Search results for: hierarchical text classification models
8096 Masquerade and “What Comes Behind Six Is More Than Seven”: Thoughts on Art History and Visual Culture Research Methods
Authors: Osa D Egonwa
Abstract:
In the 21st century, the disciplinary boundaries of past centuries that we often create through mainstream art historical classification, techniques and sources may have been eroded by visual culture, which seems to provide a more inclusive umbrella for the new ways artists go about the creative process and its resultant commodities. Over the past four decades, artists in Africa have resorted to new materials, techniques and themes which have affected our ways of research on these artists and their art. Frontline artists such as El Anatsui, Yinka Shonibare, Erasmus Onyishi are demonstrating that any material is just suitable for artistic expression. Most of times, these materials come with their own techniques/effects and visual syntax: a combination of materials compounds techniques, formal aesthetic indexes, halo effects, and iconography. This tends to challenge the categories and we lean on to view, think and talk about them. This renders our main stream art historical research methods inadequate, thus suggesting new discursive concepts, terms and theories. This paper proposed the Africanist eclectic methods derived from the dual framework of Masquerade Theory and What Comes Behind Six is More Than Seven. This paper shares thoughts/research on art historical methods, terminological re-alignments on classification/source data, presentational format and interpretation arising from the emergent trends in our subject. The outcome provides useful tools to mediate new thoughts and experiences in recent African art and visual culture.Keywords: art historical methods, classifications, concepts, re-alignment
Procedia PDF Downloads 1108095 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.Keywords: artificial neural network, bending angle, fuzzy logic, laser forming
Procedia PDF Downloads 5978094 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 6138093 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models
Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel
Abstract:
In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids
Procedia PDF Downloads 3798092 On the Theory of Persecution
Authors: Aleksander V. Zakharov, Marat R. Bogdanov, Ramil F. Malikov, Irina N. Dumchikova
Abstract:
Classification of persecution movement laws is proposed. Modes of persecution in number of specific cases were researched. Modes of movement control using GLONASS/GPS are discussed.Keywords: UAV Management, mathematical algorithms of targeting and persecution, GLONASS, GPS
Procedia PDF Downloads 3458091 A Goms Model for Blind Users Website Navigation
Authors: Suraina Sulong
Abstract:
Keyboard support is one of the main accessibility requirements for web pages and web applications for blind user. But it is not sufficient that the blind user can perform all actions on the page using the keyboard. In addition, designers of web sites or web applications have to make sure that keyboard users can use their pages with acceptable performance. We present GOMS models for navigation in web pages with specific task given to the blind user to accomplish. These models can be used to construct the user model for accessible website.Keywords: GOMS analysis, usability factor, blind user, human computer interaction
Procedia PDF Downloads 1508090 Mathematical Models for GMAW and FCAW Welding Processes for Structural Steels Used in the Oil Industry
Authors: Carlos Alberto Carvalho Castro, Nancy Del Ducca Barbedo, Edmilsom Otoni Côrrea
Abstract:
With increase the production oil and lines transmission gases that are in ample expansion, the industries medium and great transport they had to adapt itself to supply the demand manufacture in this fabrication segment. In this context, two welding processes have been more extensively used: the GMAW (Gas Metal Arc Welding) and the FCAW (Flux Cored Arc Welding). In this work, welds using these processes were carried out in flat position on ASTM A-36 carbon steel plates in order to make a comparative evaluation between them concerning to mechanical and metallurgical properties. A statistical tool based on technical analysis and design of experiments, DOE, from the Minitab software was adopted. For these analyses, the voltage, current, and welding speed, in both processes, were varied. As a result, it was observed that the welds in both processes have different characteristics in relation to the metallurgical properties and performance, but they present good weldability, satisfactory mechanical strength e developed mathematical models.Keywords: Flux Cored Arc Welding (FCAW), Gas Metal Arc Welding (GMAW), Design of Experiments (DOE), mathematical models
Procedia PDF Downloads 5608089 ID + PD: Training Instructional Designers to Foster and Facilitate Learning Communities in Digital Spaces
Authors: Belkis L. Cabrera
Abstract:
Contemporary technological innovations have reshaped possibility, interaction, communication, engagement, education, and training. Indeed, today, a high-quality technology enhanced learning experience can be transformative as much for the learner as for the educator-trainer. As innovative technologies continue to facilitate, support, foster, and enhance collaboration, problem-solving, creativity, adaptiveness, multidisciplinarity, and communication, the field of instructional design (ID) also continues to develop and expand. Shifting its focus from media to the systematic design of instruction, or rather from the gadgets and devices themselves to the theories, models, and impact of implementing educational technology, the evolution of ID marks a restructuring of the teaching, learning, and training paradigms. However, with all of its promise, this latter component of ID remains underdeveloped. The majority of ID models are crafted and guided by learning theories and, therefore, most models are constructed around student and educator roles rather than trainer roles. Thus, when these models or systems are employed for training purposes, they usually have to be re-fitted, tweaked, and stretched to meet the training needs. This paper is concerned with the training or professional development (PD) facet of instructional design and how ID models built on teacher-to-teacher interaction and dialogue can support the creation of professional learning communities (PLCs) or communities of practice (CoPs), which can augment learning and PD experiences for all. Just as technology is changing the face of education, so too can it change the face of PD within the educational realm. This paper not only provides a new ID model but using innovative technologies such as Padlet and Thinkbinder, this paper presents a concrete example of how a traditional body-to-body, brick, and mortar learning community can be transferred and transformed into the online context.Keywords: communities of practice, e-learning, educational reform, instructional design, professional development, professional learning communities, technology, training
Procedia PDF Downloads 3408088 The Genuine Happiness Scale: Preliminary Results
Authors: Myriam Rudaz, Thomas Ledermann, Frank D. Fincham
Abstract:
We provide initial findings on the development and validation of the Genuine Happiness Scale (GHS). Based on the Buddhist view of happiness, genuine happiness can be described as an unlimited, everlasting inner joy and peace that gives a person the inner resources to deal with whatever comes his or her way in life. The sample consisted of 678 young adults, with 432 adults participating twice, approximately six weeks apart. Exploratory and confirmatory factor analysis supported a unidimensional factor structure of the GHS. Hierarchical regression analysis revealed that caring for bliss, mindfulness, and compassion predicted genuine happiness longitudinally above and beyond genuine happiness at baseline. We discuss the usefulness of the GHS as an outcome measure for evaluating mindfulness- and compassion-based intervention programs.Keywords: happiness, bliss, well-being, caring for bliss, mindfulness, compassion
Procedia PDF Downloads 1188087 Adding a Degree of Freedom to Opinion Dynamics Models
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 1198086 Reconfigurable Device for 3D Visualization of Three Dimensional Surfaces
Authors: Robson da C. Santos, Carlos Henrique de A. S. P. Coutinho, Lucas Moreira Dias, Gerson Gomes Cunha
Abstract:
The article refers to the development of an augmented reality 3D display, through the control of servo motors and projection of image with aid of video projector on the model. Augmented Reality is a branch that explores multiple approaches to increase real-world view by viewing additional information along with the real scene. The article presents the broad use of electrical, electronic, mechanical and industrial automation for geospatial visualizations, applications in mathematical models with the visualization of functions and 3D surface graphics and volumetric rendering that are currently seen in 2D layers. Application as a 3D display for representation and visualization of Digital Terrain Model (DTM) and Digital Surface Models (DSM), where it can be applied in the identification of canyons in the marine area of the Campos Basin, Rio de Janeiro, Brazil. The same can execute visualization of regions subject to landslides, as in Serra do Mar - Agra dos Reis and Serranas cities both in the State of Rio de Janeiro. From the foregoing, loss of human life and leakage of oil from pipelines buried in these regions may be anticipated in advance. The physical design consists of a table consisting of a 9 x 16 matrix of servo motors, totalizing 144 servos, a mesh is used on the servo motors for visualization of the models projected by a retro projector. Each model for by an image pre-processing, is sent to a server to be converted and viewed from a software developed in C # Programming Language.Keywords: visualization, 3D models, servo motors, C# programming language
Procedia PDF Downloads 3428085 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India
Authors: Ajai Singh
Abstract:
Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation
Procedia PDF Downloads 3708084 A Pilot Study to Investigate the Use of Machine Translation Post-Editing Training for Foreign Language Learning
Authors: Hong Zhang
Abstract:
The main purpose of this study is to show that machine translation (MT) post-editing (PE) training can help our Chinese students learn Spanish as a second language. Our hypothesis is that they might make better use of it by learning PE skills specific for foreign language learning. We have developed PE training materials based on the data collected in a previous study. Training material included the special error types of the output of MT and the error types that our Chinese students studying Spanish could not detect in the experiment last year. This year we performed a pilot study in order to evaluate the PE training materials effectiveness and to what extent PE training helps Chinese students who study the Spanish language. We used screen recording to record these moments and made note of every action done by the students. Participants were speakers of Chinese with intermediate knowledge of Spanish. They were divided into two groups: Group A performed PE training and Group B did not. We prepared a Chinese text for both groups, and participants translated it by themselves (human translation), and then used Google Translate to translate the text and asked them to post-edit the raw MT output. Comparing the results of PE test, Group A could identify and correct the errors faster than Group B students, Group A did especially better in omission, word order, part of speech, terminology, mistranslation, official names, and formal register. From the results of this study, we can see that PE training can help Chinese students learn Spanish as a second language. In the future, we could focus on the students’ struggles during their Spanish studies and complete the PE training materials to teach Chinese students learning Spanish with machine translation.Keywords: machine translation, post-editing, post-editing training, Chinese, Spanish, foreign language learning
Procedia PDF Downloads 1448083 Supplier Relationship Management and Selection Strategies: A Literature Review
Authors: Priyesh Kumar Singh, S. K. Sharma, Sanjay Verma, C. Samuel
Abstract:
Supplier Relationship Management (SRM), is strategic planning and managing of all interactions with suppliers to maximize its value. Its application varies from construction industries to healthcare system and investment banks to aviation industries. Several buyer-supplier relationship models, as well as supplier selection and evaluation strategies, have been documented by many academicians and researchers. In this paper, through a comprehensive literature review of over 30 published papers, different theoretical models, empirical data and conclusions were analysed relating to SRM to find its role in establishing better supplier relationships. These journal articles were searched by using the keyword “supplier relationship management,” in databases of Mendeley Library, ProQuest, EBSCO and Google Scholar. This paper reviews the academic literature on different relationship models, supplier evaluation, and selection strategies to discuss its implications in different situations. It also describes the dominant factors responsible for buyer-supplier relationships such trust and power. Finally, conclusions have been drawn which can be validated by various researchers and can help practitioners in industries.Keywords: supplier relationship management, supplier performance, supplier evaluation, supplier selection strategies
Procedia PDF Downloads 2818082 Testing a Motivational Model of Physical Education on Contextual Outcomes and Total Moderate to Vigorous Physical Activity of Middle School Students
Authors: Arto Grasten
Abstract:
Given the rising trend in obesity in children and youth, age-related decline in moderate- to- vigorous-intensity physical activity (MVPA) in several Western, African, and Asian countries in addition to limited evidence of behavioral, affective, cognitive outcomes in physical education, it is important to clarify the motivational processes in physical education classes behind total MVPA engagement. The present study examined the full sequence of the Hierarchical Model of Motivation in physical education including motivational climate, basic psychological needs, intrinsic motivation, contextual behavior, affect, cognition, total MVPA, and associated links to body mass index (BMI) and gender differences. A cross-sectional data comprised self-reports and objective assessments of 770 middle school students (Mage = 13.99 ± .81 years, 52% of girls) in North-East Finland. In order to test the associations between motivational climate, psychological needs, intrinsic motivation, cognition, behavior, affect, and total MVPA, a path model was implemented. Indirect effects between motivational climate and cognition, behavior, affect and total MVPA were tested by setting basic needs and intrinsic motivation as mediators into the model. The findings showed that direct and indirect paths for girls and boys associated with different contextual outcomes and girls’ indirect paths were not related with total MVPA. Precisely, task-involving climate-mediated by physical competence and intrinsic motivation related to enjoyment, importance, and graded assessments within girls, whereas task-involving climate associated with enjoyment and importance via competence and autonomy, and total MVPA via autonomy, intrinsic motivation, and importance within boys. Physical education assessments appeared to be essential in motivating students to participate in greater total MVPA. BMI was negatively linked with competence and relatedness only among girls. Although, the current and previous empirical findings supported task-involving teaching methods in physical education, in some cases, ego-involving climate should not be totally avoided. This may indicate that girls and boys perceive physical education classes in a different way. Therefore, both task- and ego-involving teaching practices can be useful ways of driving behavior in physical education classes.Keywords: achievement goal theory, assessment, enjoyment, hierarchical model of motivation, physical activity, self-determination theory
Procedia PDF Downloads 2808081 Nurse´s Interventions in Patients with Dementia During Clinical Practice: A Literature Review
Authors: Helga Martins, Idália Matias
Abstract:
Background: Dementia is an important research topic since that life expectancy worldwide is increasing, so people are getting older. The aging of populations has a major impact on the increase in dementia, and nurses play a major role in taking care of these patients. Therefore, the implementation of nursing interventions based on evidence is vital so that we are aware of what we can do in clinical practice in order to provide patient cantered care to patients with dementia. Aim: To identify the nurse´s interventions in patients with dementia during clinical practice. Method: Literature review grounded on an electronic search in the EBSCOhost platform (CINAHL Plus with Full Text, MEDLINE with Full Text, and Nursing & Allied Health Collection), using the search terms of "dementia" AND "nurs*" AND “interventions” in the abstracts. The inclusion criteria were: original papers published up to June 2021. A total of 153 results after de duplicate removal we kept 104. After the application of the inclusion criteria, we included 15 studies This literature review was performed by two independent researchers. Results: A total of 15 results about nurses’ interventions in patients with dementia were included in the study. The major interventions are therapeutic communication strategies, environmental management of stressors involving family/caregivers; strategies to promote patient safety, and assistance in activities of daily living in patients who are clinically deteriorated. Conclusion: Taking care of people with dementia is a complex and demanding task. Nurses are required to have a set of skills and competences in order to provide nursing interventions. We highlight that is necessary an awareness in nursing education regarding providing nursing care to patients with dementia.Keywords: dementia, interventions, nursing, review
Procedia PDF Downloads 1568080 The Development of Congeneric Elicited Writing Tasks to Capture Language Decline in Alzheimer Patients
Authors: Lise Paesen, Marielle Leijten
Abstract:
People diagnosed with probable Alzheimer disease suffer from an impairment of their language capacities; a gradual impairment which affects both their spoken and written communication. Our study aims at characterising the language decline in DAT patients with the use of congeneric elicited writing tasks. Within these tasks, a descriptive text has to be written based upon images with which the participants are confronted. A randomised set of images allows us to present the participants with a different task on every encounter, thus allowing us to avoid a recognition effect in this iterative study. This method is a revision from previous studies, in which participants were presented with a larger picture depicting an entire scene. In order to create the randomised set of images, existing pictures were adapted following strict criteria (e.g. frequency, AoA, colour, ...). The resulting data set contained 50 images, belonging to several categories (vehicles, animals, humans, and objects). A pre-test was constructed to validate the created picture set; most images had been used before in spoken picture naming tasks. Hence the same reaction times ought to be triggered in the typed picture naming task. Once validated, the effectiveness of the descriptive tasks was assessed. First, the participants (n=60 students, n=40 healthy elderly) performed a typing task, which provided information about the typing speed of each individual. Secondly, two descriptive writing tasks were carried out, one simple and one complex. The simple task contains 4 images (1 animal, 2 objects, 1 vehicle) and only contains elements with high frequency, a young AoA (<6 years), and fast reaction times. Slow reaction times, a later AoA (≥ 6 years) and low frequency were criteria for the complex task. This task uses 6 images (2 animals, 1 human, 2 objects and 1 vehicle). The data were collected with the keystroke logging programme Inputlog. Keystroke logging tools log and time stamp keystroke activity to reconstruct and describe text production processes. The data were analysed using a selection of writing process and product variables, such as general writing process measures, detailed pause analysis, linguistic analysis, and text length. As a covariate, the intrapersonal interkey transition times from the typing task were taken into account. The pre-test indicated that the new images lead to similar or even faster reaction times compared to the original images. All the images were therefore used in the main study. The produced texts of the description tasks were significantly longer compared to previous studies, providing sufficient text and process data for analyses. Preliminary analysis shows that the amount of words produced differed significantly between the healthy elderly and the students, as did the mean length of production bursts, even though both groups needed the same time to produce their texts. However, the elderly took significantly more time to produce the complex task than the simple task. Nevertheless, the amount of words per minute remained comparable between simple and complex. The pauses within and before words varied, even when taking personal typing abilities (obtained by the typing task) into account.Keywords: Alzheimer's disease, experimental design, language decline, writing process
Procedia PDF Downloads 2748079 Application of Regularized Low-Rank Matrix Factorization in Personalized Targeting
Authors: Kourosh Modarresi
Abstract:
The Netflix problem has brought the topic of “Recommendation Systems” into the mainstream of computer science, mathematics, and statistics. Though much progress has been made, the available algorithms do not obtain satisfactory results. The success of these algorithms is rarely above 5%. This work is based on the belief that the main challenge is to come up with “scalable personalization” models. This paper uses an adaptive regularization of inverse singular value decomposition (SVD) that applies adaptive penalization on the singular vectors. The results show far better matching for recommender systems when compared to the ones from the state of the art models in the industry.Keywords: convex optimization, LASSO, regression, recommender systems, singular value decomposition, low rank approximation
Procedia PDF Downloads 4558078 Hierarchical Checkpoint Protocol in Data Grids
Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed
Abstract:
Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.Keywords: data grids, fault tolerance, clustering, chandy-lamport
Procedia PDF Downloads 3418077 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis
Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin
Abstract:
In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry
Procedia PDF Downloads 5468076 Investigating Malaysian Prereader’s Cognitive Processes when Reading English Picture Storybooks: A Comparative Eye-Tracking Experiment
Authors: Siew Ming Thang, Wong Hoo Keat, Chee Hao Sue, Fung Lan Loo, Ahju Rosalind
Abstract:
There are numerous studies that explored young learners’ literacy skills in Malaysia but none that uses the eye-tracking device to track their cognitive processes when reading picture storybooks. This study used this method to investigate two groups of prereaders’ cognitive processes in four conditions. (1) A congruent picture was presented, and a matching narration was read aloud by a recorder; (2) Children heard a narration telling about the same characters in the picture but involves a different scene; (3) Only a picture with matching text was present; (4) Students only heard the reading aloud of the text on the screen. The two main objectives of this project are to test which content of pictures helps the prereaders (i.e., young children who have not received any formal reading instruction) understand the narration and whether children try to create a coherent mental representation from the oral narration and the pictures. The study compares two groups of children from two different kindergartens. Group1: 15 Chinese children; Group2: 17 Malay children. The medium of instruction was English. An eye-tracker were used to identify Areas of Interest (AOI) of each picture and the five target elements and calculate number of fixations and total time spent on fixation of pictures and written texts. Two mixed factorial ANOVAs with the storytelling performance (good, average, or weak) and vocabulary level (low, medium, high) as between-subject variables, and the Areas of Interests (AOIs) and display conditions as the within-subject variables were performedon the variables.Keywords: eye-tracking, cognitive processes, literacy skills, prereaders, visual attention
Procedia PDF Downloads 958075 Transition Economies, Typology, and Models: The Case of Libya
Authors: Abderahman Efhialelbum
Abstract:
The period since the fall of the Berlin Wall on November 9, 1989, and the collapse of the former Soviet Union in December 1985 has seen a major change in the economies and labour markets of Eastern Europe. The events also had reverberating effects across Asia and South America and parts of Africa, including Libya. This article examines the typologies and the models of transition economies. Also, it sheds light on the Libyan transition in particular and the impact of Qadhafi’s regime on the transition process. Finally, it illustrates how the Libyan transition process followed the trajectory of other countries using economic indicators such as free trade, property rights, and inflation.Keywords: transition, economy, typology, model, Libya
Procedia PDF Downloads 1578074 Developing the Skills of Reading Comprehension of Learners of English as a Second Language
Authors: Indu Gamage
Abstract:
Though commonly utilized as a language improvement technique, reading has not been fully employed by both language teachers and learners to develop reading comprehension skills in English as a second language. In a Sri Lankan context, this area has to be delved deep into as the learners’ show more propensity to analyze. Reading comprehension is an area that most language teachers and learners struggle with though it appears easy. Most ESL learners engage in reading tasks without being properly aware of the objective of doing reading comprehension. It is observed that when doing reading tasks, the language learners’ concern is more on the meanings of individual words than on the overall comprehension of the given text. The passiveness with which the ESL learners engage themselves in reading comprehension makes reading a tedious task for the learner thereby giving the learner a sense of disappointment at the end. Certain reading tasks take the form of translations. The active cognitive participation of the learner in the mode of using productive strategies for predicting, employing schemata and using contextual clues seems quite less. It was hypothesized that the learners’ lack of knowledge of the productive strategies of reading was the major obstacle that makes reading comprehension a tedious task for them. This study is based on a group of 30 tertiary students who read English only as a fundamental requirement for their degree. They belonged to the Faculty of Humanities and Social Sciences of the University of Ruhuna, Sri Lanka. Almost all learners hailed from areas where English was hardly utilized in their day to day conversations. The study is carried out in the mode of a questionnaire to check their opinions on reading and a test to check whether the learners are using productive strategies of reading when doing reading comprehension tasks. The test comprised reading questions covering major productive strategies for reading. Then the results were analyzed to see the degree of their active engagement in comprehending the text. The findings depicted the validity of the hypothesis as grounds behind the difficulties related to reading comprehension.Keywords: reading, comprehension, skills, reading strategies
Procedia PDF Downloads 1758073 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features
Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari
Abstract:
An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)
Procedia PDF Downloads 4468072 Attachment Patterns in a Sample of South African Children at Risk in Middle Childhood
Authors: Renate Gericke, Carol Long
Abstract:
Despite the robust empirical support of attachment, advancement in the description and conceptualization of attachment has been slow and has not significantly advanced beyond the identification of attachment security or type (namely, secure, avoidant, ambivalent and disorganized). This has continued despite papers arguing for theoretical refinement in the classification of attachment presentations. For thinking and practice to advance, it is critically important that these categories and their assessment be interrogated in different contexts and across developmental age. To achieve this, a quantitative design was used with descriptive and inferential statistics, and general linear models were employed to analyze the data. The Attachment Story Completion Test (ASCT) was administered to 105 children between the ages of eight and twelve from socio-economically deprived contexts with high exposure to trauma. A staggering 93% of the children had insecure attachments (specifically, avoidant 37%, disorganized 34% and ambivalent 22%) and attachment was more complex than currently conceptualized in the attachment literature. Primary attachment did not only present as one of four discreet categories, but 70% of the sample had a complex attachment with more than one type of maternal attachment style. Attachment intensity also varied along a continuum (between 1 and 5). The findings have implications for a) research that has not considered the potential complexity of attachment or attachment intensity, b) policy to more actively support mother-infant dyads, particularly in high-risk contexts and c) question the applicability of a western conceptualization of a primary maternal attachment figure in non-western collectivist societies.Keywords: attachment, children at risk, middle childhood, non-western context
Procedia PDF Downloads 1938071 Performance Analysis of Traffic Classification with Machine Learning
Authors: Htay Htay Yi, Zin May Aye
Abstract:
Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.Keywords: false negative rate, intrusion detection system, machine learning methods, performance
Procedia PDF Downloads 1188070 Corpus Linguistics as a Tool for Translation Studies Analysis: A Bilingual Parallel Corpus of Students’ Translations
Authors: Juan-Pedro Rica-Peromingo
Abstract:
Nowadays, corpus linguistics has become a key research methodology for Translation Studies, which broadens the scope of cross-linguistic studies. In the case of the study presented here, the approach used focuses on learners with little or no experience to study, at an early stage, general mistakes and errors, the correct or incorrect use of translation strategies, and to improve the translational competence of the students. Led by Sylviane Granger and Marie-Aude Lefer of the Centre for English Corpus Linguistics of the University of Louvain, the MUST corpus (MUltilingual Student Translation Corpus) is an international project which brings together partners from Europe and worldwide universities and connects Learner Corpus Research (LCR) and Translation Studies (TS). It aims to build a corpus of translations carried out by students including both direct (L2 > L1) an indirect (L1 > L2) translations, from a great variety of text types, genres, and registers in a wide variety of languages: audiovisual translations (including dubbing, subtitling for hearing population and for deaf population), scientific, humanistic, literary, economic and legal translation texts. This paper focuses on the work carried out by the Spanish team from the Complutense University (UCMA), which is part of the MUST project, and it describes the specific features of the corpus built by its members. All the texts used by UCMA are either direct or indirect translations between English and Spanish. Students’ profiles comprise translation trainees, foreign language students with a major in English, engineers studying EFL and MA students, all of them with different English levels (from B1 to C1); for some of the students, this would be their first experience with translation. The MUST corpus is searchable via Hypal4MUST, a web-based interface developed by Adam Obrusnik from Masaryk University (Czech Republic), which includes a translation-oriented annotation system (TAS). A distinctive feature of the interface is that it allows source texts and target texts to be aligned, so we can be able to observe and compare in detail both language structures and study translation strategies used by students. The initial data obtained point out the kind of difficulties encountered by the students and reveal the most frequent strategies implemented by the learners according to their level of English, their translation experience and the text genres. We have also found common errors in the graduate and postgraduate university students’ translations: transfer errors, lexical errors, grammatical errors, text-specific translation errors, and cultural-related errors have been identified. Analyzing all these parameters will provide more material to bring better solutions to improve the quality of teaching and the translations produced by the students.Keywords: corpus studies, students’ corpus, the MUST corpus, translation studies
Procedia PDF Downloads 1478069 Teaching Physics: History, Models, and Transformation of Physics Education Research
Authors: N. Didiş Körhasan, D. Kaltakçı Gürel
Abstract:
Many students have difficulty in learning physics from elementary to university level. In addition, students' expectancy, attitude, and motivation may be influenced negatively with their experience (failure) and prejudice about physics learning. For this reason, physics educators, who are also physics teachers, search for the best ways to make students' learning of physics easier by considering cognitive, affective, and psychomotor issues in learning. This research critically discusses the history of physics education, fundamental pedagogical approaches, and models to teach physics, and transformation of physics education with recent research.Keywords: pedagogy, physics, physics education, science education
Procedia PDF Downloads 2648068 Modeling Of The Random Impingement Erosion Due To The Impact Of The Solid Particles
Authors: Siamack A. Shirazi, Farzin Darihaki
Abstract:
Solid particles could be found in many multiphase flows, including transport pipelines and pipe fittings. Such particles interact with the pipe material and cause erosion which threats the integrity of the system. Therefore, predicting the erosion rate is an important factor in the design and the monitor of such systems. Mechanistic models can provide reliable predictions for many conditions while demanding only relatively low computational cost. Mechanistic models utilize a representative particle trajectory to predict the impact characteristics of the majority of the particle impacts that cause maximum erosion rate in the domain. The erosion caused by particle impacts is not only due to the direct impacts but also random impingements. In the present study, an alternative model has been introduced to describe the erosion due to random impingement of particles. The present model provides a realistic trend for erosion with changes in the particle size and particle Stokes number. The present model is examined against the experimental data and CFD simulation results and indicates better agreement with the data incomparison to the available models in the literature.Keywords: erosion, mechanistic modeling, particles, multiphase flow, gas-liquid-solid
Procedia PDF Downloads 1698067 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis
Authors: Petr Gurný
Abstract:
One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default
Procedia PDF Downloads 456