Search results for: sensor network design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17408

Search results for: sensor network design

15398 Using Cyclic Structure to Improve Inference on Network Community Structure

Authors: Behnaz Moradijamei, Michael Higgins

Abstract:

Identifying community structure is a critical task in analyzing social media data sets often modeled by networks. Statistical models such as the stochastic block model have proven to explain the structure of communities in real-world network data. In this work, we develop a goodness-of-fit test to examine community structure's existence by using a distinguishing property in networks: cyclic structures are more prevalent within communities than across them. To better understand how communities are shaped by the cyclic structure of the network rather than just the number of edges, we introduce a novel method for deciding on the existence of communities. We utilize these structures by using renewal non-backtracking random walk (RNBRW) to the existing goodness-of-fit test. RNBRW is an important variant of random walk in which the walk is prohibited from returning back to a node in exactly two steps and terminates and restarts once it completes a cycle. We investigate the use of RNBRW to improve the performance of existing goodness-of-fit tests for community detection algorithms based on the spectral properties of the adjacency matrix. Our proposed test on community structure is based on the probability distribution of eigenvalues of the normalized retracing probability matrix derived by RNBRW. We attempt to make the best use of asymptotic results on such a distribution when there is no community structure, i.e., asymptotic distribution under the null hypothesis. Moreover, we provide a theoretical foundation for our statistic by obtaining the true mean and a tight lower bound for RNBRW edge weights variance.

Keywords: hypothesis testing, RNBRW, network inference, community structure

Procedia PDF Downloads 150
15397 Enhanced Cluster Based Connectivity Maintenance in Vehicular Ad Hoc Network

Authors: Manverpreet Kaur, Amarpreet Singh

Abstract:

The demand of Vehicular ad hoc networks is increasing day by day, due to offering the various applications and marvelous benefits to VANET users. Clustering in VANETs is most important to overcome the connectivity problems of VANETs. In this paper, we proposed a new clustering technique Enhanced cluster based connectivity maintenance in vehicular ad hoc network. Our objective is to form long living clusters. The proposed approach is grouping the vehicles, on the basis of the longest list of neighbors to form clusters. The cluster formation and cluster head selection process done by the RSU that may results it reduces the chances of overhead on to the network. The cluster head selection procedure is the vehicle which has closest speed to average speed will elect as a cluster Head by the RSU and if two vehicles have same speed which is closest to average speed then they will be calculate by one of the new parameter i.e. distance to their respective destination. The vehicle which has largest distance to their destination will be choosing as a cluster Head by the RSU. Our simulation outcomes show that our technique performs better than the existing technique.

Keywords: VANETs, clustering, connectivity, cluster head, intelligent transportation system (ITS)

Procedia PDF Downloads 247
15396 Optimal Number and Placement of Vertical Links in 3D Network-On-Chip

Authors: Nesrine Toubaline, Djamel Bennouar, Ali Mahdoum

Abstract:

3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect.

Keywords: interconnect optimization, monolithic inter-tier vias, network on chip, system on chip, through silicon vias, three dimensional integration circuits

Procedia PDF Downloads 303
15395 Design of Compact UWB Multilayered Microstrip Filter with Wide Stopband

Authors: N. Azadi-Tinat, H. Oraizi

Abstract:

Design of compact UWB multilayered microstrip filter with E-shape resonator is presented, which provides wide stopband up to 20 GHz and arbitrary impedance matching. The design procedure is developed based on the method of least squares and theory of N-coupled transmission lines. The dimensions of designed filter are about 11 mm × 11 mm and the three E-shape resonators are placed among four dielectric layers. The average insertion loss in the passband is less than 1 dB and in the stopband is about 30 dB up to 20 GHz. Its group delay in the UWB region is about 0.5 ns. The performance of the optimized filter design perfectly agrees with the microwave simulation softwares.

Keywords: method of least square, multilayer microstrip filter, n-coupled transmission lines, ultra-wideband

Procedia PDF Downloads 392
15394 Photo-Fenton Decolorization of Methylene Blue Adsolubilized on Co2+ -Embedded Alumina Surface: Comparison of Process Modeling through Response Surface Methodology and Artificial Neural Network

Authors: Prateeksha Mahamallik, Anjali Pal

Abstract:

In the present study, Co(II)-adsolubilized surfactant modified alumina (SMA) was prepared, and methylene blue (MB) degradation was carried out on Co-SMA surface by visible light photo-Fenton process. The entire reaction proceeded on solid surface as MB was embedded on Co-SMA surface. The reaction followed zero order kinetics. Response surface methodology (RSM) and artificial neural network (ANN) were used for modeling the decolorization of MB by photo-Fenton process as a function of dose of Co-SMA (10, 20 and 30 g/L), initial concentration of MB (10, 20 and 30 mg/L), concentration of H2O2 (174.4, 348.8 and 523.2 mM) and reaction time (30, 45 and 60 min). The prediction capabilities of both the methodologies (RSM and ANN) were compared on the basis of correlation coefficient (R2), root mean square error (RMSE), standard error of prediction (SEP), relative percent deviation (RPD). Due to lower value of RMSE (1.27), SEP (2.06) and RPD (1.17) and higher value of R2 (0.9966), ANN was proved to be more accurate than RSM in order to predict decolorization efficiency.

Keywords: adsolubilization, artificial neural network, methylene blue, photo-fenton process, response surface methodology

Procedia PDF Downloads 254
15393 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition

Procedia PDF Downloads 123
15392 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network

Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas

Abstract:

The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.

Keywords: distributed generation (DG), interconnected mode, islanding mode, maximum power point tracking (mppt), power quality (PQ), unified power quality conditioner (UPQC), photovoltaic array (PV)

Procedia PDF Downloads 507
15391 System Engineering Design of Offshore Oil Drilling Production Platform from Marine Environment

Authors: C. Njoku Paul

Abstract:

This paper deals with systems engineering applications design for offshore oil drilling production platform in the Nigerian Marine Environment. Engineering Design model of the distribution and accumulation of petroleum hydrocarbons discharged into marine environment production platform and sources of impact of an offshore is treated.

Keywords: design of offshore oil drilling production platform, marine, environment, petroleum hydrocarbons

Procedia PDF Downloads 541
15390 Design and Development of a Prototype Vehicle for Shell Eco-Marathon

Authors: S. S. Dol

Abstract:

Improvement in vehicle efficiency can reduce global fossil fuels consumptions. For that sole reason, Shell Global Corporation introduces Shell Eco-marathon where student teams require to design, build and test energy-efficient vehicles. Hence, this paper will focus on design processes and the development of a fuel economic vehicle which satisfying the requirements of the competition. In this project, three components are designed and analyzed, which are the body, chassis and powertrain of the vehicle. Optimum design for each component is produced through simulation analysis and theoretical calculation in which improvement is made as the project progresses.

Keywords: energy efficient, drag force, chassis, powertrain

Procedia PDF Downloads 335
15389 Open Distance Learning and Curriculum Transformation: Linkages, Alignment, and Innovation

Authors: Devanandan Govender

Abstract:

Curriculum design and development in higher education is a complex and challenging process. Amongst others, the extent to which higher education curriculum responds to a country's imperatives, industry requirements, and societal demands are some important considerations. Added to this is the whole notion of sustainable development, climate change and in the South African context the issue of ‘Africanising the curriculum’ is also significant. In this paper, the author describes and analyses the various challenges related to curriculum transformation, design and development within an ODL context and how we at Unisa engage and address curriculum transformation in mainstream curriculum design and development both at course design level and programme/ qualification level.

Keywords: curriculum transformation, curriculum creep, curriculum drift, curriculum mapping

Procedia PDF Downloads 376
15388 Exploration of Influential Factors on First Year Architecture Students’ Productivity

Authors: Shima Nikanjam, Badiossadat Hassanpour, Adi Irfan Che Ani

Abstract:

The design process in architecture education is based upon the Learning-by-Doing method, which leads students to understand how to design by practicing rather than studying. First-year design studios, as starting educational stage, provide integrated knowledge and skills of design for newly jointed architecture students. Within the basic design studio environment, students are guided to transfer their abstract thoughts into visual concrete decisions under the supervision of design educators for the first time. Therefore, introductory design studios have predominant impacts on students’ operational thinking and designing. Architectural design thinking is quite different from students’ educational backgrounds and learning habits. This educational challenge at basic design studios creates a severe need to study the reality of design education at foundation year and define appropriate educational methods with convenient project types with the intention of enhancing architecture education quality. Material for this study has been gathered through long-term direct observation at a first year second semester design studio at the faculty of architecture at EMU (known as FARC 102), fall and spring academic semester 2014-15. Distribution of a questionnaire among case study students and interviews with third and fourth design studio students who passed through the same methods of education in the past 2 years and conducting interviews with instructors are other methodologies used in this research. The results of this study reveal a risk of a mismatch between the implemented teaching method, project type and scale in this particular level and students’ learning styles. Although the existence of such risk due to varieties in students’ profiles could be expected to some extent, recommendations can support educators to reach maximum compatibility.

Keywords: architecture education, basic design studio, educational method, forms creation skill

Procedia PDF Downloads 375
15387 Thermal and Hydraulic Design of Shell and Tube Heat Exchangers

Authors: Ahmed R. Ballil

Abstract:

Heat exchangers are devices used to transfer heat between two fluids. These devices are utilized in many engineering and industrial applications such as heating, cooling, condensation and boiling processes. The fluids might be in direct contact (mixed), or they separated by a solid wall to avoid mixing. In the present paper, interactive computer-aided design of shell and tube heat exchangers is developed using Visual Basic computer code as a framework. This design is based on the Bell-Delaware method, which is one of the very well known methods reported in the literature for the design of shell and tube heat exchangers. Physical properties for either the tube or the shell side fluids are internally evaluated by calling on an enormous data bank composed of more than a hundred fluid compounds. This contributes to increase the accuracy of the present design. The international system of units is considered in the developed computer program. The present design has an added feature of being capable of performing modification based upon a preset design criterion, such that an optimum design is obtained at satisfying constraints set either by the user or by the method itself. Also, the present code is capable of giving an estimate of the approximate cost of the heat exchanger based on the predicted surface area of the exchanger evaluated by the program. Finally, the present thermal and hydraulic design code is tested for accuracy and consistency against some of existed and approved designs of shell and tube heat exchangers.

Keywords: bell-delaware method, heat exchangers, shell and tube, thermal and hydraulic design

Procedia PDF Downloads 148
15386 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment

Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg

Abstract:

Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.

Keywords: building information, modelling, BIM, genetic algorithm, GA, architecture-engineering-construction, AEC, optimisation, structure, design, population, generation, selection, mutation, crossover, offspring

Procedia PDF Downloads 241
15385 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition

Procedia PDF Downloads 156
15384 The Design of Information Technology System for Traceability of Thailand’s Tubtimjun Roseapple

Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom, Sawanath Treesathon

Abstract:

As there are several countries which import agriculture product from Thailand, those countries demand Thailand to establish the traceability system. The traceability system is the tool to reduce the risk in the supply chain in a very effective way as it will help the stakeholder in the supply chain to identify the defect point which will reduce the cost of operation in the supply chain. This research is aimed to design the traceability system for Tubtimjun roseapple for exporting to China, and it is the qualitative research. The data was collected from the expert in the tuntimjun roseapple and fruit exporting industry, and the data was used to design the traceability system. The design of the tubtimjun roseapple traceability system was followed the theory of supply chain which starts from the upstream of the supply chain to the downstream of the supply chain to support the process and condition of the exporting which included the database designing, system architecture, user interface design and information technology of the traceability system.

Keywords: design information, technology system, traceability, tubtimjun roseapple

Procedia PDF Downloads 170
15383 A Dynamic Neural Network Model for Accurate Detection of Masked Faces

Authors: Oladapo Tolulope Ibitoye

Abstract:

Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.

Keywords: convolutional neural network, face detection, face mask, masked faces

Procedia PDF Downloads 68
15382 Optimum Dewatering Network Design Using Firefly Optimization Algorithm

Authors: S. M. Javad Davoodi, Mojtaba Shourian

Abstract:

Groundwater table close to the ground surface causes major problems in construction and mining operation. One of the methods to control groundwater in such cases is using pumping wells. These pumping wells remove excess water from the site project and lower the water table to a desirable value. Although the efficiency of this method is acceptable, it needs high expenses to apply. It means even small improvement in a design of pumping wells can lead to substantial cost savings. In order to minimize the total cost in the method of pumping wells, a simulation-optimization approach is applied. The proposed model integrates MODFLOW as the simulation model with Firefly as the optimization algorithm. In fact, MODFLOW computes the drawdown due to pumping in an aquifer and the Firefly algorithm defines the optimum value of design parameters which are numbers, pumping rates and layout of the designing wells. The developed Firefly-MODFLOW model is applied to minimize the cost of the dewatering project for the ancient mosque of Kerman city in Iran. Repetitive runs of the Firefly-MODFLOW model indicates that drilling two wells with the total rate of pumping 5503 m3/day is the result of the minimization problem. Results show that implementing the proposed solution leads to at least 1.5 m drawdown in the aquifer beneath mosque region. Also, the subsidence due to groundwater depletion is less than 80 mm. Sensitivity analyses indicate that desirable groundwater depletion has an enormous impact on total cost of the project. Besides, in a hypothetical aquifer decreasing the hydraulic conductivity contributes to decrease in total water extraction for dewatering.

Keywords: groundwater dewatering, pumping wells, simulation-optimization, MODFLOW, firefly algorithm

Procedia PDF Downloads 294
15381 Optimal Design of Profiled Steel Sheet for Composite Slab

Authors: Adinew Gebremeskel Tizazu

Abstract:

Nowadays, in our world of technological development, there is an enhanced intention imposed on the building construction industry to improve the time, economy, and structural efficiency of structures. Modern profiled steel sheets are mostly designed as formwork and tensile reinforcement. This research is concerned with the optimal design of profiled steel sheets for composite slabs. Apart from satisfying the safety requirement, the design should be economical. For a given condition, there might be a large number of alternatives that satisfy the requirement set by the codes. But the designer must be in a position to choose the design, which is optimal against certain measures of optimality. Therefore, the designers have to do some optimization to arrive at such a design. In this research, the optimal cross-sectional dimensions of profiled steel sheets will be determined by considering different spans, loadings, and materials.

Keywords: profiled sheeting, optimal cross-sectional dimensions, cold-formed profiled sheets, composite slab

Procedia PDF Downloads 23
15380 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures

Procedia PDF Downloads 400
15379 Smart Irrigation Systems and Website: Based Platform for Farmer Welfare

Authors: Anusha Jain, Santosh Vishwanathan, Praveen K. Gupta, Shwetha S., Kavitha S. N.

Abstract:

Agriculture has a major impact on the Indian economy, with the highest employment ratio than any sector of the country. Currently, most of the traditional agricultural practices and farming methods are manual, which results in farmers not realizing their maximum productivity often due to increasing in labour cost, inefficient use of water sources leading to wastage of water, inadequate soil moisture content, subsequently leading to food insecurity of the country. This research paper aims to solve this problem by developing a full-fledged web application-based platform that has the capacity to associate itself with a Microcontroller-based Automated Irrigation System which schedules the irrigation of crops based on real-time soil moisture content employing soil moisture sensors centric to the crop’s requirements using WSN (Wireless Sensor Networks) and M2M (Machine To Machine Communication) concepts, thus optimizing the use of the available limited water resource, thereby maximizing the crop yield. This robust automated irrigation system provides end-to-end automation of Irrigation of crops at any circumstances such as droughts, irregular rainfall patterns, extreme weather conditions, etc. This platform will also be capable of achieving a nationwide united farming community and ensuring the welfare of farmers. This platform is designed to equip farmers with prerequisite knowledge on tech and the latest farming practices in general. In order to achieve this, the MailChimp mailing service is used through which interested farmers/individuals' email id will be recorded and curated articles on innovations in the world of agriculture will be provided to the farmers via e-mail. In this proposed system, service is enabled on the platform where nearby crop vendors will be able to enter their pickup locations, accepted prices and other relevant information. This will enable farmers to choose their vendors wisely. Along with this, we have created a blogging service that will enable farmers and agricultural enthusiasts to share experiences, helpful knowledge, hardships, etc., with the entire farming community. These are some of the many features that the platform has to offer.

Keywords: WSN (wireless sensor networks), M2M (M/C to M/C communication), automation, irrigation system, sustainability, SAAS (software as a service), soil moisture sensor

Procedia PDF Downloads 129
15378 Simplified Mobile AR Platform Design for Augmented Tourism

Authors: Eric Hawkinson, Edgaras Artemciukas

Abstract:

This study outlines iterations of designing mobile augmented reality (MAR) applications for tourism specific contexts. Using a design based research model, several cycles of development to implementation were analyzed and refined upon with the goal of building a MAR platform that would facilitate the creation of augmented tours and environments by non-technical users. The project took on several stages, and through the process, a simple framework was begun to be established that can inform the design and use of MAR applications for tourism contexts. As a result of these iterations of development, a platform was developed that can allow novice computer users to create augmented tourism environments. This system was able to connect existing tools in widespread use such as Google Forms and connect them to computer vision algorithms needed for more advanced augmented tourism environments. The study concludes with a discussion of this MAR platform and reveals design elements that have implications for tourism contexts. The study also points to future case uses and design approaches for augmented tourism.

Keywords: augmented tourism, augmented reality, user experience, mobile design, e-tourism

Procedia PDF Downloads 216
15377 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner

Authors: Beier Zhu, Rui Zhang, Qi Song

Abstract:

Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.

Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization

Procedia PDF Downloads 194
15376 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System

Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt

Abstract:

Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of Supervisory Control and Data Acquisition System (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide Area Measurement System (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of MATLAB based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.

Keywords: GPS global positioning system, PMU phasor measurement system, WAMS wide area monitoring system, DFT, PDC

Procedia PDF Downloads 496
15375 Presenting a Model for Predicting the State of Being Accident-Prone of Passages According to Neural Network and Spatial Data Analysis

Authors: Hamd Rezaeifar, Hamid Reza Sahriari

Abstract:

Accidents are considered to be one of the challenges of modern life. Due to the fact that the victims of this problem and also internal transportations are getting increased day by day in Iran, studying effective factors of accidents and identifying suitable models and parameters about this issue are absolutely essential. The main purpose of this research has been studying the factors and spatial data affecting accidents of Mashhad during 2007- 2008. In this paper it has been attempted to – through matching spatial layers on each other and finally by elaborating them with the place of accident – at the first step by adding landmarks of the accident and through adding especial fields regarding the existence or non-existence of effective phenomenon on accident, existing information banks of the accidents be completed and in the next step by means of data mining tools and analyzing by neural network, the relationship between these data be evaluated and a logical model be designed for predicting accident-prone spots with minimum error. The model of this article has a very accurate prediction in low-accident spots; yet it has more errors in accident-prone regions due to lack of primary data.

Keywords: accident, data mining, neural network, GIS

Procedia PDF Downloads 47
15374 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data

Authors: S. Nickolas, Shobha K.

Abstract:

The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.

Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing

Procedia PDF Downloads 274
15373 Design Guidelines for URM Infills and Effect of Construction Sequence on Seismic Performance of Code Compliant RC Frame Buildings

Authors: Putul Haldar, Yogendra Singh, D. K. Paul

Abstract:

Un-Reinforced Masonry (URM) infilled RC framed buildings are the most common construction practice for modern multi-storey buildings in India like many other parts of the world. Although the behavior and failure pattern of the global structure changes significantly due to infill-frame interaction, the general design practice is to treat them as non-structural elements and their stiffness, strength and interaction with frame is often ignored, as it is difficult to simulate. Indian Standard, like many other major national codes, does not provide any explicit guideline for modeling of infills. This paper takes a stock of controlling design provisions in some of the major national seismic design codes (BIS 2002; CEN 2004; NZS-4230 2004; ASCE-41 2007) to ensure the desired seismic performance of infilled frame. Most of the national codes on seismic design of buildings still lack in adequate guidelines on modeling and design of URM infilled frames results in variable assumption in analysis and design. This paper, using nonlinear pushover analysis, also presents the effect of one of such assumptions of conventional ‘simultaneous’ analysis procedure of infilled frame on the seismic performance of URM infilled RC frame buildings.

Keywords: URM infills, RC frame, seismic design codes, construction sequence of infilled frame

Procedia PDF Downloads 389
15372 Network Traffic Classification Scheme for Internet Network Based on Application Categorization for Ipv6

Authors: Yaser Miaji, Mohammed Aloryani

Abstract:

The rise of recent applications in everyday implementation like videoconferencing, online recreation and voice speech communication leads to pressing the need for novel mechanism and policy to serve this steep improvement within the application itself and users‟ wants. This diversity in web traffics needs some classification and prioritization of the traffics since some traffics merit abundant attention with less delay and loss, than others. This research is intended to reinforce the mechanism by analysing the performance in application according to the proposed mechanism implemented. The mechanism used is quite direct and analytical. The mechanism is implemented by modifying the queue limit in the algorithm.

Keywords: traffic classification, IPv6, internet, application categorization

Procedia PDF Downloads 565
15371 Intrusion Detection System Using Linear Discriminant Analysis

Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou

Abstract:

Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.

Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99

Procedia PDF Downloads 226
15370 Improved Dynamic Bayesian Networks Applied to Arabic On Line Characters Recognition

Authors: Redouane Tlemsani, Abdelkader Benyettou

Abstract:

Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology. This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data. Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables. In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization. The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, computer vision

Procedia PDF Downloads 428
15369 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes

Authors: Sima Aznavi, Poria Fajri, Hanif Livani

Abstract:

Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.

Keywords: energy management, renewable energy sources, smart grid, smart home

Procedia PDF Downloads 248