Search results for: weather parameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2821

Search results for: weather parameter

841 Tranexamic Acid in Orthopedic Surgery in Children

Authors: K. Amanzoui, A. Erragh, M. Elharit, A. Afif, K. Elfakhr, S. Kalouch, A. Chlilek

Abstract:

Orthopedic surgery is a provider of pre and postoperative bleeding; patients are exposed to several risks, and different measures are proposed to reduce bleeding during surgery, called the transfusion-sparing method, including tranexamic acid, which has shown its effectiveness in numerous studies. A prospective analytical study in 50 children was carried out in the orthopedic traumatology operating room of the EL HAROUCHI hospital of the CHU IBN ROCHD in Casablanca over a period of six months (April to October 2022). Two groups were randomized: one receiving tranexamic acid (Group A) and a non-receiving control group (Group B). The average age was 10.3 years, of which 58.8% were female. The first type of surgery was thoracolumbar scoliosis (52%). The average preoperative hemoglobin was 12.28 g/dl in group A, against 12.67 g/dl in the control group. There was no significant difference between the two groups (p=0.148). Mean intraoperative bleeding was 396.29 ml in group A versus 412 ml in the control group. No significant difference was observed for this parameter (p=0.632). The average hemoglobin level in the immediate postoperative period in our patients is 10.2 g/dl. In group A, it was 10.95 g/dl versus 10.93 g/dl in group B. At H24 postoperative, the mean hemoglobin value was 10.29 g/dl in group A against 9.5 g/dl in group B. For group A, the blood loss recorded during the first 24 hours was 209.43 ml, against 372 ml in group B, with a significant difference between the two groups (p=0.001). There is no statistically significant difference between the 2 groups in terms of the use of fillers, ephedrine or intraoperative transfusion. While for postoperative transfusion, we note the existence of a statistically significant difference between group A and group B. It is suggested that the use of tranexamic acid is an effective, simple, and low-cost way to limit postoperative blood loss and the need for transfusion.

Keywords: tranexamic acid, blood loss, orthopedic surgery, children

Procedia PDF Downloads 65
840 Artificial Intelligence for Generative Modelling

Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta

Abstract:

As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.

Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques

Procedia PDF Downloads 148
839 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation

Authors: A. Naamane, M. Hasnaoui

Abstract:

Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.

Keywords: asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel

Procedia PDF Downloads 134
838 Cross Section Measurement for Formation of Metastable State of ¹¹¹ᵐCd through ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd Reaction Induced by Bremsstrahlung Generated through 6 MeV Electrons

Authors: Vishal D. Bharud, B. J. Patil, S. S. Dahiwale, V. N. Bhoraskar, S. D. Dhole

Abstract:

Photon induced average reaction cross section of ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction was experimentally determined for the bremsstrahlung energy spectrum of 6 MeV by utilizing the activation and offline γ-ray spectrometric techniques. The 6 MeV electron accelerator Racetrack Microtron of Savitribai Phule Pune University, Pune was used for the experimental work. The bremsstrahlung spectrum generated by bombarding 6 MeV electrons on lead target was theoretically estimated by FLUKA code. Bremsstrahlung radiation can have energies exceeding the threshold of the particle emission, which is normally above 6 MeV. Photons of energies below the particle emission threshold undergo absorption into discrete energy levels, with possibility of exciting nuclei to excited state including metastable state. The ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction cross sections were calculated at different energies of bombarding Photon by using the TALYS 1.8 computer code with a default parameter. The focus of the present work was to study the (γ,γ’) reaction for exciting ¹¹¹Cd nuclei to metastable states which have threshold energy below 3 MeV. The flux weighted average cross section was obtained from the theoretical values of TALYS 1.8 and TENDL 2017 and is found to be in good agreement with the present experimental cross section.

Keywords: bremsstrahlung, cross section, FLUKA, TALYS-1.8

Procedia PDF Downloads 171
837 Multi-Objective Optimization in Carbon Abatement Technology Cycles (CAT) and Related Areas: Survey, Developments and Prospects

Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele

Abstract:

An infinitesimal increase in performance can have immense reduction in operating and capital expenses in a power generation system. Therefore, constant studies are being carried out to improve both conventional and novel power cycles. Globally, power producers are constantly researching on ways to minimize emission and to collectively downsize the total cost rate of power plants. A substantial spurt of developmental technologies of low carbon cycles have been suggested and studied, however they all have their limitations and financial implication. In the area of carbon abatement in power plants, three major objectives conflict: The cost rate of the plant, Power output and Environmental impact. Since, an increase in one of this parameter directly affects the other. This poses a multi-objective problem. It is paramount to be able to discern the point where improving one objective affects the other. Hence, the need for a Pareto-based optimization algorithm. Pareto-based optimization algorithm helps to find those points where improving one objective influences another objective negatively and stops there. The application of Pareto-based optimization algorithm helps the user/operator/designer make an informed decision. This paper sheds more light on areas that multi-objective optimization has been applied in carbon abatement technologies in the last five years, developments and prospects.

Keywords: gas turbine, low carbon technology, pareto optimal, multi-objective optimization

Procedia PDF Downloads 790
836 Urban Furniture in a New Setting of Public Spaces within the Kurdistan Region: Educational Targets and Course Design Process

Authors: Sinisa Prvanov

Abstract:

This research is an attempt to analyze the existing urban form of outdoor public space of Duhok city and to give proposals for their improvements in terms of urban seating. The aim of this research is to identify the main urban furniture elements and behaviour of users of three central parks of Duhok city, recognizing their functionality and the most common errors. Citizens needs, directly related to the physical characteristics of the environment, are categorized in terms of contact with nature. Parks as significant urban environments express their aesthetic preferences, as well as the need for recreation and play. Citizens around the world desire to contact with nature and places where they can socialize, play and practice different activities, but also participate in building their community and feeling the identity of their cities. The aim of this research is also to reintegrate these spaces in the wider urban context of the city of Duhok, to develop new functions by designing new seating patterns, more improved urban furniture, and necessary supporting facilities and equipment. Urban furniture is a product that uses an enormous number of people in public space. It has a high level of wear and damage due to intense use, exposure to sunlight and weather conditions. Iraq has a hot and dry climate characterized by long, warm, dry summers and short, cold winters. The climate is determined by the Iraq location at the crossroads of Arab desert areas and the subtropical humid climate of the Persian Gulf. The second part of this analysis will describe the possibilities of traditional and contemporary materials as well as their advantages in urban furniture production, providing users protection from extreme local climate conditions, but also taking into account solidities and unwelcome consequences, such as vandalism. In addition, this research represents a preliminary stage in the development of IND307 furniture design course for needs of the Department of Interior design, at the American University in Duhok. Based on results obtained in this research, the course would present a symbiosis between people and technology, promotion of new street furniture design that perceives pedestrian activities in an urban setting, and practical use of anthropometric measurements as a tool for technical innovations.

Keywords: Furniture design, Street furniture, Social interaction, Public space

Procedia PDF Downloads 134
835 Micro- and Nanoparticle Transport and Deposition in Elliptic Obstructed Channels by Lattice Boltzmann Method

Authors: Salman Piri

Abstract:

In this study, a two-dimensional lattice Boltzmann method (LBM) was considered for the numerical simulation of fluid flow in a channel. Also, the Lagrangian method was used for particle tracking in one-way coupling. Three hundred spherical particles with specific diameters were released in the channel entry and an elliptical object was placed in the channel for flow obstruction. The effect of gravity, the drag force, the Saffman lift and the Brownian forces were evaluated in the particle motion trajectories. Also, the effect of the geometrical parameter, ellipse aspect ratio, and the flow characteristic or Reynolds number was surveyed for the transport and deposition of particles. Moreover, the influence of particle diameter between 0.01 and 10 µm was investigated. Results indicated that in small Reynolds, more inertial and gravitational trapping occurred on the obstacle surface for particles with larger diameters. Whereas, for nano-particles, influenced by Brownian diffusion and vortices behind the obstacle, the inertial and gravitational mechanisms were insignificant and diffusion was the dominant deposition mechanism. In addition, in Reynolds numbers larger than 400, there was no significant difference between the deposition of finer and larger particles. Also, in higher aspect ratios of the ellipse, more inertial trapping occurred for particles of larger diameter (10 micrometers), while in lower cases, interception and gravitational mechanisms were dominant.

Keywords: ellipse aspect elito, particle tracking diffusion, lattice boltzman method, larangain particle tracking

Procedia PDF Downloads 78
834 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies

Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid

Abstract:

Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.

Keywords: climate, renewable energy, R strategies, sustainability

Procedia PDF Downloads 135
833 Assessing Influence of End-Boundary Conditions on Stability and Second-Order Lateral Stiffness of Beam-Column Elements Embedded in Non-Homogeneous Soil

Authors: Carlos A. Vega-Posada, Jeisson Alejandro Higuita-Villa, Julio C. Saldarriaga-Molina

Abstract:

This paper presents a simplified analytical approach to conduct elastic stability and second-order lateral stiffness analyses of beam-column elements (i.e., piles) with generalized end-boundary conditions embedded on a homogeneous or non-homogeneous Pasternak foundation. The solution is derived using the well-known Differential Transformation Method (DTM), and it consists simply of solving a system of two linear algebraic equations. Using other conventional approaches to solve the governing differential equation of the proposed element can be cumbersome and the solution challenging to implement, especially when the non-homogeneity of the soil is considered. The proposed formulation includes the effects of i) any rotational or lateral transverse spring at the ends of the pile, ii) any external transverse load acting along the pile, iii) soil non-homogeneity, and iv) the second-parameter of the elastic foundation (i.e., shear layer connecting the springs at the top). A parametric study is conducted to investigate the effects of different modulus of subgrade reactions, degrees of non-homogeneities, and intermediate end-boundary conditions on the pile response. The same set of equations can be used to conduct both elastic stability and static analyses. Comprehensive examples are presented to show the simplicity and practicability of the proposed method.

Keywords: elastic stability, second-order lateral stiffness, soil-non-homogeneity, pile analysis

Procedia PDF Downloads 207
832 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm

Authors: Ping Bo, Meng Yunshan

Abstract:

Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.

Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter

Procedia PDF Downloads 323
831 Determination of Suction of Arid Region Soil Using Filter Paper Method

Authors: Bhavita S. Dave, Chandresh H. Solanki, Atul K. Desai

Abstract:

Soils of Greater Himalayas mostly pertain to Leh & Ladakh, Lahaul & Sppiti, & high reaches to Uttarakhand. The moisture regime is aridic. The arid zone starts from Baralacha pass in Lahaul and covers the entire Spiti valley in the district of Lahaul & Spiti, Himachal Pradesh of India. Here, the present study is an attempt to determine the suction value of soil collected from the arid zone of Spiti valley for different freezing-thawing cycles considering the climate ranges of Spiti valley. Suction is the basic and most important parameter which influences the behavior of unsaturated soil. It is essential to determine the suction value of unsaturated soil before other tests like shear test, and permeability. Basically, it is the negative pore water pressure in partially saturated soil measured in terms of the height of the water column. The filter paper method has been used for the study as an economical approach to evaluate suction. It is the only method from which both contact and non-contact suction can be deduced. In this study, soil specimens were subjected to 0, 1, 3, & 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and soil freezing characteristic curves (SFCC) were formulated for all F-T cycles. The result data collected from the experiments have shown best-fitted values using Fredlund & Xing model for each SFCC.

Keywords: suction, arid region soil, soil freezing characteristic curve, freezing-thawing cycle

Procedia PDF Downloads 227
830 An Equivalent Circuit Model Approach for Battery Pack Simulation in a Hybrid Electric Vehicle System Powertrain

Authors: Suchitra Sivakumar, Hajime Shingyouchi, Toshinori Okajima, Kyohei Yamaguchi, Jin Kusaka

Abstract:

The progressing need for powertrain electrification calls for more accurate and reliable simulation models. A battery pack serves as the most vital component for energy storage in an electrified powertrain. Hybrid electric vehicles (HEV) do not behave the same way as they age, and there are several environmental factors that account for the degradation of the battery on a system level. Therefore, in this work, a battery model was proposed to study the state of charge (SOC) variation and the internal dynamic changes that contribute to aging and performance degradation in HEV batteries. An equivalent circuit battery model (ECM) is built using MATLAB Simulink to investigate the output characteristics of the lithium-ion battery. The ECM comprises of circuit elements like a voltage source, a series resistor and a parallel RC network connected in series. A parameter estimation study is conducted on the ECM to study the dependencies of the circuit elements with the state of charge (SOC) and the terminal voltage of the battery. The battery model is extended to simulate the temperature dependence of the individual battery cell and the battery pack with the environment. The temperature dependence model accounts for the heat loss due to internal resistance build up in the battery pack during charging, discharging, and due to atmospheric temperature. The model was validated for a lithium-ion battery pack with an independent drive cycle showing a voltage accuracy of 4% and SOC accuracy of about 2%.

Keywords: battery model, hybrid electric vehicle, lithium-ion battery, thermal model

Procedia PDF Downloads 297
829 Assessment of Water Quality of Selected Lakes of Coimbatore District, Tamil Nadu, India

Authors: K. P. Ganesh, T. Gomathi, L. Arul Pragasan

Abstract:

Degradation of lake water quality is one of the serious environmental threats for the last few decades, particularly, the lakes situated in and around urban and industrial areas. The present study aimed to analyze the physicochemical and biological parameters, and metal elements to determine the water quality of Krishnampathi, Ukkadam, Kurichi, Sulur and Singanallur Lakes. Of the 23 physicochemical parameters analyzed in the five lakes, except TDS, Chloride and Total hardness values all the 20 parameters were found within the prescribed limit as recommended by World Health Organization (WHO) and Bureau of Indian Standards (BIS). In case of biological parameter, both Total Coliform and Fecal Coliform bacteria (Escherichia coli) were identified. This indicates the contamination of lakes by fecal matter, and warns of potential of disease causing by viruses, bacteria and other organisms. Among the twelve metal elements (Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Mo, Cd and Pb) determined by inductively coupled plasma-mass spectroscopy, except Cd (for all lakes), and Pb (for Ukkadam, Kurichi, Sulur & Singanallur), all the elements were found above the prescribed limits of BIS. The results of the present study revealed that all the five major lakes of Coimbatore were contaminated. It is recommended that proper implementation of the new wetland waste management system and monitoring of water quality be of the urgent need to sustain the water bodies for future generations.

Keywords: heavy metals, inductively coupled plasma-mass spectroscopy, physicochemical and biological parameters, water quality

Procedia PDF Downloads 177
828 Analysis of Ionosphere Anomaly Before Great Earthquake in Java on 2009 Using GPS Tec Data

Authors: Aldilla Damayanti Purnama Ratri, Hendri Subakti, Buldan Muslim

Abstract:

Ionosphere’s anomalies as an effect of earthquake activity is a phenomenon that is now being studied in seismo-ionospheric coupling. Generally, variation in the ionosphere caused by earthquake activity is weaker than the interference generated by different source, such as geomagnetic storms. However, disturbances of geomagnetic storms show a more global behavior, while the seismo-ionospheric anomalies occur only locally in the area which is largely determined by magnitude of the earthquake. It show that the earthquake activity is unique and because of its uniqueness it has been much research done thus expected to give clues as early warning before earthquake. One of the research that has been developed at this time is the approach of seismo-ionospheric-coupling. This study related the state in the lithosphere-atmosphere and ionosphere before and when earthquake occur. This paper choose the total electron content in a vertical (VTEC) in the ionosphere as a parameter. Total Electron Content (TEC) is defined as the amount of electron in vertical column (cylinder) with cross-section of 1m2 along GPS signal trajectory in ionosphere at around 350 km of height. Based on the analysis of data obtained from the LAPAN agency to identify abnormal signals by statistical methods, obtained that there are an anomaly in the ionosphere is characterized by decreasing of electron content of the ionosphere at 1 TECU before the earthquake occurred. Decreasing of VTEC is not associated with magnetic storm that is indicated as an earthquake precursor. This is supported by the Dst index showed no magnetic interference.

Keywords: earthquake, DST Index, ionosphere, seismoionospheric coupling, VTEC

Procedia PDF Downloads 584
827 Investigation of the Effect of Plasticization Temperature on Polymer Thin Film Stability through Spin Coating Process

Authors: Bilge Bozdogan, Selda T. Sendogdular, Levent Sendogdular

Abstract:

We report a technique to control chain conformation during the plasticization process to achieve homogeneous and stable thin films, which allows to reduce post-process annealing times along with enhanced properties like controlled irreversible adsorbed layer (Guiselin brushes) formation. In this study, spin coating temperature was considered as a parameter; hence, all equipment, including the spin coater, substrate, vials, and the solution, was kept inside the same heated fume hood where solution was spin-coated after the temperature was stabilized at a desired value. AFM and SEM results revealed severe difference for solid and air interface between ambient and temperature-controlled samples, which suggest that enthalpic contribution dynamically helps to control film stability in a way where chain entanglements and conformational restrictions are avoided before film growing and allowing to control grafting density through spin coating temperature. The adsorbed layer was also characterized with SEM and Raman-spectroscopy technique right after seeding the adsorbed layer with gold nanoparticles. Stabilized gold nanoparticles and their surface distribution manifest the existence of a controllable polymer brush structure. Acknowledgments: This study was funded by Erciyes University Scientific Research Projects (BAP) Funding(Project ID:10058)

Keywords: chain stability, Guiselin brushes, polymer thin film, spin coating temperature

Procedia PDF Downloads 213
826 Variability of Climatic Elements in Nigeria Over Recent 100 Years

Authors: T. Salami, O. S. Idowu, N. J. Bello

Abstract:

Climatic variability is an essential issue when dealing with the issue of climate change. Variability of some climate parameter helps to determine how variable the climatic condition of a region will behave. The most important of these climatic variables which help to determine the climatic condition in an area are both the Temperature and Precipitation. This research deals with Longterm climatic variability in Nigeria. Variables examined in this analysis include near-surface temperature, near surface minimum temperature, maximum temperature, relative humidity, vapour pressure, precipitation, wet-day frequency and cloud cover using data ranging between 1901-2010. Analyses were carried out and the following methods were used: - Regression and EOF analysis. Results show that the annual average, minimum and maximum near-surface temperature all gradually increases from 1901 to 2010. And they are in the same case in a wet season and dry season. Minimum near-surface temperature, with its linear trends are significant for annual, wet season and dry season means. However, the diurnal temperature range decreases in the recent 100 years imply that the minimum near-surface temperature has increased more than the maximum. Both precipitation and wet day frequency decline from the analysis, demonstrating that Nigeria has become dryer than before by the way of rainfall. Temperature and precipitation variability has become very high during these periods especially in the Northern areas. Areas which had excessive rainfall were confronted with flooding and other related issues while area that had less precipitation were all confronted with drought. More practical issues will be presented.

Keywords: climate, variability, flooding, excessive rainfall

Procedia PDF Downloads 382
825 Denoising Transient Electromagnetic Data

Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen

Abstract:

Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.

Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform

Procedia PDF Downloads 83
824 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior

Authors: Nazli Uren, Ayse Okur

Abstract:

Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.

Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort

Procedia PDF Downloads 300
823 Measurement of the Quadriceps Angle with Respect to Various Body Parameters in Arab Countries

Authors: Ramada R. Khasawneh, Mohammed Z. Allouh, Ejlal Abu-El Rub

Abstract:

The quadriceps angle (Q angle), formed between the quadriceps muscles and the patella tendon, is considered clinically as a very important parameter which displays the biomechanical effect of the quadriceps muscle on the knee, and it is also regarded as a crucial factor for the proper posture and movement of the knee patella. This study had been conducted to measure the normal Q angle values range in the Arab nationalities and determine the correlation between Q angle values and several body parameters, including gender, height, weight, dominant side, and the condylar distance of the femur. The study includes 500 healthy Arab students from Yarmouk University and Jordan University of Science and Technology. The Q angle of those volunteers was measured using a universal manual Goniometer with the subjects in the upright weight-bearing position. It was found that the Q angle was greater in women than in men. The analysis of the data revealed an insignificant increase in the dominant side of the Q angle. In addition, the Q was significantly higher in the taller people of both sexes. However, the Q angle did not present any considerable correlation with weight in the study population; conversely, it was observed that there was a link with the condylar distance of the femur in both sexes. It was also noticed that the Q angle increased remarkably when there was an increase in the condylar distance. Consequently, it turned out that the gender, height, and the condylar distance were momentous factors that had an impact on the Q angle in our study samples. However, weight and dominance factors did not show to have any influence on the values in our study.

Keywords: Q angle, Jordanian, anatomy, condylar distance

Procedia PDF Downloads 144
822 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning

Procedia PDF Downloads 445
821 Potassium Acetate - Coconut Shell Activated Carbon for Adsorption of Benzene and Toluene: Equilibrium and Kinetic Studies

Authors: Jibril Mohammed, Usman Dadum Hamza, Abdulsalam Surajudeen, Baba Yahya Danjuma

Abstract:

Considerable concerns have been raised over the presence of volatile organic compounds (VOCs) in water. In this study, coconut shell based activated carbon was produced through chemical activation with potassium acetate (PAAC) for adsorption of benzene and toluene. The porous carbons were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), proximate analysis, and ultimate analysis and nitrogen adsorption tests. Adsorption of benzene and toluene on the porous carbons were conducted at varying concentrations (50-250 mg/l). The high BET surface area of 622 m2/g and highly heteroporous adsorbent prepared gave good removal efficiencies of 79 and 82% for benzene and toluene respectively, with 32% yield. Equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms with all the models having R2 > 0.94. The equilibrium data were best represented by the Langmuir isotherm, with maximum adsorption capacity of 192 mg/g and 227 mg/g for benzene and toluene respectively. The Webber and Chakkravorti equilibrium parameter (RL) values are between 0 and 1 confirming the favourability of the Langmuir model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The PAAC produced can be used effectively to salvage environmental pollution problems posed by VOCs through a sustainable process.

Keywords: adsorption, equilibrium and kinetics studies, potassium acetate, water treatment

Procedia PDF Downloads 218
820 Saltwater Intrusion Studies in the Cai River in the Khanh Hoa Province, Vietnam

Authors: B. Van Kessel, P. T. Kockelkorn, T. R. Speelman, T. C. Wierikx, C. Mai Van, T. A. Bogaard

Abstract:

Saltwater intrusion is a common problem in estuaries around the world, as it could hinder the freshwater supply of coastal zones. This problem is likely to grow due to climate change and sea-level rise. The influence of these factors on the saltwater intrusion was investigated for the Cai River in the Khanh Hoa province in Vietnam. In addition, the Cai River has high seasonal fluctuations in discharge, leading to increased saltwater intrusion during the dry season. Sea level rise, river discharge changes, river mouth widening and a proposed saltwater intrusion prevention dam can have influences on the saltwater intrusion but have not been quantified for the Cai River estuary. This research used both an analytical and numerical model to investigate the effect of the aforementioned factors. The analytical model was based on a model proposed by Savenije and was calibrated using limited in situ data. The numerical model was a 3D hydrodynamic model made using the Delft3D4 software. The analytical model and numerical model agreed with in situ data, mostly for tidally average data. Both models indicated a roughly similar dependence on discharge, also agreeing that this parameter had the most severe influence on the modeled saltwater intrusion. Especially for discharges below 10 m/s3, the saltwater was predicted to reach further than 10 km. In the models, both sea-level rise and river widening mainly resulted in salinity increments up to 3 kg/m3 in the middle part of the river. The predicted sea-level rise in 2070 was simulated to lead to an increase of 0.5 km in saltwater intrusion length. Furthermore, the effect of the saltwater intrusion dam seemed significant in the model used, but only for the highest position of the gate.

Keywords: Cai River, hydraulic models, river discharge, saltwater intrusion, tidal barriers

Procedia PDF Downloads 109
819 Characteristics and Item Parameters Fitness on Chemistry Teacher-Made Test Instrument

Authors: Rizki Nor Amelia, Farida A. Setiawati

Abstract:

This study aimed to: (1) describe the characteristics of teacher-made test instrument used to measure the ability of students’chemistry, and (2) identify the presence of the compability difficulty level set by teachers to difficulty level by empirical results. Based on these objectives, this study was a descriptive research. The analysis in this study used the Rasch model and Chi-square statistics. Analysis using Rasch Model was based on the response patterns of high school students to the teacher-made test instrument on chemistry subject Academic Year 2015/2016 in the Yogyakarta. The sample of this research were 358 students taken by cluster random sampling technique. The analysis showed that: (1) a teacher-made tests instrument has a medium on the mean difficulty level. This instrument is capable to measure the ability on the interval of -0,259 ≤ θ ≤ 0,659 logit. Maximum Test Information Function obtained at 18.187 on the ability +0,2 logit; (2) 100% items categorized either as easy or difficult by rasch model is match with the teachers’ judgment; while 37 items are categorized according to rasch model which 8.10% and 10.81% categorized as easy and difficult items respectively according to the teachers, the others are medium categorized. Overall, the distribution of the level of difficulty formulated by the teachers has the distinction (not match) to the level of difficulty based on the empirical results.

Keywords: chemistry, items parameter fitness, Rasch model, teacher-made test

Procedia PDF Downloads 237
818 Correlation Analysis between the Corporate Governance and Financial Performance of Banking Sectors Using Parameter Estimation

Authors: Vishwa Nath Maurya, Rama Shanker Sharma, Saad Talib Hasson Aljebori, Avadhesh Kumar Maurya, Diwinder Kaur Arora

Abstract:

Present paper deals with problems of determining the relationship between the variables of corporate governance and financial performance of Islamic banks. Here, we dealt with the corporate governance in the banking sector, where increasing the importance of corporate governance, due to their special nature, as the bankruptcy of banks affects not only the relevant parties from customers, depositors and lenders, but also affect financial stability and then the economy as a whole. Through this paper we dealt to the specificity of governance in Islamic banks, which face double governance: Anglo-Saxon governance system and Islamic governance system. In addition, we focused our attention to measure the impact of corporate governance variables on financial performance through an empirical study on a sample of Islamic banks during the period 2005-2012 in the GCC region. Our present study implies that there is a very strong relationship between the variables of governance and financial performance of Islamic banks, where there is a positive relationship between return on assets and the composition of the Board of Directors, the size of the Board of Directors, the number of committees in the Council, as well as the number of members of the Sharia Supervisory Board, while it is clear that there is a negative relationship between return on assets and concentration ownership.

Keywords: correlation analysis, parametric estimation, corporate governance, financial performance, financial stability, conventional banks, bankruptcy, Islamic governance system

Procedia PDF Downloads 515
817 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network

Authors: Yasaman Sanayei, Alireza Bahiraie

Abstract:

This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.

Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis

Procedia PDF Downloads 412
816 Use of Shipping Containers as Office Buildings in Brazil: Thermal and Energy Performance for Different Constructive Options and Climate Zones

Authors: Lucas Caldas, Pablo Paulse, Karla Hora

Abstract:

Shipping containers are present in different Brazilian cities, firstly used for transportation purposes, but which become waste materials and an environmental burden in their end-of-life cycle. In the last decade, in Brazil, some buildings made partly or totally from shipping containers started to appear, most of them for commercial and office uses. Although the use of a reused container for buildings seems a sustainable solution, it is very important to measure the thermal and energy aspects when they are used as such. In this context, this study aims to evaluate the thermal and energy performance of an office building totally made from a 12-meter-long, High Cube 40’ shipping container in different Brazilian Bioclimatic Zones. Four different constructive solutions, mostly used in Brazil were chosen: (1) container without any covering; (2) with internally insulated drywall; (3) with external fiber cement boards; (4) with both drywall and fiber cement boards. For this, the DesignBuilder with EnergyPlus was used for the computational simulation in 8760 hours. The EnergyPlus Weather File (EPW) data of six Brazilian capital cities were considered: Curitiba, Sao Paulo, Brasilia, Campo Grande, Teresina and Rio de Janeiro. Air conditioning appliance (split) was adopted for the conditioned area and the cooling setpoint was fixed at 25°C. The coefficient of performance (CoP) of air conditioning equipment was set as 3.3. Three kinds of solar absorptances were verified: 0.3, 0.6 and 0.9 of exterior layer. The building in Teresina presented the highest level of energy consumption, while the one in Curitiba presented the lowest, with a wide range of differences in results. The constructive option of external fiber cement and drywall presented the best results, although the differences were not significant compared to the solution using just drywall. The choice of absorptance showed a great impact in energy consumption, mainly compared to the case of containers without any covering and for use in the hottest cities: Teresina, Rio de Janeiro, and Campo Grande. This study brings as the main contribution the discussion of constructive aspects for design guidelines for more energy-efficient container buildings, considering local climate differences, and helps the dissemination of this cleaner constructive practice in the Brazilian building sector.

Keywords: bioclimatic zones, Brazil, shipping containers, thermal and energy performance

Procedia PDF Downloads 171
815 Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class

Authors: Ahmed Abdulghani Taha, Mohammad Abdulghani Taha

Abstract:

This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m-2, fat mass (FM) = 9.96 ± 3.15 kg and fat percentage (% BF) = 13.98 ± 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55± 2.21, P > 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students.

Keywords: fuzzy logic, body mass index, body fat percentage, weightlifting

Procedia PDF Downloads 428
814 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape

Authors: Chen Bo, Wen Zengping

Abstract:

Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.

Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape

Procedia PDF Downloads 291
813 Non-Methane Hydrocarbons Emission during the Photocopying Process

Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Kecić S. Vesna, Oros B. Ivana

Abstract:

The prosperity of electronic equipment in photocopying environment not only has improved work efficiency, but also has changed indoor air quality. Considering the number of photocopying employed, indoor air quality might be worse than in general office environments. Determining the contribution from any type of equipment to indoor air pollution is a complex matter. Non-methane hydrocarbons are known to have an important role of air quality due to their high reactivity. The presence of hazardous pollutants in indoor air has been detected in one photocopying shop in Novi Sad, Serbia. Air samples were collected and analyzed for five days, during 8-hr working time in three-time intervals, whereas three different sampling points were determined. Using multiple linear regression model and software package STATISTICA 10 the concentrations of occupational hazards and micro-climates parameters were mutually correlated. Based on the obtained multiple coefficients of determination (0.3751, 0.2389, and 0.1975), a weak positive correlation between the observed variables was determined. Small values of parameter F indicated that there was no statistically significant difference between the concentration levels of non-methane hydrocarbons and micro-climates parameters. The results showed that variable could be presented by the general regression model: y = b0 + b1xi1+ b2xi2. Obtained regression equations allow to measure the quantitative agreement between the variation of variables and thus obtain more accurate knowledge of their mutual relations.

Keywords: non-methane hydrocarbons, photocopying process, multiple regression analysis, indoor air quality, pollutant emission

Procedia PDF Downloads 376
812 Flood Mapping Using Height above the Nearest Drainage Model: A Case Study in Fredericton, NB, Canada

Authors: Morteza Esfandiari, Shabnam Jabari, Heather MacGrath, David Coleman

Abstract:

Flood is a severe issue in different places in the world as well as the city of Fredericton, New Brunswick, Canada. The downtown area of Fredericton is close to the Saint John River, which is susceptible to flood around May every year. Recently, the frequency of flooding seems to be increased, especially after the fact that the downtown area and surrounding urban/agricultural lands got flooded in two consecutive years in 2018 and 2019. In order to have an explicit vision of flood span and damage to affected areas, it is necessary to use either flood inundation modelling or satellite data. Due to contingent availability and weather dependency of optical satellites, and limited existing data for the high cost of hydrodynamic models, it is not always feasible to rely on these sources of data to generate quality flood maps after or during the catastrophe. Height Above the Nearest Drainage (HAND), a state-of-the-art topo-hydrological index, normalizes the height of a basin based on the relative elevation along with the stream network and specifies the gravitational or the relative drainage potential of an area. HAND is a relative height difference between the stream network and each cell on a Digital Terrain Model (DTM). The stream layer is provided through a multi-step, time-consuming process which does not always result in an optimal representation of the river centerline depending on the topographic complexity of that region. HAND is used in numerous case studies with quite acceptable and sometimes unexpected results because of natural and human-made features on the surface of the earth. Some of these features might cause a disturbance in the generated model, and consequently, the model might not be able to predict the flow simulation accurately. We propose to include a previously existing stream layer generated by the province of New Brunswick and benefit from culvert maps to improve the water flow simulation and accordingly the accuracy of HAND model. By considering these parameters in our processing, we were able to increase the accuracy of the model from nearly 74% to almost 92%. The improved model can be used for generating highly accurate flood maps, which is necessary for future urban planning and flood damage estimation without any need for satellite imagery or hydrodynamic computations.

Keywords: HAND, DTM, rapid floodplain, simplified conceptual models

Procedia PDF Downloads 150