relational trust with staff, parents, and students as they engage in the following instructional leadership dimensions: establishing goals and expectations; resourcing strategically; ensuring quality teaching; leading teacher learning and development and ensuring an orderly and safe environment (Patuawa et al, 2013). The proposed research utilizes a constructivist approach to explore the experiences of 18 school representatives (including principals, deputy principals, department heads, teachers, parents, and students) through an interview method.

Keywords: instructional leadership, leadership content knowledge, solving complex problems, building relational trust and school performance

Procedia PDF Downloads 98
6634 Numerical Study for Examination of Flow Characteristics in Fractured Gas Reservoirs

Authors: M. K. Kim, C. H. Shin, W. G. Park

Abstract:

Recently, natural gas resources are issued due to alternative and eco-friendly energy policies, and development of even unconventional gas resources including tight gas, coal bed methane and shale gas is being rapidly expanded from North America all over the world. For developing these gas reservoirs, it is necessary to investigate reservoir characteristics by using reservoir simulation. In reservoir simulation, calculation of permeability of fractured zone is very important to predict the gas production. However, it is difficult to accurately calculate the permeability by using conventional methods which use analytic solution for laminar flow. The flow in gas reservoirs exhibits complex flow behavior such as slip around the wall roughness effect and turbulence because the size of the apertures of fractures is ranged over various scales from nano-scale to centi-scale. Therefore, it is required to apply new reservoir flow analysis methods which can accurately consider complex gas flow owing to the geometric characteristics and distributions of various pores and flow paths within gas reservoirs. Hence, in this study, the flow characteristics and the relation between each characteristic variable was investigated and multi-effect was quantified when the fractures are compounded for devising a new calculation model of permeability of fractured zone in gas reservoirs by using CFD.

Keywords: fractured zone, gas reservoir, permeability, CFD

Procedia PDF Downloads 245
6633 Experimental Investigations on Nanoclay (Cloisite-15A) Modified Bitumen

Authors: Ashish Kumar, Sanjeev Kumar Suman

Abstract:

This study investigated the influence of Cloisite-15A nanoclay on the physical, performance, and mechanical properties of bitumen binder. Cloisite-15A was blended in the bitumen in variegated percentages from 1% to 9% with increment of 2%. The blended bitumen was characterized using penetration, softening point, and dynamic viscosity using rotational viscometer, and compared with unmodified bitumen equally penetration grade 60/70. The rheological parameters were investigated using Dynamic Shear Rheometer (DSR), and mechanical properties were investigated by using Marshall Stability test. The results indicated an increase in softening point, dynamic viscosity and decrease in binder penetration. Rheological properties of bitumen increase complex modulus, decrease phase angle and improve rutting resistances as well. There was significant improvement in Marshall Stability, rather marginal improvement in flow value. The best improvement in the modified binder was obtained with 5% Cloisite-15A nanoclay.

Keywords: Cloisite-15A, complex shear modulus, phase angle, rutting resistance

Procedia PDF Downloads 385
6632 Dynamic Environmental Impact Study during the Construction of the French Nuclear Power Plants

Authors: A. Er-Raki, D. Hartmann, J. P. Belaud, S. Negny

Abstract:

This paper has a double purpose: firstly, a literature review of the life cycle analysis (LCA) and secondly a comparison between conventional (static) LCA and multi-level dynamic LCA on the following items: (i) inventories evolution with time (ii) temporal evolution of the databases. The first part of the paper summarizes the state of the art of the static LCA approach. The different static LCA limits have been identified and especially the non-consideration of the spatial and temporal evolution in the inventory, for the characterization factors (FCs) and into the databases. Then a description of the different levels of integration of the notion of temporality in life cycle analysis studies was made. In the second part, the dynamic inventory has been evaluated firstly for a single nuclear plant and secondly for the entire French nuclear power fleet by taking into account the construction durations of all the plants. In addition, the databases have been adapted by integrating the temporal variability of the French energy mix. Several iterations were used to converge towards the real environmental impact of the energy mix. Another adaptation of the databases to take into account the temporal evolution of the market data of the raw material was made. An identification of the energy mix of the time studied was based on an extrapolation of the production reference values of each means of production. An application to the construction of the French nuclear power plants from 1971 to 2000 has been performed, in which a dynamic inventory of raw material has been evaluated. Then the impacts were characterized by the ILCD 2011 characterization method. In order to compare with a purely static approach, a static impact assessment was made with the V 3.4 Ecoinvent data sheets without adaptation and a static inventory considering that all the power stations would have been built at the same time. Finally, a comparison between static and dynamic LCA approaches was set up to determine the gap between them for each of the two levels of integration. The results were analyzed to identify the contribution of the evolving nuclear power fleet construction to the total environmental impacts of the French energy mix during the same period. An equivalent strategy using a dynamic approach will further be applied to identify the environmental impacts that different scenarios of the energy transition could bring, allowing to choose the best energy mix from an environmental viewpoint.

Keywords: LCA, static, dynamic, inventory, construction, nuclear energy, energy mix, energy transition

Procedia PDF Downloads 96
6631 Bubble Scrum: How to Run in Organizations That Only Know How to Walk

Authors: Zaheer A. Ali, George Szabo

Abstract:

SCRUM has roots in software and web development and works very well on that in that space. However, any technical person who has watched a typical waterfall managed project spiral out of control or into an abyss, has thought: "there must be a better way". I will discuss how that thought leads naturally to adopting Agile principles and SCRUM, as well as how Agile and SCRUM can be implemented in large institutions with long histories via a method I developed: Bubble Scrum. We will also see how SCRUM can be implemented in interesting places outside of the technical sphere and also discuss where and how to subtly bring Agility and SCRUM into large, rigid, institutions.

Keywords: agile, enterprise-agile, agile at scale, agile transition, project management, scrum

Procedia PDF Downloads 153
6630 p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application

Authors: Xiao-Mei Zhang, Sian-Hong Tseng, Ming-Yen Lu

Abstract:

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (Eg = 1-2 eV). For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂. In this work, we demonstrated a p-type multilayer MoS₂ enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS₂, multilayer MoS₂ can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS₂ films on 300 nm thick SiO₂/Si substrate is carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH₄)₂MoS₄, in a tube furnace. A two-step annealing process is conducted to synthesize MoS₂ films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform (NH₄)₂MoS₄ into MoS₃. To further reduce MoS₃ into MoS₂, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS₂ films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570). The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10³ and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.

Keywords: photodetection, p-type doping, multilayers, MoS₂

Procedia PDF Downloads 99
6629 Deformation Analysis of Pneumatized Sphenoid Bone Caused Due to Elevated Intracranial Pressure Using Finite Element Analysis

Authors: Dilesh Mogre, Jitendra Toravi, Saurabh Joshi, Prutha Deshpande, Aishwarya Kura

Abstract:

In earlier days of technology, it was not possible to understand the nature of complex biomedical problems and were only left to clinical postulations. With advancement in science today, we have tools like Finite Element Modelling and simulation to solve complex biomedical problems. This paper presents how ANSYS WORKBENCH can be used to study deformation of pneumatized sphenoid bone caused by increased intracranial pressure. Intracranial pressure refers to the pressure inside the skull. The increase in the pressure above the normal range of 15mmhg can lead to serious conditions due to developed stresses and deformation. One of the areas where the deformation is suspected to occur is Sphenoid Bone. Moreover, the varying degree of pneumatization increases the complexity of the conditions. It is necessary to study deformation patterns on pneumatized sphenoid bone model at elevated intracranial pressure. Finite Element Analysis plays a major role in developing and analyzing model and give quantitative results.

Keywords: intracranial pressure, pneumatized sphenoid bone, deformation, finite element analysis

Procedia PDF Downloads 184
6628 Short-Term Exposing Effects of 4,4'-DDT on Mitochondrial Electron Transport Complexes in Eyes of Zebrafish

Authors: Eun Ko, Moonsung Choi, Sooim Shin

Abstract:

4,4’-Dichlorodiphenyltrichloroethane (4,4’-DDT) is colorless, odorless organochlorine and known as persistent toxic organic pollutant accumulated in organs. In this study, effects of 4,4’-DDT on activities of mitochondrial electron transport chain system was analyzed. 4,4’-DDT is directly treated to isolated mitochondria from eyes of zebrafish and then activities of mitochondrial complex I, II, III, IV were measured spectrophotometrically. The reaction was proceeded immediately after adding 4,4’-DDT to examine the short-term exposing effects of persistent organic pollutant. As a result, high concentration of 4,4’-DDT treated mitochondria exhibited slightly enhanced activity in all complexes than non-treated one except complex III in male. Particularly, 4,4’-DDT was more effective on enzymatic activity in mitochondria isolated from eyes of male zebrafish. These results represented that 4,4’-DDT might temporarily induce to open up ion channel on isolated mitochondria resulting in increasing the functional activity of mitochondrial electron transport chain system.

Keywords: electron transport chain, mitochondrial function, persistent organic pollutant, spectrophotometric assay, zebrafish

Procedia PDF Downloads 217
6627 Motherhood Managerial in Health Services: Need Eustress Internalization

Authors: Retty Ratnawati, Santi Sri Wulandari, Tulus Sabrina

Abstract:

Feminine and masculine gender role stress could occur in some work situation. Being manager in health services that is known to be more women’ role in Indonesia, has expected to have feminine stereotype role. In the communities, this has been done in the program kesejahteraan keluarga (welfare family program) since the 1970s, for example through family planning program. The aim of the study was to explore the experience of being a motherhood managerial in health services. Our auto ethnographic study has revealed that motherhood managerial, even though running by a woman, could have some stress conditions whether she has realized or has not. The challenge would occur when the manager did not realize that she needed the eustress. The autonomy concept for a woman to be a manager could be a complex cycle that needs open communication continually and understanding the four elements surround her life. In conclusion, there is a demand to have the eustress when the manager does not realize that she has to be an autonomy person. However, it does not need eustress when the manager understands about how to deal with the complex cycle of being autonomy.

Keywords: motherhood managerial, eustress, feminine gender role stress, masculine gender role stress, autonomy concept in women

Procedia PDF Downloads 269
6626 The Quality of Management: A Leadership Maturity Model to Leverage Complexity

Authors: Marlene Kuhn, Franziska Schäfer, Heiner Otten

Abstract:

Today´s production processes experience a constant increase in complexity paving new ways for progressive forms of leadership. In the customized production, individual customer requirements drive companies to adapt their manufacturing processes constantly while the pressure for smaller lot sizes, lower costs and faster lead times grows simultaneously. When production processes are becoming more dynamic and complex, the conventional quality management approaches show certain limitations. This paper gives an introduction to complexity science from a quality management perspective. By analyzing and evaluating different characteristics of complexity, the critical complexity parameters are identified and assessed. We found that the quality of leadership plays a crucial role when dealing with increasing complexity. Therefore, we developed a concept for qualitative leadership customized for the management within complex processes based on a maturity model. The maturity model was then applied in the industry to assess the leadership quality of several shop floor managers with a positive evaluation feedback. In result, the maturity model proved to be a sustainable approach to leverage the rising complexity in production processes more effectively.

Keywords: maturity model, process complexity, quality of leadership, quality management

Procedia PDF Downloads 360
6625 Site Selection of CNG Station by Using FUZZY-AHP Model (Case Study: Gas Zone 4, Tehran City Iran)

Authors: Hamidrza Joodaki

Abstract:

The most complex issue in urban land use planning is site selection that needs to assess the verity of elements and factors. Multi Criteria Decision Making (MCDM) methods are the best approach to deal with complex problems. In this paper, combination of the analytical hierarchy process (AHP) model and FUZZY logic was used as MCDM methods to select the best site for gas station in the 4th gas zone of Tehran. The first and the most important step in FUZZY-AHP model is selection of criteria and sub-criteria. Population, accessibility, proximity and natural disasters were considered as the main criteria in this study. After choosing the criteria, they were weighted based on AHP by EXPERT CHOICE software, and FUZZY logic was used to enhance accuracy and to approach the reality. After these steps, criteria layers were produced and weighted based on FUZZY-AHP model in GIS. Finally, through ARC GIS software, the layers were integrated and the 4th gas zone in TEHRAN was selected as the best site to locate gas station.

Keywords: multiple criteria decision making (MCDM), analytic hierarchy process (AHP), FUZZY logic, geographic information system (GIS)

Procedia PDF Downloads 347
6624 Climate Related Financial Risk on Automobile Industry and the Impact to the Financial Institutions

Authors: Mahalakshmi Vivekanandan S.

Abstract:

As per the recent changes happening in the global policies, climate-related changes and the impact it causes across every sector are viewed as green swan events – in essence, climate-related changes can often happen and lead to risk and a lot of uncertainty, but needs to be mitigated instead of considering them as black swan events. This brings about a question on how this risk can be computed so that the financial institutions can plan to mitigate it. Climate-related changes impact all risk types – credit risk, market risk, operational risk, liquidity risk, reputational risk and other risk types. And the models required to compute this has to consider the different industrial needs of the counterparty, as well as the factors that are contributing to this – be it in the form of different risk drivers, or the different transmission channels or the different approaches and the granular form of data availability. This brings out the suggestion that the climate-related changes, though it affects Pillar I risks, will be a Pillar II risk. This has to be modeled specifically based on the financial institution’s actual exposure to different industries instead of generalizing the risk charge. And this will have to be considered as the additional capital to be met by the financial institution in addition to their Pillar I risks, as well as the existing Pillar II risks. In this paper, the author presents a risk assessment framework to model and assess climate change risks - for both credit and market risks. This framework helps in assessing the different scenarios and how the different transition risks affect the risk associated with the different parties. This research paper delves into the topic of the increase in the concentration of greenhouse gases that in turn cause global warming. It then considers the various scenarios of having the different risk drivers impacting the Credit and market risk of an institution by understanding the transmission channels and also considering the transition risk. The paper then focuses on the industry that’s fast seeing a disruption: the automobile industry. The paper uses the framework to show how the climate changes and the change to the relevant policies have impacted the entire financial institution. Appropriate statistical models for forecasting, anomaly detection and scenario modeling are built to demonstrate how the framework can be used by the relevant agencies to understand their financial risks. The paper also focuses on the climate risk calculation for the Pillar II Capital calculations and how it will make sense for the bank to maintain this in addition to their regular Pillar I and Pillar II capital.

Keywords: capital calculation, climate risk, credit risk, pillar ii risk, scenario modeling

Procedia PDF Downloads 129
6623 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model

Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han

Abstract:

Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model

Procedia PDF Downloads 354