Search results for: motor intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2485

Search results for: motor intelligence

505 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction

Procedia PDF Downloads 184
504 Validation of Two Field Base Dynamic Balance Tests in the Activation of Selected Hip and Knee Stabilizer Muscles

Authors: Mariam A. Abu-Alim

Abstract:

The purpose of this study was to validate muscle activation amplitudes of two field base dynamic balance tests that are used as strengthen and motor control exercises too in the activation of selected hip and knee stabilizer muscles. Methods: Eighteen college-age females students (21±2 years; 65.6± 8.7 kg; 169.7±8.1 cm) who participated at least for 30 minutes in physical activity most days of the week volunteered. The wireless BIOPAC (MP150, BIOPAC System. Inc, California, USA) surface electromyography system was used to validate the activation of the Gluteus Medius and the Adductor Magnus of hip stabilizer muscles; and the Hamstrings, Quadriceps, and the Gastrocnemius of the knee stabilizer muscles. Surface electrodes (EL 503, BIOPAC, System. Inc) connected to dual wireless EMG BioNormadix Transmitters were place on selected muscles of participants dominate side. Manual muscle testing was performed to obtain the maximal voluntary isometric contraction (MVIC) in which all collected muscle activity data during the three reaching direction: anterior, posteromedial, posterolateral of the Star Excursion Balance Test (SEBT) and the Y-balance Test (YBT) data could be normalized. All participants performed three trials for each reaching direction of the SEBT and the YBT. The domanial leg trial for each participant was selected for analysis which was also the standing leg. Results: the selected hip stabilizer muscles (Gluteus Medius, Adductor Magnus) were both greater than 100%MVIC during the performance of the SEBT and in all three directions. Whereas, selected knee stabilizer muscles had greater activation 0f 100% MVIC and were significantly more activated during the performance of the YBT test in all three reaching directions. The results showed that the posterolateral and the postmedial reaching directions for both dynamic balance tests had greater activation levels and greater than 200%MVIC for all tested muscles expect of the hamstrings. Conclusion: the results of this study showed that the SEBT and the YBT had validated high levels of muscular activity for the hip and the knee stabilizer muscles; which can be used to represent the improvement, strength, control and the decreasing in the injury levels. Since these selected hip and knee stabilizer muscles, represent 35% of all athletic injuries depending on the type of sport.

Keywords: dynamic balance tests, electromyography, hip stabilizer muscles, nee stabilizer muscles

Procedia PDF Downloads 151
503 Duration of Isolated Vowels in Infants with Cochlear Implants

Authors: Paris Binos

Abstract:

The present work investigates developmental aspects of the duration of isolated vowels in infants with normal hearing compared to those who received cochlear implants (CIs) before two years of age. Infants with normal hearing produced shorter vowel duration since this find related with more mature production abilities. First isolated vowels are transparent during the protophonic stage as evidence of an increased motor and linguistic control. Vowel duration is a crucial factor for the transition of prelexical speech to normal adult speech. Despite current knowledge of data for infants with normal hearing more research is needed to unravel productions skills in early implanted children. Thus, isolated vowel productions by two congenitally hearing-impaired Greek infants (implantation ages 1:4-1:11; post-implant ages 0:6-1:3) were recorded and sampled for six months after implantation with a Nucleus-24. The results compared with the productions of three normal hearing infants (chronological ages 0:8-1:1). Vegetative data and vocalizations masked by external noise or sounds were excluded. Participants had no other disabilities and had unknown deafness etiology. Prior to implantation the infants had an average unaided hearing loss of 95-110 dB HL while the post-implantation PTA decreased to 10-38 dB HL. The current research offers a methodology for the processing of the prelinguistic productions based on a combination of acoustical and auditory analyses. Based on the current methodological framework, duration measured through spectrograms based on wideband analysis, from the voicing onset to the end of the vowel. The end marked by two co-occurring events: 1) The onset of aperiodicity with a rapid change in amplitude in the waveform and 2) a loss in formant’s energy. Cut-off levels of significance were set at 0.05 for all tests. Bonferroni post hoc tests indicated that difference was significant between the mean duration of vowels of infants wearing CIs and their normal hearing peers. Thus, the mean vowel duration of CIs measured longer compared to the normal hearing peers (0.000). The current longitudinal findings contribute to the existing data for the performance of children wearing CIs at a very young age and enrich also the data of the Greek language. The above described weakness for CI’s performance is a challenge for future work in speech processing and CI’s processing strategies.

Keywords: cochlear implant, duration, spectrogram, vowel

Procedia PDF Downloads 261
502 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
501 Predictive Machine Learning Model for Assessing the Impact of Untreated Teeth Grinding on Gingival Recession and Jaw Pain

Authors: Joseph Salim

Abstract:

This paper proposes the development of a supervised machine learning system to predict the consequences of untreated bruxism (teeth grinding) on gingival (gum) recession and jaw pain (most often bilateral jaw pain with possible headaches and limited ability to open the mouth). As a general dentist in a multi-specialty practice, the author has encountered many patients suffering from these issues due to uncontrolled bruxism (teeth grinding) at night. The most effective treatment for managing this problem involves wearing a nightguard during sleep and receiving therapeutic Botox injections to relax the muscles (the masseter muscle) responsible for grinding. However, some patients choose to postpone these treatments, leading to potentially irreversible and costlier consequences in the future. The proposed machine learning model aims to track patients who forgo the recommended treatments and assess the percentage of individuals who will experience worsening jaw pain, gingival (gum) recession, or both within a 3-to-5-year timeframe. By accurately predicting these outcomes, the model seeks to motivate patients to address the root cause proactively, ultimately saving time and pain while improving quality of life and avoiding much costlier treatments such as full-mouth rehabilitation to help recover the loss of vertical dimension of occlusion due to shortened clinical crowns because of bruxism, gingival grafts, etc.

Keywords: artificial intelligence, machine learning, predictive insights, bruxism, teeth grinding, therapeutic botox, nightguard, gingival recession, gum recession, jaw pain

Procedia PDF Downloads 93
500 Research on Autonomous Controllability of BeiDou Navigation Satellite System Based on Knowledge Transformation

Authors: Hang Ju, Changmin Zhu

Abstract:

The development level of the BeiDou Navigation Satellite System (BDS) can strongly reflect national defense strength as an important spatial information infrastructure. BDS can be not only used for military purposes, such as intelligence gathering, nuclear explosion monitoring, emergency communications, but also for location services, transportation, mapping, precision agriculture. In order to ensure the national defense security and the wide application of BDS in civil and military areas, BDS must be autonomous and controllable. As a complex system of knowledge-intensive, knowledge transformation runs through the whole process of research and development, production, operation, and maintenance of BDS. Based on the perspective of knowledge transformation, this paper expounds on the meaning of socialization, externalization, combination, and internalization of knowledge transformation, and the coupling relationship of autonomy and control on the basis of analyzing the status quo and problems of the autonomy and control of BDS. The autonomous and controllable framework of BDS based on knowledge transformation is constructed from six dimensions of management capability, R&D capability, technical capability, manufacturing capability, service support capability, and application capability. It can provide support for the smooth implementation of information security policy, provide a reference for the autonomy and control of the upstream and downstream industrial chains in Beidou, and provide a reference for the autonomous and controllable research of aerospace components, military measurement test equipment, and other related industries.

Keywords: knowledge transformation, BeiDou Navigation Satellite System, autonomy and control, framework

Procedia PDF Downloads 184
499 Challenges for Adopting Circular Economy Toward Business Innovation and Supply Chain

Authors: Kapil Khanna, Swee Kuik, Joowon Ban

Abstract:

The current linear economic system is unsustainable due to its dependence on the uncontrolled exploitation of diminishing natural resources. The integration of business innovation and supply chain management has brought about the redesign of business processes through the implementation of a closed-loop approach. The circular economy (CE) offers a sustainable solution to improve business opportunities in the near future by following the principles of rejuvenation and reuse inspired by nature. Those business owners start to rethink and consider using waste as raw material to make new products for consumers. The implementation of CE helps organisations to incorporate new strategic plans for decreasing the use of virgin materials and nature resources. Supply chain partners that are geographically dispersed rely heavily on innovative approaches to support supply chain management. Presently, numerous studies have attempted to establish the concept of supply chain management (SCM) by integrating CE principles, which are commonly denoted as circular SCM. While many scholars have recognised the challenges of transitioning to CE, there is still a lack of consensus on business best practices that can facilitate companies in embracing CE across the supply chain. Hence, this paper strives to scrutinize the SCM practices utilised for CE, identify the obstacles, and recommend best practices that can enhance a company's ability to incorporate CE principles toward business innovation and supply chain performance. Further, the paper proposes future research in the field of using specific technologies such as artificial intelligence, Internet of Things, and blockchain as business innovation tools for supply chain management and CE adoption.

Keywords: business innovation, challenges, circular supply chain, supply chain management, technology

Procedia PDF Downloads 98
498 Music Responsiveness and Cultural Practice: Tarok Ethnic Group of Plateau State in Focus

Authors: Johnson-Egemba Helen Amaka

Abstract:

Music is emotional in the sense that it controls people’s feelings. The way and manner people react to music at a point in time depend on the type of music that is playing. Music can make someone to march or dance, to cry or laugh, to be happy or sad, to fight or make peace and so on. It therefore makes someone o exhibit some kind of behaviours, either positive or negative. Even dangerous animals have been found to be controlled by music. In the psychiatric homes, mad people are always found to be dancing to music. During funeral ceremony, music singing and dancing are sources of comfort to the bereaved. As a background to the study, Tarok ethnic group in Plateau State was used. The Tarok comprise of Langtang North and South Local Government Areas. The ethnic group of Tarok integrates music in almost all the activities of their lives. A total of six (6) types of folk songs were identified. These songs range from marriages, funeral, royalty, togetherness, war, rituals, festivals, and farming. This paper points out the significance of basic responsiveness of the Tarok people towards the folk songs, their reaction generally whether positive or negative. The methods of data collection employed in this work include oral interview approach, recording of various types of Tarok folk songs, consulting of journals, magazines and textbooks. The researcher used oral interview as her primary source of information which is found to be the most effective procedure in carrying out this task. The songs were textually analyzed with a view to unveiling their meanings, thought processes, and conveying their direction and functions within the context of their rendition. The major findings of the study are that music in Tarok culture covers the physical, mental, emotional and social experiences. The physical aspect is the motor skills, which include dancing and demonstration of the songs. The mental experiences are intellectual levels which include construction and manufacturing of musical instruments, composing songs, teaching and learning etc. Furthermore, this research provided in addition to musical activities, the literature, history and culture of the Tarok communities.

Keywords: cultural, music, practice, responsiveness

Procedia PDF Downloads 296
497 Economic Evaluation of an Advanced Bioethanol Manufacturing Technology Using Maize as a Feedstock in South Africa

Authors: Ayanda Ndokwana, Stanley Fore

Abstract:

Industrial prosperity and rapid expansion of human population in South Africa over the past two decades, have increased the use of conventional fossil fuels such as crude oil, coal and natural gas to meet the country’s energy demands. However, the inevitable depletion of fossil fuel reserves, global volatile oil price and large carbon footprint are some of the crucial reasons the South African Government needs to make a considerable investment in the development of the biofuel industry. In South Africa, this industry is still at the introductory stage with no large scale manufacturing plant that has been commissioned yet. Bioethanol is a potential replacement of gasoline which is a fossil fuel that is used in motor vehicles. Using bioethanol for the transport sector as a source of fuel will help Government to save heavy foreign exchange incurred during importation of oil and create many job opportunities in rural farming. In 2007, the South African Government developed the National Biofuels Industrial Strategy in an effort to make provision for support and attract investment in bioethanol production. However, capital investment in the production of bioethanol on a large scale, depends on the sound economic assessment of the available manufacturing technologies. The aim of this study is to evaluate the profitability of an advanced bioethanol manufacturing technology which uses maize as a feedstock in South Africa. The impact of fiber or bran fractionation in this technology causes it to possess a number of merits such as energy efficiency, low capital expenditure, and profitability compared to a conventional dry-mill bioethanol technology. Quantitative techniques will be used to collect and analyze numerical data from suitable organisations in South Africa. The dependence of three profitability indicators such as the Discounted Payback Period (DPP), Net Present Value (NPV) and Return On Investment (ROI) on plant capacity will be evaluated. Profitability analysis will be done on the following plant capacities: 100 000 ton/year, 150 000 ton/year and 200 000 ton/year. The plant capacity with the shortest Discounted Payback Period, positive Net Present Value and highest Return On Investment implies that a further consideration in terms of capital investment is warranted.

Keywords: bioethanol, economic evaluation, maize, profitability indicators

Procedia PDF Downloads 233
496 Parallel Self Organizing Neural Network Based Estimation of Archie’s Parameters and Water Saturation in Sandstone Reservoir

Authors: G. M. Hamada, A. A. Al-Gathe, A. M. Al-Khudafi

Abstract:

Determination of water saturation in sandstone is a vital question to determine the initial oil or gas in place in reservoir rocks. Water saturation determination using electrical measurements is mainly on Archie’s formula. Consequently accuracy of Archie’s formula parameters affects water saturation values rigorously. Determination of Archie’s parameters a, m, and n is proceeded by three conventional techniques, Core Archie-Parameter Estimation (CAPE) and 3-D. This work introduces the hybrid system of parallel self-organizing neural network (PSONN) targeting accepted values of Archie’s parameters and, consequently, reliable water saturation values. This work focuses on Archie’s parameters determination techniques; conventional technique, CAPE technique, and 3-D technique, and then the calculation of water saturation using current. Using the same data, a hybrid parallel self-organizing neural network (PSONN) algorithm is used to estimate Archie’s parameters and predict water saturation. Results have shown that estimated Arche’s parameters m, a, and n are highly accepted with statistical analysis, indicating that the PSONN model has a lower statistical error and higher correlation coefficient. This study was conducted using a high number of measurement points for 144 core plugs from a sandstone reservoir. PSONN algorithm can provide reliable water saturation values, and it can supplement or even replace the conventional techniques to determine Archie’s parameters and thereby calculate water saturation profiles.

Keywords: water saturation, Archie’s parameters, artificial intelligence, PSONN, sandstone reservoir

Procedia PDF Downloads 128
495 Reimagine and Redesign: Augmented Reality Digital Technologies and 21st Century Education

Authors: Jasmin Cowin

Abstract:

Augmented reality digital technologies, big data, and the need for a teacher workforce able to meet the demands of a knowledge-based society are poised to lead to major changes in the field of education. This paper explores applications and educational use cases of augmented reality digital technologies for educational organizations during the Fourth Industrial Revolution. The Fourth Industrial Revolution requires vision, flexibility, and innovative educational conduits by governments and educational institutions to remain competitive in a global economy. Educational organizations will need to focus on teaching in and for a digital age to continue offering academic knowledge relevant to 21st-century markets and changing labor force needs. Implementation of contemporary disciplines will need to be embodied through learners’ active knowledge-making experiences while embracing ubiquitous accessibility. The power of distributed ledger technology promises major streamlining for educational record-keeping, degree conferrals, and authenticity guarantees. Augmented reality digital technologies hold the potential to restructure educational philosophies and their underpinning pedagogies thereby transforming modes of delivery. Structural changes in education and governmental planning are already increasing through intelligent systems and big data. Reimagining and redesigning education on a broad scale is required to plan and implement governmental and institutional changes to harness innovative technologies while moving away from the big schooling machine.

Keywords: fourth industrial revolution, artificial intelligence, big data, education, augmented reality digital technologies, distributed ledger technology

Procedia PDF Downloads 277
494 Enhancing the Pricing Expertise of an Online Distribution Channel

Authors: Luis N. Pereira, Marco P. Carrasco

Abstract:

Dynamic pricing is a revenue management strategy in which hotel suppliers define, over time, flexible and different prices for their services for different potential customers, considering the profile of e-consumers and the demand and market supply. This means that the fundamentals of dynamic pricing are based on economic theory (price elasticity of demand) and market segmentation. This study aims to define a dynamic pricing strategy and a contextualized offer to the e-consumers profile in order to improve the number of reservations of an online distribution channel. Segmentation methods (hierarchical and non-hierarchical) were used to identify and validate an optimal number of market segments. A profile of the market segments was studied, considering the characteristics of the e-consumers and the probability of reservation a room. In addition, the price elasticity of demand was estimated for each segment using econometric models. Finally, predictive models were used to define rules for classifying new e-consumers into pre-defined segments. The empirical study illustrates how it is possible to improve the intelligence of an online distribution channel system through an optimal dynamic pricing strategy and a contextualized offer to the profile of each new e-consumer. A database of 11 million e-consumers of an online distribution channel was used in this study. The results suggest that an appropriate policy of market segmentation in using of online reservation systems is benefit for the service suppliers because it brings high probability of reservation and generates more profit than fixed pricing.

Keywords: dynamic pricing, e-consumers segmentation, online reservation systems, predictive analytics

Procedia PDF Downloads 234
493 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 109
492 The Impact of Artificial Intelligence on Human Rights Legislations and Evolution

Authors: Nawal Yacoub Halim Abdelmasih

Abstract:

The intersection between development and human rights has been the factor of scholarly debate for a long term. therefore, some of standards, which enlarge from the proper to development to the human rights-based totally method to development, had been adopted to apprehend the dynamics among the two standards. no matter these attempts, the exact relationship among improvement and human rights has not been completely determined but. however, the inevitable interdependence between the two notions and the idea that improvement efforts ought to be undertaken with the aid of giving due regard to human rights ensures has won momentum in recent years. then again, the emergence of sustainable development as a extensively common technique in development dreams and policies makes this unsettled convergence even extra complicated. The vicinity of sustainable improvement in human rights regulation discourse and the function of the latter in making sure the sustainability of development applications name for a scientific observe. as a result, this newsletter seeks to discover the relationship among development and human rights, particularly focusing at the location given to sustainable development principles in international human proper regulation. it'll similarly quest whether or not there is a proper to sustainable improvement diagnosed therein. as a result, the item asserts that the ideas of sustainable improvement are immediately or circuitously diagnosed in diverse human rights contraptions, which affords an affirmative response to the question raised hereinabove. This paintings, therefore, will make expeditions via international and regional human rights devices in addition to case legal guidelines and interpretative hints of human rights bodies to show this speculation.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security

Procedia PDF Downloads 29
491 Radio Frequency Identification Device Based Emergency Department Critical Care Billing: A Framework for Actionable Intelligence

Authors: Shivaram P. Arunachalam, Mustafa Y. Sir, Andy Boggust, David M. Nestler, Thomas R. Hellmich, Kalyan S. Pasupathy

Abstract:

Emergency departments (EDs) provide urgent care to patients throughout the day in a complex and chaotic environment. Real-time location systems (RTLS) are increasingly being utilized in healthcare settings, and have shown to improve safety, reduce cost, and increase patient satisfaction. Radio Frequency Identification Device (RFID) data in an ED has been shown to compute variables such as patient-provider contact time, which is associated with patient outcomes such as 30-day hospitalization. These variables can provide avenues for improving ED operational efficiency. A major challenge with ED financial operations is under-coding of critical care services due to physicians’ difficulty reporting accurate times for critical care provided under Current Procedural Terminology (CPT) codes 99291 and 99292. In this work, the authors propose a framework to optimize ED critical care billing using RFID data. RFID estimated physician-patient contact times could accurately quantify direct critical care services which will help model a data-driven approach for ED critical care billing. This paper will describe the framework and provide insights into opportunities to prevent under coding as well as over coding to avoid insurance audits. Future work will focus on data analytics to demonstrate the feasibility of the framework described.

Keywords: critical care billing, CPT codes, emergency department, RFID

Procedia PDF Downloads 131
490 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 134
489 Benefits of Collegial Teaming to Improve Knowledge-Worker Productivity

Authors: Prakash Singh, Piet Maphodisa Kgohlo

Abstract:

Knowledge-worker productivity is one of the biggest leadership challenges facing all organizations in the twenty-first century. It cannot be denied that knowledge-worker productivity affects all organizations. The work and the workforce are both undergoing greater changes currently than at any time, since the beginning of the industrial revolution two centuries ago. Employees welcome collegial teaming (CT) as an innovative way to develop their work-integrated learning competencies. Human resource development policies must evoke the symbiotic relationship between CT and work-integrated learning, seeing that employees need to be endowed with the competence to move from one skill to another, as each one becomes obsolete, and to simultaneously develop their cognitive and emotional intelligence. The outcome of this relationship must culminate in the development of highly productive knowledge-workers. While this study focuses on teachers, the conceptual framework and the findings of this research can be beneficial for any organization, public or private sector, business or non-business. Therefore, in this quantitative study, the benefits of CT are considered in developing human resources to sustain knowledge-worker productivity. The ANOVA p-values reveal that the majority of teachers agree that CT can empower them to overcome the challenges of managing curriculum change. CT can equip them with continuous and sustained learning, growth and improvement, necessary for knowledge-worker productivity. This study, therefore, confirms that CT benefits all workers, immaterial of their age, gender or experience. Hence, this exploratory research provides a new perspective of CT in addressing knowledge-worker productivity when organizational change alters the vision of the organization.

Keywords: collegial teaming, human resource development, knowledge-worker productivity, work-integrated learning

Procedia PDF Downloads 277
488 The Misuse of Social Media in Order to Exploit "Generation Y"; The Tactics of IS

Authors: Ali Riza Perçin, Eser Bingül

Abstract:

Internet technologies have created opportunities with which people share their ideologies, thoughts and products. This virtual world, named social media has given the chance of gathering individual users and people from the world's remote locations and establishing an interaction between them. However, to an increasingly higher degree terrorist organizations today use the internet and most notably social-network media to create the effects they desire through a series of on-line activities. These activities, designed to support their activities, include information collection (intelligence), target selection, propaganda, fundraising and recruitment to name a few. Meanwhile, these have been used as the most important tool for recruitment especially from the different region of the world, especially disenfranchised youth, in the West in order to mobilize support and recruit “foreign fighters.” The recruits have obtained the statue, which is not accessible in their society and have preferred the style of life that is offered by the terrorist organizations instead of their current life. Like other terrorist groups, for a while now the terrorist organization Islamic State (IS) in Iraq and Syria has employed a social-media strategy in order to advance their strategic objectives. At the moment, however, IS seems to be more successful in their on-line activities than other similar organizations. IS uses social media strategically as part of its armed activities and for the sustainability of their military presence in Syria and Iraq. In this context, “Generation Y”, which could exist at the critical position and undertake active role, has been examined. Additionally, the explained characteristics of “Generation Y” have been put forward and the duties of families and society have been stated as well.

Keywords: social media, "generation Y", terrorist organization, islamic state IS

Procedia PDF Downloads 426
487 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 111
486 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots

Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov

Abstract:

This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.

Keywords: autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem

Procedia PDF Downloads 166
485 Effects of Intensive Rehabilitation Therapy on Sleep in Children with Developmental Disorders

Authors: Sung Hyun Kim

Abstract:

Introduction: Sleep disturbance is common in children with developmental disorders (D.D.). Sleep disturbance has a variety of negative effects, such as behavior problems, medical problems, and even developmental problems in children with D.D. However, to our best knowledge, there has been no proper treatment for sleep disorders in children with D.D. Therefore, we conduct this study to know the positive effects of intensive rehabilitation therapy in children with D.D. on the degree of sleep disturbance. Method: We prospectively recruited 22 patients with a diagnosis of D.D. during the period of January 2022 through May 2022. The inclusion criteria were as follows: 1) a patient who would participate in the intensive rehabilitation therapy of our institution; 2) the age participant under 18 years at the time of assessment; 3) a child who has consented to participate in the study by signing the consent form by the legal guardian. We investigated the clinical characteristics of participants by the medical record, including sex, age, underlying diagnosis of D.D., and Gross Motor Function Measures (GMFM). Before starting the intensive rehabilitation therapy, we conducted a Sleep disturbance scale for children (SDSC). It contains 26 questions about children’s sleep, and those questions are grouped into six subscales, such as Disorders of initiating and maintaining sleep (DIMS), Sleep Breathing Disorders(SBD), Disorders of arousal(DOA), Sleep-Wake Transition Disorders(SWTD), Disorders of excessive somnolence(DOES) and Sleep Hyperhydrosis(SHY). We used the t-score, which was calculated by comparing the scores of normal children. Twenty two patients received 8 weeks of intensive rehabilitation, including daily physical and occupational therapy. After that, we did follow up with SDSC. The comparison between SDSC before and after intensive rehabilitation was calculated using the paired t-test, and P< 0.05 was considered statistically significant. Results: Demographic data and clinical characteristics of 22 patients are enrolled. Patients were 4.03 ± 2.91 years old, and of the total 22 patients, 14 (64%) were male, and 8 (36%) were female. Twelve patients(45%) were diagnosed with Cerebral palsy(C.P.), and the mean value of participants’ GMFM was 47.82 ± 20.60. Each mean value of SDSC’s subscales was also calculated. DIMS was 62.36 ± 13.72, SBD was 54.18 ± 8.39, DOA was 49.59 ± 7.01, SWTD was 58.95 ± 9.20, DOES was 53.09 ± 15.15, SHY was 52.14 ± 8.82, and the total was 59.86 ± 13.18. These values suggest that children with D.D. have sleep disorders. After 8 weeks of intensive rehabilitation treatment, the score of DIMS showed improvement(p=0.016), but not the other subscale and total score of SDSC. Conclusion: This result showed that intensive rehabilitation could be helpful to patients of D.D. with sleep disorders. Especially intensive rehabilitation therapy itself can be a meaningful treatment in inducing and maintaining sleep.

Keywords: sleep disorder, developmental delay, intensive rehabilitation therapy, cerebral palsy

Procedia PDF Downloads 86
484 Analysis and Design of Exo-Skeleton System Based on Multibody Dynamics

Authors: Jatin Gupta, Bishakh Bhattacharya

Abstract:

With the aging process, many people start suffering from the problem of weak limbs resulting in mobility disorders and loss of sensory and motor function of limbs. Wearable robotic devices are viable solutions to help people suffering from these issues by augmenting their strength. These robotic devices, popularly known as exoskeletons aides user by providing external power and controlling the dynamics so as to achieve desired motion. Present work studies a simplified dynamic model of the human gait. A four link open chain kinematic model is developed to describe the dynamics of Single Support Phase (SSP) of the human gait cycle. The dynamic model is developed integrating mathematical models of the motion of inverted and triple pendulums. Stance leg is modeled as inverted pendulum having single degree of freedom and swing leg as triple pendulum having three degrees of freedom viz. thigh, knee, and ankle joints. The kinematic model is formulated using forward kinematics approach. Lagrangian approach is used to formulate governing dynamic equation of the model. For a system of nonlinear differential equations, numerical method is employed to obtain system response. Reference trajectory is generated using human body simulator, LifeMOD. For optimal mechanical design and controller design of exoskeleton system, it is imperative to study parameter sensitivity of the system. Six different parameters viz. thigh, shank, and foot masses and lengths are varied from 85% to 115% of the original value for the present work. It is observed that hip joint of swing leg is the most sensitive and ankle joint of swing leg is the least sensitive one. Changing link lengths causes more deviation in system response than link masses. Also, shank length and thigh mass are most sensitive parameters. Finally, the present study gives an insight on different factors that should be considered while designing a lower extremity exoskeleton.

Keywords: lower limb exoskeleton, multibody dynamics, energy based formulation, optimal design

Procedia PDF Downloads 200
483 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 50
482 Endeavor in Management Process by Executive Dashboards: The Case of the Financial Directorship in Brazilian Navy

Authors: R. S. Quintal, J. L. Tesch Santos, M. D. Davis, E. C. de Santana, M. de F. Bandeira dos Santos

Abstract:

The objective is to identify the contributions from the introduction of the computerized system deal within the Accounting Department of Brazilian Navy Financial Directorship and its possible effects on the budgetary and financial harvest of Brazilian Navy. The relevance lies in the fact that the management process is responsible for the continuous improvement of organizational performance through higher levels of quality in their activities. Improvements in organizational processes have direct effects on crops cost, quality, reliability, flexibility and speed. The method of study of this research is the case study. The choice of case study attended, among other demands, a need for greater flexibility to study processes related to a computerized system. The sources of evidence were used literature, documentary and direct observation. Direct observation was made by monitoring the implementation of the computerized system in the Division of Management Analysis. The main findings of the study point to the fact that the computerized system may contribute significantly to the standardization of information. There was improvement of internal processes in the division of management analysis, made possible the consolidation of a standard management and performance analysis that contribute to global homogeneity in the treatment of information essential to the process of decision making. This study has limitations related to the fact the search result be subject exclusively to the case studied, and it is impossible to generalize to other organs of government.

Keywords: process management, management control, business intelligence, Brazilian Navy

Procedia PDF Downloads 238
481 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework

Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin

Abstract:

During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.

Keywords: artificial intelligence, COVID-19, depression detection, psychiatric disorder

Procedia PDF Downloads 131
480 A Computationally Intelligent Framework to Support Youth Mental Health in Australia

Authors: Nathaniel Carpenter

Abstract:

Web-enabled systems for supporting youth mental health management in Australia are pioneering in their field; however, with their success, these systems are experiencing exponential growth in demand which is straining an already stretched service. Supporting youth mental is critical as the lack of support is associated with significant and lasting negative consequences. To meet this growing demand, and provide critical support, investigations are needed on evaluating and improving existing online support services. Improvements should focus on developing frameworks capable of augmenting and scaling service provisions. There are few investigations informing best-practice frameworks when implementing e-mental health support systems for youth mental health; there are fewer which implement machine learning or artificially intelligent systems to facilitate the delivering of services. This investigation will use a case study methodology to highlight the design features which are important for systems to enable young people to self-manage their mental health. The investigation will also highlight the current information system challenges, to include challenges associated with service quality, provisioning, and scaling. This work will propose methods of meeting these challenges through improved design, service augmentation and automation, service quality, and through artificially intelligent inspired solutions. The results of this study will inform a framework for supporting youth mental health with intelligent and scalable web-enabled technologies to support an ever-growing user base.

Keywords: artificial intelligence, information systems, machine learning, youth mental health

Procedia PDF Downloads 110
479 IoT-Based Early Identification of Guava (Psidium guajava) Leaves and Fruits Diseases

Authors: Daudi S. Simbeye, Mbazingwa E. Mkiramweni

Abstract:

Plant diseases have the potential to drastically diminish the quantity and quality of agricultural products. Guava (Psidium guajava), sometimes known as the apple of the tropics, is one of the most widely cultivated fruits in tropical regions. Monitoring plant health and diagnosing illnesses is an essential matter for sustainable agriculture, requiring the inspection of visually evident patterns on plant leaves and fruits. Due to minor variations in the symptoms of various guava illnesses, a professional opinion is required for disease diagnosis. Due to improper pesticide application by farmers, erroneous diagnoses may result in economic losses. This study proposes a method that uses artificial intelligence (AI) to detect and classify the most widespread guava plant by comparing images of its leaves and fruits to datasets. ESP32 CAM is responsible for data collection, which includes images of guava leaves and fruits. By comparing the datasets, these image formats are used as datasets to help in the diagnosis of plant diseases through the leaves and fruits, which is vital for the development of an effective automated agricultural system. The system test yielded the most accurate identification findings (99 percent accuracy in differentiating four guava fruit diseases (Canker, Mummification, Dot, and Rust) from healthy fruit). The proposed model has been interfaced with a mobile application to be used by smartphones to make a quick and responsible judgment, which can help the farmers instantly detect and prevent future production losses by enabling them to take precautions beforehand.

Keywords: early identification, guava plants, fruit diseases, deep learning

Procedia PDF Downloads 76
478 Memristor-A Promising Candidate for Neural Circuits in Neuromorphic Computing Systems

Authors: Juhi Faridi, Mohd. Ajmal Kafeel

Abstract:

The advancements in the field of Artificial Intelligence (AI) and technology has led to an evolution of an intelligent era. Neural networks, having the computational power and learning ability similar to the brain is one of the key AI technologies. Neuromorphic computing system (NCS) consists of the synaptic device, neuronal circuit, and neuromorphic architecture. Memristor are a promising candidate for neuromorphic computing systems, but when it comes to neuromorphic computing, the conductance behavior of the synaptic memristor or neuronal memristor needs to be studied thoroughly in order to fathom the neuroscience or computer science. Furthermore, there is a need of more simulation work for utilizing the existing device properties and providing guidance to the development of future devices for different performance requirements. Hence, development of NCS needs more simulation work to make use of existing device properties. This work aims to provide an insight to build neuronal circuits using memristors to achieve a Memristor based NCS.  Here we throw a light on the research conducted in the field of memristors for building analog and digital circuits in order to motivate the research in the field of NCS by building memristor based neural circuits for advanced AI applications. This literature is a step in the direction where we describe the various Key findings about memristors and its analog and digital circuits implemented over the years which can be further utilized in implementing the neuronal circuits in the NCS. This work aims to help the electronic circuit designers to understand how the research progressed in memristors and how these findings can be used in implementing the neuronal circuits meant for the recent progress in the NCS.

Keywords: analog circuits, digital circuits, memristors, neuromorphic computing systems

Procedia PDF Downloads 174
477 Impact of Self-Concept on Performance and Mental Wellbeing of Preservice Teachers

Authors: José María Agugusto-landa, Inmaculada García-Martínez, Lara Checa Domene, Óscar Gavín Chocano

Abstract:

Self-concept is the perception that a person has of himself, of his abilities, skills, traits, and values. Self-concept is composed of different dimensions, such as academic self-concept, physical self-concept, social self-concept, emotional self-concept, and family self-concept. The relationship between the dimensions of self-concept and mental health and academic performance among future teachers is a topic of interest for educational psychology. Some studies have found that: (i) There is a positive relationship between general self-concept, academic self-concept and academic performance, that is, students who have a more positive image of themselves tend to get better grades and be more motivated to learn. (ii) There is a positive relationship between emotional intelligence, physical self-concept and healthy habits, that is, students who regulate and understand their emotions better have a higher satisfaction with their physical appearance and follow a more balanced diet and a higher physical activity. As for gender differences in the dimensions of self-concept among future teachers, some studies have found that: (i) Girls tend to have a higher self-concept in the social, family and verbal dimensions, that is, they perceive themselves as more capable of relating to others, communicating effectively and receiving support from their family. (ii) Boys tend to have a higher self-concept in the physical, emotional and mathematical dimensions, that is, they perceive themselves as more capable of performing physical activities, controlling their emotions and solving mathematical problems. (iii) There are no significant differences between general self-concept and academic self-concept according to gender, that is, both girls and boys have a similar perception of their global worth and academic competence.

Keywords: preservice teachers, self-concept, academic performance, mental wellbeing

Procedia PDF Downloads 80
476 Impulsivity Leads to Compromise Effect

Authors: Sana Maidullah, Ankita Sharma

Abstract:

The present study takes naturalistic decision-making approach to examine the role of personality in information processing in consumer decision making. In the technological era, most of the information comes in form of HTML or similar language via the internet; processing of this situation could be ambiguous, laborious and painful. The present study explores the role of impulsivity in creating an extreme effect on consumer decision making. Specifically, the study explores the role of impulsivity in extreme effect, i.e., extremeness avoidance (compromise effect) and extremeness seeking; the role of demographic variables, i.e. age and gender, in the relation between impulsivity and extreme effect. The study was conducted with the help of a questionnaire and two experiments. The experiment was designed in the form of two shopping websites with two product types: Hotel choice and Mobile choice. Both experimental interfaces were created with the Xampp software, the frontend of interfaces was HTML CSS JAVASCRIPT and backend was PHP MySQL. The mobile experiment was designed to measure the extreme effect and hotel experiment was designed to measure extreme effect with alignability of attributes. To observe the possibilities of the combined effect of individual difference and context effects, the manipulation of price, a number of alignable attributes and number of the non-alignable attributes is done. The study was conducted on 100 undergraduate and post-graduate engineering students within the age range of 18-35. The familiarity and level of use of internet and shopping website were assessed and controlled in the analysis. The analysis was done by using a t-test, ANOVA and regression analysis. The results indicated that the impulsivity leads to compromise effect and at the same time it also increases the relationship between alignability of attribute among choices and the compromise effect. The demographic variables were found to play a significant role in the relationship. The subcomponents of impulsivity were significantly influencing compromise effect, but the cognitive impulsivity was significant for women, and motor impulsivity was significant for males only. The impulsivity was significantly positively predicted by age, though there were no significant gender differences in impulsivity. The results clearly indicate the importance of individual factors in decision making. The present study, with precise and direct results, provides a significant suggestion for market analyst and business providers.

Keywords: impulsivity, extreme effect, personality, alignability, consumer decision making

Procedia PDF Downloads 189