Search results for: graph representation of circuit networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4956

Search results for: graph representation of circuit networks

2946 A Low-Power, Low-Noise and High Linearity 60 GHz LNA for WPAN Applications

Authors: Noha Al Majid, Said Mazer, Moulhime El Bekkali, Catherine Algani, Mahmoud Mehdi

Abstract:

A low noise figure (NF) and high linearity V-band Low Noise Amplifier (LNA) is reported in this article. The LNA compromises a three-stage cascode configuration. This LNA will be used as a part of a WPAN (Wireless Personal Area Network) receiver in the millimeter-wave band at 60 GHz. It is designed according to the MMIC technology (Monolithic Microwave Integrated Circuit) in PH 15 process from UMS foundry and uses a 0.15 μm GaAs PHEMT (Pseudomorphic High Electron Mobility Transistor). The particularity of this LNA compared to other LNAs in literature is its very low noise figure which is equal to 1 dB and its high linearity (IIP3 is about 22 dB). The LNA consumes 0.24 Watts, achieving a high gain which is about 23 dB, an input return loss better than -10 dB and an output return loss better than -8 dB.

Keywords: low noise amplifier, V-band, MMIC technology, LNA, amplifier, cascode, pseudomorphic high electron mobility transistor (PHEMT), high linearity

Procedia PDF Downloads 515
2945 A Conversation about Inclusive Education: Revelations from Namibian Primary School Teachers

Authors: M. D. Nghiteke, A. Mji, G. T. Molepo

Abstract:

Inclusive education stems from a philosophy and vision, which argues that all children should learn together at school. It is not only about treating all pupils in the same way. It is also about allowing all children to attend school without any restrictions. Ten primary school teachers in a circuit in Namibia volunteered to participate in face-to-face interviews about inclusive education. The teachers responded to three questions about their (i) understanding of inclusive education; (ii) whether inclusive education was implemented in primary schools; and (iii) whether they were able to work with learners with special needs. Findings indicated that teachers understood what inclusive education entailed; felt that inclusive education was not implemented in their primary schools, and they were unable to work with learners with special needs in their classrooms. Further, the teachers identified training and resources as important components of inclusive education. It is recommended that education authorities should perhaps verify the findings reported here as well as ensure that the concerns raised by the teachers are addressed.

Keywords: classrooms and schools, inclusive education, resources, training

Procedia PDF Downloads 176
2944 Study of Heat Conduction in Multicore Chips

Authors: K. N. Seetharamu, Naveen Teggi, Kiranakumar Dhavalagi, Narayana Kamath

Abstract:

A method of temperature calculations is developed to study the conditions leading to hot spot occurrence on multicore chips. A physical model which has salient features of multicore chips is incorporated for the analysis. The model consists of active and background cell laid out in a checkered pattern, and this pattern repeats itself in each fine grain active cells. The die has three layers i) body ii) buried oxide layer iii) wiring layer, stacked one above the other with heat source placed at the interface between wiring and buried oxide layer. With this model we propose analytical method to calculate the target hotspot temperature, heat flow to top and bottom layers of the die and thermal resistance components at each granularity level, assuming appropriate values of die dimensions and parameters. Finally we attempt to find an easier method for the calculation of the target hotspot temperature using graph.

Keywords: checkered pattern, granularity level, heat conduction, multicore chips, target hotspot temperature

Procedia PDF Downloads 466
2943 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features

Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis

Abstract:

Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.

Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks

Procedia PDF Downloads 207
2942 Genetic Algorithm Optimization of Microcantilever Based Resonator

Authors: Manjula Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti

Abstract:

Micro Electro Mechanical Systems (MEMS) resonators have shown the potential of replacing quartz crystal technology for sensing and high frequency signal processing applications because of inherent advantages like small size, high quality factor, low cost, compatibility with integrated circuit chips. This paper presents the optimization and modelling and simulation of the optimized micro cantilever resonator. The objective of the work is to optimize the dimensions of a micro cantilever resonator for a specified range of resonant frequency and specific quality factor. Optimization is carried out using genetic algorithm. The genetic algorithm is implemented using MATLAB. The micro cantilever resonator is modelled in CoventorWare using the optimized dimensions obtained from genetic algorithm. The modeled cantilever is analysed for resonance frequency.

Keywords: MEMS resonator, genetic algorithm, modelling and simulation, optimization

Procedia PDF Downloads 550
2941 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 277
2940 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers

Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran

Abstract:

With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.

Keywords: optical fiber, multi-mode, data centers, encircled flux

Procedia PDF Downloads 375
2939 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions

Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan

Abstract:

Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.

Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec

Procedia PDF Downloads 176
2938 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 10
2937 The Processing of Implicit Stereotypes in Contexts of Reading, Using Eye-Tracking and Self-Paced Reading Tasks

Authors: Magali Mari, Misha Muller

Abstract:

The present study’s objectives were to determine how diverse implicit stereotypes affect the processing of written information and linguistic inferential processes, such as presupposition accommodation. When reading a text, one constructs a representation of the described situation, which is then updated, according to new outputs and based on stereotypes inscribed within society. If the new output contradicts stereotypical expectations, the representation must be corrected, resulting in longer reading times. A similar process occurs in cases of linguistic inferential processes like presupposition accommodation. Presupposition accommodation is traditionally regarded as fast, automatic processing of background information (e.g., ‘Mary stopped eating meat’ is quickly processed as Mary used to eat meat). However, very few accounts have investigated if this process is likely to be influenced by domains of social cognition, such as implicit stereotypes. To study the effects of implicit stereotypes on presupposition accommodation, adults were recorded while they read sentences in French, combining two methods, an eye-tracking task and a classic self-paced reading task (where participants read sentence segments at their own pace by pressing a computer key). In one condition, presuppositions were activated with the French definite articles ‘le/la/les,’ whereas in the other condition, the French indefinite articles ‘un/une/des’ was used, triggering no presupposition. Using a definite article presupposes that the object has already been uttered and is thus part of background information, whereas using an indefinite article is understood as the introduction of new information. Two types of stereotypes were under examination in order to enlarge the scope of stereotypes traditionally analyzed. Study 1 investigated gender stereotypes linked to professional occupations to replicate previous findings. Study 2 focused on nationality-related stereotypes (e.g. ‘the French are seducers’ versus ‘the Japanese are seducers’) to determine if the effects of implicit stereotypes on reading are generalizable to other types of implicit stereotypes. The results show that reading is influenced by the two types of implicit stereotypes; in the two studies, the reading pace slowed down when a counter-stereotype was presented. However, presupposition accommodation did not affect participants’ processing of information. Altogether these results show that (a) implicit stereotypes affect the processing of written information, regardless of the type of stereotypes presented, and (b) that implicit stereotypes prevail over the superficial linguistic treatment of presuppositions, which suggests faster processing for treating social information compared to linguistic information.

Keywords: eye-tracking, implicit stereotypes, reading, social cognition

Procedia PDF Downloads 199
2936 Mobile Traffic Management in Congested Cells using Fuzzy Logic

Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh

Abstract:

To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.

Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells

Procedia PDF Downloads 120
2935 Case-Based Reasoning Approach for Process Planning of Internal Thread Cold Extrusion

Authors: D. Zhang, H. Y. Du, G. W. Li, J. Zeng, D. W. Zuo, Y. P. You

Abstract:

For the difficult issues of process selection, case-based reasoning technology is applied to computer aided process planning system for cold form tapping of internal threads on the basis of similarity in the process. A model is established based on the analysis of process planning. Case representation and similarity computing method are given. Confidence degree is used to evaluate the case. Rule-based reuse strategy is presented. The scheme is illustrated and verified by practical application. The case shows the design results with the proposed method are effective.

Keywords: case-based reasoning, internal thread, cold extrusion, process planning

Procedia PDF Downloads 511
2934 Numerical Solution Speedup of the Laplace Equation Using FPGA Hardware

Authors: Abbas Ebrahimi, Mohammad Zandsalimy

Abstract:

The main purpose of this study is to investigate the feasibility of using FPGA (Field Programmable Gate Arrays) chips as alternatives for the conventional CPUs to accelerate the numerical solution of the Laplace equation. FPGA is an integrated circuit that contains an array of logic blocks, and its architecture can be reprogrammed and reconfigured after manufacturing. Complex circuits for various applications can be designed and implemented using FPGA hardware. The reconfigurable hardware used in this paper is an SoC (System on a Chip) FPGA type that integrates both microprocessor and FPGA architectures into a single device. In the present study the Laplace equation is implemented and solved numerically on both reconfigurable hardware and CPU. The precision of results and speedups of the calculations are compared together. The computational process on FPGA, is up to 20 times faster than a conventional CPU, with the same data precision. An analytical solution is used to validate the results.

Keywords: accelerating numerical solutions, CFD, FPGA, hardware definition language, numerical solutions, reconfigurable hardware

Procedia PDF Downloads 383
2933 Using Locus Equations for Berber Consonants Labiovellarization

Authors: Ali Benali Djouher Leila

Abstract:

Labiovelarization of velar consonants and labials is a very widespread phenomenon. It is attested in all the major northern Berber dialects. Only the Tuareg is totally unaware of it. But, even within the large Berber-speaking regions of the north, it is very unstable: it may be completely absent in certain dialects (such as the Bougie region in Kabylie), and its extension and frequency can vary appreciably between the dialects which know it. Some dialects of Great Kabylia or the Chleuh domain, for example, "labiovélarize" more than others from the same region. Thus, in Great Kabylia, the adjective "large" will be pronounced: amqqwran with the At Yiraten and amqqran with the At Yanni, a few kilometers away. One of the problems with them is deciding whether it is one or two phonemes. All the criteria used by linguists in this kind of case lead to the conclusion that they are unique phonemes (a phoneme and not a succession of two phonemes, / k + w /, for example). The phonetic and phonological criteria are moreover clearly confirmed by the morphological data since, in the system of verbal alternations, these complex segments are treated as single phonemes: agree, "to draw, to fetch water," akwer, "to fly," have exactly the same morphology as as "jealous," arem" taste," Ames, "dirty" or afeg, "steal" ... verbs with two radical consonants (type aCC). At the level of notation, both scientific and usual, it is, therefore, necessary to represent the labiovélarized by a single letter, possibly accompanied by a diacritic. In fact, actual practices are diverse. - The scientific representation of type does not seem adequate for current use because its realization is easy only on a microcomputer. The Berber Documentation File used a small ° (of n °) above the writing line: k °, g ° ... which has the advantage of being easy to achieve since it is part of general typographical conventions in Latin script and that it is present on a typewriter keyboard. Mouloud Mammeri, then the Berber Study Group of Vincennes (Tisuraf review), and a majority of Kabyle practitioners over the last twenty years have used the succession "consonant +" semi-vowel / w / "(CW) on the same line of writing; for all the reasons explained previously, this practice is not a good solution and should be abandoned, especially as it particularizes Kabyle in the Berber ensemble. In this study, we were interested in two velar consonants, / g / and / k /, labiovellarized: / gw / and the / kw / (we adopted the addition of the "w") for the representation for ease of writing in graphical mode. It is a question of trying to characterize these four consonants in order to see if they have different places of articulation and if they are distinct (if these velars are distinct from their labiovellarized counterpart). This characterization is done using locus equations.

Keywords: berber consonants;, labiovelarization, locus equations, acoustical caracterization, kabylian dialect, algerian language

Procedia PDF Downloads 76
2932 Performance Assessment of PV Based Grid Connected Solar Plant with Varying Load Conditions

Authors: Kusum Tharani, Ratna Dahiya

Abstract:

This paper aims to analyze the power flow of a grid connected 100-kW Photovoltaic(PV) array connected to a 25-kV grid via a DC-DC boost converter and a three-phase three-level Voltage Source Converter (VSC). Maximum Power Point Tracking (MPPT) is implemented in the boost converter bymeans of a Simulink model using the 'Perturb & Observe' technique. First, related papers and technological reports were extensively studied and analyzed. Accordingly, the system is tested under various loading conditions. Power flow analysis is done using the Newton-Raphson method in Matlab environment. Finally, the system is subject to Single Line to Ground Fault and Three Phase short circuit. The results are simulated under the grid-connected operating model.

Keywords: grid connected PV Array, Newton-Raphson Method, power flow analysis, three phase fault

Procedia PDF Downloads 553
2931 Core Loss Influence on MTPA Current Vector Variation of Synchronous Reluctance Machine

Authors: Huai-Cong Liu, Tae Chul Jeong, Ju Lee

Abstract:

The aim of this study was to develop an electric circuit method (ECM) to ascertain the core loss influence on a Synchronous Reluctance Motor (SynRM) in the condition of the maximum torque per ampere (MTPA). SynRM for fan usually operates on the constant torque region, at synchronous speed the MTPA control is adopted due to current vector. However, finite element analysis (FEA) program is not sufficient exactly to reflect how the core loss influenced on the current vector. This paper proposed a method to calculate the current vector with consideration of core loss. The precision of current vector by ECM is useful for MTPA control. The result shows that ECM analysis is closer to the actual motor’s characteristics by testing with a 7.5kW SynRM drive System.

Keywords: core loss, SynRM, current vector, magnetic saturation, maximum torque per ampere (MTPA)

Procedia PDF Downloads 530
2930 Thin and Flexible Zn-Air Battery by Inexpensive Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work focuses the development of thin and flexible zinc-air battery. The battery with an overall thickness of about 300 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder and ZnO was used to prepare the anode electrode. Types of conductive materials (Bi2O3, Na2O3Si and carbon black) for the anode and its concentration were investigated. Results showed that the battery using 29% carbon black showed the best performance. The open-circuit voltage and energy density observed were 1.6 V and 694 Wh/kg, respectively. When the battery was discharged at 10 mA/cm2, the potential voltage observed was 1.35 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, Gel Electrolyte, screen printing, thin battery, Zn-Air battery

Procedia PDF Downloads 210
2929 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems

Authors: Messaoud Eljamai, Sami Hidouri

Abstract:

Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.

Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency

Procedia PDF Downloads 147
2928 JavaScript Object Notation Data against eXtensible Markup Language Data in Software Applications a Software Testing Approach

Authors: Theertha Chandroth

Abstract:

This paper presents a comparative study on how to check JSON (JavaScript Object Notation) data against XML (eXtensible Markup Language) data from a software testing point of view. JSON and XML are widely used data interchange formats, each with its unique syntax and structure. The objective is to explore various techniques and methodologies for validating comparison and integration between JSON data to XML and vice versa. By understanding the process of checking JSON data against XML data, testers, developers and data practitioners can ensure accurate data representation, seamless data interchange, and effective data validation.

Keywords: XML, JSON, data comparison, integration testing, Python, SQL

Procedia PDF Downloads 140
2927 Tamper Resistance Evaluation Tests with Noise Resources

Authors: Masaya Yoshikawa, Toshiya Asai, Ryoma Matsuhisa, Yusuke Nozaki, Kensaku Asahi

Abstract:

Recently, side-channel attacks, which estimate secret keys using side-channel information such as power consumption and compromising emanations of cryptography circuits embedded in hardware, have become a serious problem. In particular, electromagnetic analysis attacks against cryptographic circuits between information processing and electromagnetic fields, which are related to secret keys in cryptography circuits, are the most threatening side-channel attacks. Therefore, it is important to evaluate tamper resistance against electromagnetic analysis attacks for cryptography circuits. The present study performs basic examination of the tamper resistance of cryptography circuits using electromagnetic analysis attacks with noise resources.

Keywords: tamper resistance, cryptographic circuit, hardware security evaluation, noise resources

Procedia PDF Downloads 504
2926 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov

Abstract:

Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 101
2925 Women in Malaysia: Exploring the Democratic Space in Politics

Authors: Garima Sarkar

Abstract:

The main purpose of the present paper is to investigate the development and progress achieved by women in the decision-making sphere and to access the level of their political-participation in Parliamentary Elections of Malaysia and their status in overall Malaysian political domain. The paper also focuses on the role and status of women in the major political parties of the state both the parties in power as well as the parties in opposition. The primary objective of the study is to focus on the major hindrances and social malpractices faced by women and also Muslim women’s access to justice in Malaysia. It also demonstrates the linkages between national policy initiatives and the advancement of women in various areas, such as economics, health, employment, politics, power-sharing, social development and law and most importantly evaluating their status in the dominant religion of the nation. In Malaysia, women’s political participation is being challenged from every nook and corner of the society. A high percentage of women are getting educated, forming a significant labor force in present day Malaysia, who can be employed in the manufacturing sector, retail trade, hotels and restaurant, agriculture etc. Women today consist of almost half of the population and exceed boys in the tertiary sector by a ratio of 80:20. Despite these achievements, however, women’s labor force engagement remains confined to ‘ traditional women’s occupations’, such as those of primary school teachers, data entry clerks and organizing polls during elections and motivating other less enlightened women to cast their votes. In the political arena, the past few General Elections of Malaysia clearly exhibited a slight change in the number of women Members of Parliament from 10.6% (20 out of 193 Parliamentary seats in 1999) to 10.5% (23 out of 219 Parliamentary seats in 2004). Amidst the political posturing for the recent General Election in 2013 of Malaysia, women’s political participation remains a prime concern in Malaysia. It is evident that while much of the attention of women revolves around charitable assistance, they are much less likely to be portrayed as active participants in electoral politics and governance. According to the electoral roll for the third quarter of 2012, 6,578,916 women are registered as voters. They represent 50.2% of the total number of the registered voters. However, this parity in terms of voter registration is not reflected in the number of elected representatives at the Parliamentary level. Only 10.4% of sitting Members of Parliament are women. The women’s participation in the legislature and executive branches are important since their presence brings the spotlight squarely on issues that have been historically neglected and overlooked. In the recent 2013 General Elections in Malaysia out of 35 full ministerial position only two, or 5.7% have been filled by women. In each of the 2009, 2010, and in the present 2013 Cabinet members, there have only been two women ministers, with this number reduced to one briefly when the Prime Minister appointed himself placeholder in the Ministry of Women, Family and Community Development. In the recent past, in its Election Manifesto, Barisan Nasional made a pledge of ‘increasing the number of women participating in national decision-making processes’. Even after such pledges, the Malaysian leadership has failed to mirror the strong presence of women in leadership positions of public life which primarily includes politics, the judiciary and in business. There has been a strong urge to political parties by various gender-sensitive groups to nominate more women as candidates for contesting elections at the Parliamentary as well as at the State level. The democratization process will never be truly democratic without a proper gender agenda and representation. Although Malaysia signed the Beijing Platform for Action document in 1995, the state has a long way to go in enhancing the participation of women in every segment of Malaysian political, economic and cultural. There has been a small percentage of women representation in decision-making bodies compared to the 30% targeted by the Beijing Platform for Action. Thus, democratization in terms of representation of women in leadership positions and decision-making positions or bodies is essential since it’s a move towards a qualitative transformation of women in shaping national decision-making processes. The democratization process has to ensure women’s full participation and their goals of development and their full participation has to be included in the process of formulating and shaping the developmental goals.

Keywords: women, gender equality, Islam, democratization, political representation, Parliament

Procedia PDF Downloads 261
2924 Enhancement of the Performance of Al-Qatraneh 33-kV Transmission Line Using STATCOM: A Case Study

Authors: Ali Hamad, Ibrahim Al-Drous, Saleh Al-Jufout

Abstract:

This paper presents a case study of using STATCOM to enhance the performance of Al-Qatraneh 33-kV transmission line. The location of the STATCOM was identified maintaining minimum voltage drops at the 110 load nodes. The transmission line and the 110 load nodes have been modeled by MATLAB/Simulink. The suggested STATCOM and its location will increase the transmission capability of this transmission line and overcome the overload expected in the year 2020. The annual percentage loading rise has been considered as 14%. A graphical representation of the line voltages and the voltage drops at different load nodes has been illustrated.

Keywords: FACTS, MATLAB, STATCOM, transmission line, voltage drop

Procedia PDF Downloads 443
2923 The Folk Influences in the Melody of Romanian and Serbian Church Music

Authors: Eudjen Cinc

Abstract:

Common Byzantine origins of church music of Serbs and Romanians are certainly not the only reason for great similarities between the ways of singing of the two nations, especially in the region of Banat. If it was so, the differences between the interpretation of church music in this part of Orthodox religion and the one specific for other parts where Serbs or Romanians live could not be explained. What is it that connects church signing of two nations in this peaceful part of Europe to such an extent that it could be considered a comprehensive corpus, different from other 'Serbian' or 'Romanian' regions? This is the main issue dealt with in the text according to examples and comparative processing of material. The main aim of the paper is representation of the new and interesting, while its value lies in its potential to encourage the reader or a future researcher to investigate and search further.

Keywords: folk influences, melody, melodic models, ethnomusicology

Procedia PDF Downloads 253
2922 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 103
2921 Classification of EEG Signals Based on Dynamic Connectivity Analysis

Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović

Abstract:

In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.

Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients

Procedia PDF Downloads 214
2920 Intersection of Sports and Society

Authors: Josh Felton

Abstract:

There’s a common misconception that sports is an escape from the reality of life, and that it is what disconnects us from the agendas of tomorrow. While this may be true for a select few, there’s more to sports than just competition and banter. The bearing and impact society has on the sports we know and love has always existed and is greater than ever. However, to many in the national media, it is almost seen as a taboo subject. Whether one realizes it or not, sports and society intersect at every turn and it’s not a coincidence. In collaboration with the Woodrow Wilson Fellowship at Johns Hopkins University, a video and podcast series titled Intersection of sports and society (ISS), dedicated to studying some of the most polarizing and some of the least recognized issues in the world of sports that have a powerful social bearing on every demographic will debut in the Summer of 2023. Issues like race, gender, and sexuality, as well as how they have been challenged and addressed historically in the sports realm will be discussed to a great extent in the series. With the collaboration of many authors, researchers, and former athletes, the podcast will be a platform for them to not only share their discoveries but to have an extensive dialogue on the impact their work and current events have had on the issues. Set to be released in the summer of 2023, the series will have a list of great researchers and authors, headlined by New York Times writer and best-selling author Jonathan Abrams, who in 2017, published a book titled Boys Among Men: How the Prep-to-Pro Generation Redefined the NBA and Sparked a Basketball Revolution. His expertise on the matters of the high school and collegiate sports will be reflected in a very important conversation on the evolution of the high school-to-professional route, the historic exploitation of black student athletes by the NCAA, and how the new rules allowing for greater freedom of choice for young athletes has benefitted minority athletes coming from impoverished backgrounds. This episode is just a preview of a list of important topics that to the author’s best knowledge aren't typically discussed by the national media. Many more topics include women’s sports representation, the struggle for achieving fair minority representation in NFL coaching and front office positions, the story of race and baseball within the Boston Red Sox organization, and what the rise of the black quarterback means for America. Many people fail to realize how the sports we all know and love have any social bearing on them and the athletes who play them. The hope with this project is to shed light on the social relevance that exists in the realm of sports, where we have for years failed to see and acknowledge a connection between sports and society.

Keywords: sports, society, race, gender

Procedia PDF Downloads 107
2919 Media Representations of Gender-Intersectional Analysis of Impact/Influence on Collective Consciousness and Perceptions of Feminism, Gender, and Gender Equality: Evidence from Cultural/Media Sources in Nigeria

Authors: Olatawura O. Ladipo-Ajayi

Abstract:

The concept of gender equality is not new, nor are the efforts and movements toward achieving this concept. The idea of gender equality originates from the early feminist movements of the 1880s and its subsequent waves, all fighting to promote gender rights and equality focused on varying aspects and groups. Nonetheless, the progress and achievement of gender equality are not progressing at similar rates across the world and groups. This uneven progress is often due to varying social, cultural, political, and economic factors- some of which underpin intersectional identities and influence the perceptions of gender and associated gender roles that create gender inequality. In assessing perceptions of gender and assigned roles or expectations that cause inequalities, intersectionality provides a framework to interrogate how these perceptions are molded and reinforced to create marginalization. Intersectionality is increasingly becoming a lens and approach to understanding better inequalities and oppression, gender rights and equality, the challenges towards its achievement, and how best to move forward in the fight for gender rights, inclusion, and equality. In light of this, this paper looks at intersectional representations of gender in the media within cultural/social contexts -particularly entertainment media- and how this influences perceptions of gender and impacts progress toward achieving gender equality and advocacy. Furthermore, the paper explores how various identities and, to an extent, personal experiences play a role in the perceptions of and representations of gender, as well as influence the development of policies that promote gender equality in general. Finally, the paper applies qualitative and auto-ethnographic research methods building on intersectional and social construction frameworks to analyze gender representation in media using a literature review of scholarly works, news items, and cultural/social sources like Nigerian movies. It concludes that media influences ideas and perceptions of gender, gender equality, and rights; there isn’t enough being done in the media in the global south in general to challenge the hegemonic patriarchal and binary concepts of gender. As such, the growth of feminism and the attainment of gender equality is slow, and the concepts are often misunderstood. There is a need to leverage media outlets to influence perceptions and start informed conversations on gender equality and feminism; build collective consciousness locally to improve advocacy for equal gender rights. Changing the gender narrative in everyday media, including entertainment media, is one way to influence public perceptions of gender, promote the concept of gender equality, and advocate for policies that support equality.

Keywords: gender equality, gender roles/socialization, intersectionality, representation of gender in media

Procedia PDF Downloads 105
2918 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic

Abstract:

Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.

Keywords: adsorption, diffusion, non-linear flow, shale gas production

Procedia PDF Downloads 166
2917 Analysis of the Impact of Foreign Direct Investment on the Integration of the Automotive Industry of Iran into Global Production Networks

Authors: Bahareh Mostofian

Abstract:

Foreign Direct Investment (FDI) has long been recognized as a crucial driver of economic growth and development in less-developed countries and their integration into Global Production Networks (GPNs). FDI not only brings capital from the core countries but also technology, innovation, and know-how knowledge that can upgrade the capabilities of host automotive industries. On the other hand, FDI can also have negative impacts on host countries if it leads to significant import dependency. In the case of the Iranian automotive sector, the industry greatly benefited from FDI, with Western carmakers dominating the market. Over time, various types of know-how knowledge, including joint ventures (JVs), trade licenses, and technical assistance, have been provided, helping Iran upgrade its automotive industry. While after the severe geopolitical obstacles imposed by both the EU and the U.S., the industry became over-reliant on the car and spare parts imports, and the lack of emphasis on knowledge transfer further affected the growth and development of the Iranian automotive sector. To address these challenges, current research has adopted a descriptive-analytical methodology to illustrate the gradual changes accrued with foreign suppliers through FDI. The research finding shows that after the two-phase imposed sanctions, the detrimental linkages created by overreliance on the car and spare parts imports without any industrial upgrading negatively affected the growth and development of the national and assembled products of the Iranian automotive sector.

Keywords: less-developed country, FDI, GPNs, automotive industry, Iran

Procedia PDF Downloads 73