Search results for: artificial kidney
556 Assessment of Environmental Impact for Rice Mills in Burdwan District: Special Emphasis on Groundwater, Surface Water, Soil, Vegetation and Human Health
Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay
Abstract:
Rice milling is an important activity in agricultural economy of India, particularly the Burdwan district. However, the environmental impact of rice mills is frequently underestimated. The environmental impact of rice mills in the Burdwan district is a major source of concern, given the importance of rice milling in the local economy and food supply. In the Burdwan district, more than fifty (50) rice mills are in operation. The goal of this study is to investigate the effects of rice mills on several environmental components, with a particular emphasis on groundwater, surface water, soil, and vegetation. The research comprises a thorough review of numerous rice mills located around the district, utilising both qualitative and quantitative approaches. Water samples taken from wells near rice mills will be tested for groundwater quality, with an emphasis on factors such as heavy metal pollution and pollutant concentrations. Monitoring rice mill discharge into neighbouring bodies of water and studying the potential impact on aquatic ecosystems will be part of surface water evaluations. Furthermore, soil samples from the surrounding areas will be taken to examine changes in soil characteristics, nutrient content, and potential contamination from milling waste disposal. Vegetation studies will be conducted to investigate the effects of emissions and effluents on plant health and biodiversity in the region. The findings will provide light on the extent of environmental degradation caused by rice mills in the Burdwan district, as well as valuable insight into the effects of such operations on water, soil, and vegetation. The findings will aid in the development of appropriate legislation and regulations to reduce negative environmental repercussions and promote sustainable practises in the rice milling business. In some cases, heavy metals have been related to health problems. Heavy metals (As, Cd, Cu, Pb, Cr, Hg) are linked to skin, lung, brain, kidney, liver, metabolic, spleen, cardiovascular, haematological, immunological, gastrointestinal, testes, pancreatic, metabolic, and bone problems. As a result, this study contributes to a better knowledge of industrial environmental impacts and establishes the framework for future studies aimed at developing a more ecologically balanced and resilient Burdwan district. The following recommendations are offered for reducing the rice mill's environmental impact: To keep untreated effluents out of bodies of water, adequate waste management systems must be established. Use environmentally friendly rice milling processes to reduce pollution. To avoid soil pollution, rice mill by-products should be used as fertiliser in a controlled and appropriate manner. Groundwater, surface water, soil, and vegetation are all regularly monitored in order to study and adapt to environmental changes. By adhering to these principles, the rice milling industry of Burdwan district may achieve long-term growth while lowering its environmental effect and safeguarding the environment for future generations.Keywords: groundwater, environmental analysis, biodiversity, rice mill, waste management, diseases, industrial impact
Procedia PDF Downloads 97555 Influence of Age on Some Testicular and Spermatic Parameters in Kids and Bucks in Local Breed Arbia in Algeria
Authors: Boukhalfa Djemouai, Belkadi Souhila, Safsaf Boubakeur
Abstract:
To increase the profitability of the national herd so that it can meet the needs of the population, Algeria has proceeded to the introduction of new reproductive biotechnologies, including artificial insemination on natural heat, by induction and heat synchronization. This biotechnology uses the male way for the creation and dissemination of genetic progress. The study has focused on 30 goat kids and bucks local breed aged between 03 and 24 months, divided into 03 groups 03-06 months[Grp 1; n=9], 07-10 months [Grp 2; n=13] and 11-24 months [Grp 3; n=8], in order to determine the influence of age on testicular evolution by measurements of testis and scrotum, and the epididymis sperm parameters evaluation. These parameters are influenced by age variations (sperm and spermocytogram). The examined parameters have focused on testicular weight (grams), the scrotal circumference (cm), mass mobility (%), vitality rate (%), sperm concentration (x 109), and percentage of abnormal spermatozoa (%). The ANOVA reveals a significance effect of age on parameters: testis weight, scrotal circumference, sperm concentration, motility varying between high (p < 0.01) to very high significance (p < 0.001), while in viability and abnormalities no significance was observed between all groups. The value of these parameters increased significantly until the age of 02 years, while that of sperm abnormalities has increased in Grp2. The histological study of testicular development shows that the genetic spermatozoa function characterized by cell proliferation, which is more and more intense starting from the age of 05 months and can be considered as an age of puberty in the local breed goat Arbia and increases with animal age.Keywords: kids and bucks, epididymis sperm, testicular measurements, Arbia breed
Procedia PDF Downloads 133554 Multicriteria for Optimal Land Use after Mining
Authors: Carla Idely Palencia-Aguilar
Abstract:
Mining in Colombia represents around 2% of the GDP (USD 8 billion in 2018), with main productions represented by coal, nickel, gold, silver, emeralds, iron, limestone, gypsum, among others. Sand and Gravel had been decreasing its participation of the GDP with a reduction of 33.2 million m3 in 2015, to 27.4 in 2016, 22.7 in 2017 and 15.8 in 2018, with a consumption of approximately 3 tons/inhabitant. However, with the new government policies it is expected to increase in the following years. Mining causes temporary environmental impacts, once restoration and rehabilitation takes place, social, environmental and economic benefits are higher than the initial state. A way to demonstrate how the mining interventions had contributed to improve the characteristics of the region after sand and gravel mining, the NDVI (Normalized Difference Vegetation Index) from MODIS and ASTER were employed. The histograms show not only increments of vegetation in the area (8 times higher), but also topographies similar to the ones before the intervention, according to the application for sustainable development selected: either agriculture, forestry, cattle raising, artificial wetlands or do nothing. The decision was based upon a Multicriteria analysis for optimal land use, with three main variables: geostatistics, evapotranspiration and groundwater characteristics. The use of remote sensing, meteorological stations, piezometers, sunphotometers, geoelectric analysis among others; provide the information required for the multicriteria decision. For cattle raising and agricultural applications (where various crops were implemented), conservation of products were tested by means of nanotechnology. The results showed a duration of 2 years with no chemicals added for preservation and concentration of vitamins of the tested products.Keywords: ASTER, Geostatistics, MODIS, Multicriteria
Procedia PDF Downloads 126553 Covalently Conjugated Gold–Porphyrin Nanostructures
Authors: L. Spitaleri, C. M. A. Gangemi, R. Purrello, G. Nicotra, G. Trusso Sfrazzetto, G. Casella, M. Casarin, A. Gulino
Abstract:
Hybrid molecular–nanoparticle materials, obtained with a bottom-up approach, are suitable for the fabrication of functional nanostructures showing structural control and well-defined properties, i.e., optical, electronic or catalytic properties, in the perspective of applications in different fields of nanotechnology. Gold nanoparticles (Au NPs) exhibit important chemical, electronic and optical properties due to their size, shape and electronic structures. In fact, Au NPs containing no more than 30-40 atoms are only luminescent because they can be considered as large molecules with discrete energy levels, while nano-sized Au NPs only show the surface plasmon resonance. Hence, it appears that gold nanoparticles can alternatively be luminescent or plasmonic, and this represents a severe constraint for their use as an optical material. The aim of this work was the fabrication of nanoscale assembly of Au NPs covalently anchored to each other by means of novel bi-functional porphyrin molecules that work as bridges between different gold nanoparticles. This functional architecture shows a strong surface plasmon due to the Au nanoparticles and a strong luminescence signal coming from porphyrin molecules, thus, behaving like an artificial organized plasmonic and fluorescent network. The self-assembly geometry of this porphyrin on the Au NPs was studied by investigation of the conformational properties of the porphyrin derivative at the DFT level. The morphology, electronic structure and optical properties of the conjugated Au NPs – porphyrin system were investigated by TEM, XPS, UV–vis and Luminescence. The present nanostructures can be used for plasmon-enhanced fluorescence, photocatalysis, nonlinear optics, etc., under atmospheric conditions since our system is not reactive to air nor water and does not need to be stored in a vacuum or inert gas.Keywords: gold nanoparticle, porphyrin, surface plasmon resonance, luminescence, nanostructures
Procedia PDF Downloads 156552 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization
Authors: R. O. Osaseri, A. R. Usiobaifo
Abstract:
The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault
Procedia PDF Downloads 324551 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)
Procedia PDF Downloads 96550 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix
Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung
Abstract:
Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.Keywords: medical technology, artificial intelligence, radiology, lung cancer
Procedia PDF Downloads 72549 Physical Tests on Localized Fluidization in Offshore Suction Bucket Foundations
Authors: Li-Hua Luu, Alexis Doghmane, Abbas Farhat, Mohammad Sanayei, Pierre Philippe, Pablo Cuellar
Abstract:
Suction buckets are promising innovative foundations for offshore wind turbines. They generally feature the shape of an inverted bucket and rely on a suction system as a driving agent for their installation into the seabed. Water is pumped out of the buckets that are initially placed to rest on the seabed, creating a net pressure difference across the lid that generates a seepage flow, lowers the soil resistance below the foundation skirt, and drives them effectively into the seabed. The stability of the suction mechanism as well as the possibility of a piping failure (i.e., localized fluidization within the internal soil plug) during their installation are some of the key questions that remain open. The present work deals with an experimental study of localized fluidization by suction within a fixed bucket partially embedded into a submerged artificial soil made of spherical beads. The transient process, from the onset of granular motion until reaching a stationary regime for the fluidization at the embedded bucket wall, is recorded using the combined optical techniques of planar laser-induced fluorescence and refractive index matching. To conduct a systematic study of the piping threshold for the seepage flow, we vary the beads size, the suction pressure, and the initial depth for the bucket. This experimental modelling, by dealing with erosion-related phenomena from a micromechanical perspective, shall provide qualitative scenarios for the local processes at work which are missing in the offshore practice so far.Keywords: fluidization, micromechanical approach, offshore foundations, suction bucket
Procedia PDF Downloads 184548 Effect of Varying Diets on Growth, Development and Survival of Queen Bee (Apis mellifera L.) in Captivity
Authors: Muhammad Anjum Aqueel, Zaighum Abbas, Mubasshir Sohail, Muhammad Abubakar, Hafiz Khurram Shurjeel, Abu Bakar Muhammad Raza, Muhammad Afzal, Sami Ullah
Abstract:
Keeping in view the increasing demand, queen of Apis mellifera L. (Hymenoptera: Apidae) was reared artificially in this experiment at varying diets including royal jelly. Larval duration, pupal duration, weight, and size of pupae were evaluated at different diets including royal jelly. Queen larvae were raised by Doo Little grafting method. Four different diets were mixed with royal jelly and applied to larvae. Fructose, sugar, yeast, and honey were provided to rearing queen larvae along with same amount of royal jelly. Larval and pupal duration were longest (6.15 and 7.5 days, respectively) at yeast and shortest on honey (5.05 and 7.02 days, respectively). Heavier and bigger pupae were recorded on yeast (168.14 mg and 1.76 cm, respectively) followed by diets having sugar and honey. Due to production of heavier and bigger pupae, yeast was considered as best artificial diet for the growing queen larvae. So, in the second part of experiment, different amounts of yeast were provided to growing larvae along with fixed amount (0.5 g) of royal jelly. Survival rates of the larvae and queen bee were 70% and 40% in the 4-g food, 86.7% and 53.3% in the 6-g food, and 76.7% and 50% in the 8-g food. Weight of adult queen bee (1.459±0.191 g) and the number of ovarioles (41.7±21.3) were highest at 8 g of food. Results of this study are helpful for bee-keepers in producing fitter queen bees.Keywords: apis melifera l, dietary effect, survival and development, honey bee queen
Procedia PDF Downloads 490547 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images
Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj
Abstract:
Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization
Procedia PDF Downloads 135546 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 180545 Application of the Finite Window Method to a Time-Dependent Convection-Diffusion Equation
Authors: Raoul Ouambo Tobou, Alexis Kuitche, Marcel Edoun
Abstract:
The FWM (Finite Window Method) is a new numerical meshfree technique for solving problems defined either in terms of PDEs (Partial Differential Equation) or by a set of conservation/equilibrium laws. The principle behind the FWM is that in such problem each element of the concerned domain is interacting with its neighbors and will always try to adapt to keep in equilibrium with respect to those neighbors. This leads to a very simple and robust problem solving scheme, well suited for transfer problems. In this work, we have applied the FWM to an unsteady scalar convection-diffusion equation. Despite its simplicity, it is well known that convection-diffusion problems can be challenging to be solved numerically, especially when convection is highly dominant. This has led researchers to set the scalar convection-diffusion equation as a benchmark one used to analyze and derive the required conditions or artifacts needed to numerically solve problems where convection and diffusion occur simultaneously. We have shown here that the standard FWM can be used to solve convection-diffusion equations in a robust manner as no adjustments (Upwinding or Artificial Diffusion addition) were required to obtain good results even for high Peclet numbers and coarse space and time steps. A comparison was performed between the FWM scheme and both a first order implicit Finite Volume Scheme (Upwind scheme) and a third order implicit Finite Volume Scheme (QUICK Scheme). The results of the comparison was that for equal space and time grid spacing, the FWM yields a much better precision than the used Finite Volume schemes, all having similar computational cost and conditioning number.Keywords: Finite Window Method, Convection-Diffusion, Numerical Technique, Convergence
Procedia PDF Downloads 333544 Heritage Buildings an Inspiration for Energy Conservation under Solar Control – a Case Study of Hadoti Region of India.
Authors: Abhinav Chaturvedi, Joohi Chaturvedi, Renu Chaturvedi
Abstract:
With rapid urbanization and growth of population, more buildings are require to be constructed to meet the increasing demand of the shelter. 80 % of the world population is living in developing countries, but the adequate energy supplied to only 30% of it. In India situation get little more difficult as majority of the villages of India are still deprived of energy. 1/3 of the Indian household does not have energy supply. So there is big gap between energy demand and supply. Moreover India is producing around 65 % of the energy from Non – Renewable sources and 25 % of the Energy is imported in the form of oil and gas and only 10% of the total, is generated from other sources like solar power, wind power etc. Present modern structures are big energy consumers as they are consuming 40 % of the total energy in providing comfort conditions to the users, in from of heating and cooling,5 % in Building Construction, 20 % in transportation and 20 % in industrial process and 10 % in other processes. If we minimize this Heating and Cooling and lighting load of the building we can conserve huge amount of energy for the future. In history, buildings do not have artificial systems of cooling or heating. These buildings, especially in Hadoti Region which have Semi Arid Climatic conditions, are provided with Solar Passive Design Techniques that is the reason of comfort inside the buildings. So if we use some appropriate elements of these heritage structures, in our present age building design we can find some certain solution to energy crises. Present paper describes Various Solar Passive design techniques used in past, and the same could be used in present to reduce the consumption of energy.Keywords: energy conservation, Hadoti region, solar passive design techniques , semi - arid climatic condition
Procedia PDF Downloads 475543 Effects of SNP in Semen Diluents on Motility, Viability and Lipid Peroxidation of Sperm of Bulls
Authors: Hamid Reza Khodaei, Behnaz Mahdavi, Alireza Banitaba
Abstract:
Nitric oxide (NO) plays an important role in all sexual activities of animals. It is made in body from NO syntheses enzyme and L-arginin molecule. NO can make band with sulfur-iron complexes and due to production of steroid sexual hormones related to enzymes which have this complex, NO can change the activity of these enzymes. NO affects many cells including endothelial cells of veins, macrophages and mast cells. These cells are found in testis leydig cells and therefore are important source of NO in testis tissue. Minimizing damages to sperm at the time of sperm freezing and thawing is really important. The goal of this study was to determine the function of NO before freezing and its effects on quality and viability of sperms after thawing and incubation. 4 Holstein bulls were selected from the age of 4, and artificial insemination was done for 3 weeks (2 times a week). Treatments were 0, 10, 50 and 100 nm of sodium nitroprusside (SNP). Data analysis was performed by SAS98 program. Also, mean comparison was done using Duncan's multiple ranges test (P<0.05). Concentrations used were found to increase motility and viability of spermatozoa at 1, 2 and 3 hours after thawing significantly (P<0.05) but there was no significant difference at zero time. SNP levels reduced the amount of lipid peroxidation in sperm membrane, increased acrosome health and improved samples membranes especially in 50 and 100 nm treatments. According to results, adding SNP to semen diluents increases motility and viability of spermatozoa. Also, it reduces lipid peroxidation in sperm membrane and improves sperm function.Keywords: sperm motility, nitric oxide, lipid peroxidation, spermatozoa
Procedia PDF Downloads 659542 The Effect of Artificial Intelligence on Civil Engineering Outputs and Designs
Authors: Mina Youssef Makram Ibrahim
Abstract:
Engineering identity contributes to the professional and academic sustainability of female engineers. Recognizability is an important factor that shapes an engineer's identity. People who are deprived of real recognition often fail to create a positive identity. This study draws on Hornet’s recognition theory to identify factors that influence female civil engineers' sense of recognition. Over the past decade, a survey was created and distributed to 330 graduate students in the Department of Civil, Civil and Environmental Engineering at Iowa State University. Survey items include demographics, perceptions of a civil engineer's identity, and factors that influence recognition of a civil engineer's identity, such as B. Opinions about society and family. Descriptive analysis of survey responses revealed that perceptions of civil engineering varied significantly. The definitions of civil engineering provided by participants included the terms structure, design and infrastructure. Almost half of the participants said the main reason for studying Civil Engineering was their interest in the subject, and the majority said they were proud to be a civil engineer. Many study participants reported that their parents viewed them as civil engineers. Institutional and operational treatment was also found to have a significant impact on the recognition of women civil engineers. Almost half of the participants reported feeling isolated or ignored at work because of their gender. This research highlights the importance of recognition in developing the identity of women engineers.Keywords: civil service, hiring, merit, policing civil engineering, construction, surveying, mapping, pile civil service, Kazakhstan, modernization, a national model of civil service, civil service reforms, bureaucracy civil engineering, gender, identity, recognition
Procedia PDF Downloads 64541 Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum
Authors: J. Martin, A. Dannenberg, G. Detrell, R. Ewald, S. Fasoulas
Abstract:
Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO2, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting.Keywords: microalgae, illumination, nitrate uptake, flashing light effect
Procedia PDF Downloads 113540 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies
Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel
Abstract:
To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots
Procedia PDF Downloads 527539 Optimization Aluminium Design for the Facade Second Skin toward Visual Comfort: Case Studies & Dialux Daylighting Simulation Model
Authors: Yaseri Dahlia Apritasari
Abstract:
Visual comfort is important for the building occupants to need. Visual comfort can be fulfilled through natural lighting (daylighting) and artificial lighting. One strategy to optimize natural lighting can be achieved through the facade second skin design. This strategy can reduce glare, and fulfill visual comfort need. However, the design strategy cannot achieve light intensity for visual comfort. Because the materials, design and opening percentage of the facade of second skin blocked sunlight. This paper discusses aluminum material for the facade second skin design that can fulfill the optimal visual comfort with the case studies Multi Media Tower building. The methodology of the research is combination quantitative and qualitative through field study observed, lighting measurement and visual comfort questionnaire. Then it used too simulation modeling (DIALUX 4.13, 2016) for three facades second skin design model. Through following steps; (1) Measuring visual comfort factor: light intensity indoor and outdoor; (2) Taking visual comfort data from building occupants; (3) Making models with different facade second skin design; (3) Simulating and analyzing the light intensity value for each models that meet occupants visual comfort standard: 350 lux (Indonesia National Standard, 2010). The result shows that optimization of aluminum material for the facade second skin design can meet optimal visual comfort for building occupants. The result can give recommendation aluminum opening percentage of the facade second skin can meet optimal visual comfort for building occupants.Keywords: aluminium material, Facade, second skin, visual comfort
Procedia PDF Downloads 352538 Categorical Metadata Encoding Schemes for Arteriovenous Fistula Blood Flow Sound Classification: Scaling Numerical Representations Leads to Improved Performance
Authors: George Zhou, Yunchan Chen, Candace Chien
Abstract:
Kidney replacement therapy is the current standard of care for end-stage renal diseases. In-center or home hemodialysis remains an integral component of the therapeutic regimen. Arteriovenous fistulas (AVF) make up the vascular circuit through which blood is filtered and returned. Naturally, AVF patency determines whether adequate clearance and filtration can be achieved and directly influences clinical outcomes. Our aim was to build a deep learning model for automated AVF stenosis screening based on the sound of blood flow through the AVF. A total of 311 patients with AVF were enrolled in this study. Blood flow sounds were collected using a digital stethoscope. For each patient, blood flow sounds were collected at 6 different locations along the patient’s AVF. The 6 locations are artery, anastomosis, distal vein, middle vein, proximal vein, and venous arch. A total of 1866 sounds were collected. The blood flow sounds are labeled as “patent” (normal) or “stenotic” (abnormal). The labels are validated from concurrent ultrasound. Our dataset included 1527 “patent” and 339 “stenotic” sounds. We show that blood flow sounds vary significantly along the AVF. For example, the blood flow sound is loudest at the anastomosis site and softest at the cephalic arch. Contextualizing the sound with location metadata significantly improves classification performance. How to encode and incorporate categorical metadata is an active area of research1. Herein, we study ordinal (i.e., integer) encoding schemes. The numerical representation is concatenated to the flattened feature vector. We train a vision transformer (ViT) on spectrogram image representations of the sound and demonstrate that using scalar multiples of our integer encodings improves classification performance. Models are evaluated using a 10-fold cross-validation procedure. The baseline performance of our ViT without any location metadata achieves an AuROC and AuPRC of 0.68 ± 0.05 and 0.28 ± 0.09, respectively. Using the following encodings of Artery:0; Arch: 1; Proximal: 2; Middle: 3; Distal 4: Anastomosis: 5, the ViT achieves an AuROC and AuPRC of 0.69 ± 0.06 and 0.30 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 10; Proximal: 20; Middle: 30; Distal 40: Anastomosis: 50, the ViT achieves an AuROC and AuPRC of 0.74 ± 0.06 and 0.38 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 100; Proximal: 200; Middle: 300; Distal 400: Anastomosis: 500, the ViT achieves an AuROC and AuPRC of 0.78 ± 0.06 and 0.43 ± 0.11. respectively. Interestingly, we see that using increasing scalar multiples of our integer encoding scheme (i.e., encoding “venous arch” as 1,10,100) results in progressively improved performance. In theory, the integer values do not matter since we are optimizing the same loss function; the model can learn to increase or decrease the weights associated with location encodings and converge on the same solution. However, in the setting of limited data and computation resources, increasing the importance at initialization either leads to faster convergence or helps the model escape a local minimum.Keywords: arteriovenous fistula, blood flow sounds, metadata encoding, deep learning
Procedia PDF Downloads 89537 Self-Organizing Maps for Credit Card Fraud Detection
Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 60536 The Effect of Human Rights Violation in Modern Society
Authors: Hanania Nasan Shokry Abdelmasih
Abstract:
The discipline of regulation is pretty complex and has its own terminology. other than written legal guidelines, there's also dwelling regulation, which refers to prison exercise. primary legal rules purpose at the happiness of individuals in social existence and feature different characteristics in unique branches including public or non-public regulation. on the other hand, law is a countrywide phenomenon. The law of 1 state and the legal device implemented at the territory of another state can be completely exceptional. individuals who are professionals in a specific discipline of regulation in a single united states may have inadequate know-how within the regulation of every other united states. today, similarly to the neighborhood nature of regulation, worldwide and even supranational regulation rules are implemented as a way to defend basic human values and make sure the protection of human rights around the sector. systems that offer algorithmic answers to prison problems using synthetic intelligence (AI) gear will perhaps serve to produce very meaningful consequences in phrases of human rights. but, algorithms to be used need to no longer be evolved with the aid of only pc professionals, however additionally want the contribution of folks who are familiar with law, values, judicial choices, and even the social and political culture of the society to which it'll provide answers. otherwise, even supposing the set of rules works perfectly, it may not be well suited with the values of the society in which it is applied. The present day traits involving using AI techniques in legal systems suggest that artificial law will come to be a brand new subject within the area of law.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 8535 Effect of Season on Semen Production of Nubian and Saanen Bucks in Sudan
Authors: E. A. Babiker, S. A. Makawi
Abstract:
The influence of the season (autumn, winter, and summer) on semen production in Nubian and Saanen bucks was studied. Seven mature bucks (4 Nubian and 3 Saanen) were used in this study to prepare semen samples which were collected with an artificial vagina. The samples were extended in Tris-egg yolk-glycerol-glucose extender, frozen, and stored in liquid nitrogen at –196 0C for 48 hours. Straws were thawed in water at –37 0C for 15 seconds before sperm evaluation (post-thaw sperm motility). There was a significant seasonal variation in both semen quantity (volume, concentration, and the total number of spermatozoa per ejaculate) and quality (percentage of sperm motility, percentage of post-thaw sperm motility, and dead spermatozoa). Greater ejaculate volumes were observed during summer and autumn in comparison to winter. Higher values of sperms concentration were observed during autumn, while the lowest sperm concentration values were observed during summer. Higher values of sperm motility were observed during autumn in comparison to summer. Lower values of dead spermatozoa were recorded during autumn, while the highest percentages of dead spermatozoa were observed during summer for the two breeds of bucks. The influence of season on post-thaw sperm motility was significant. Semen frozen during autumn and winter had the highest values, while during summer, lower mean values were observed. The best semen was produced during autumn and winter, while during summer, poor semen quality was recorded.Keywords: season, Nubian, Saanen, semen production, Sudan
Procedia PDF Downloads 114534 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards
Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia
Abstract:
Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.Keywords: aquaponics, deep learning, internet of things, vermiponics
Procedia PDF Downloads 72533 The Effect of Artificial Intelligence on Food and Beverages
Authors: Remon Karam Zakry Kelada
Abstract:
This survey research ambitions to examine the usual of carrier quality of meals and beverage provider staffs in lodge business by way of studying the carrier fashionable of 3 pattern inns, Siam Kempinski lodge Bangkok, four Seasons lodge Chiang Mai, and Banyan Tree Phuket. as a way to locate the international provider general of food and beverage provider, triangular research, i.e. quantitative, qualitative, and survey were hired. on this research, questionnaires and in-depth interview have been used for getting the statistics on the sequences and method of services. There had been three components of modified questionnaires to degree carrier pleasant and visitor’s satisfaction inclusive of carrier facilities, attentiveness, obligation, reliability, and circumspection. This observe used pattern random sampling to derive topics with the go back fee of the questionnaires changed into 70% or 280. information have been analyzed via SPSS to find mathematics mean, SD, percent, and comparison by using t-take a look at and One-manner ANOVA. The outcomes revealed that the service first-rate of the three lodges have been in the worldwide stage that could create excessive pride to the international clients. hints for studies implementations have been to hold the area of precise carrier satisfactory, and to enhance some dimensions of service fine together with reliability. training in service fashionable, product expertise, and new generation for employees must be provided. furthermore, for you to develop the provider pleasant of the enterprise, training collaboration among inn corporation and academic institutions in food and beverage carrier should be considered.Keywords: food and beverage staff, food poisoning, food production, hygiene knowledge BPA, health, regulations, toxicity service standard, food and beverage department, sequence of service, service method
Procedia PDF Downloads 37532 Self-Organizing Maps for Credit Card Fraud Detection and Visualization
Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 60531 Associated Factors the Safety of the Patient in Hemodialysis Clinics of a Brazilian Municipality: Cross-Sectional Study
Authors: Magda Milleyde de Sousa Lima, Letícia Lima Aguiar, Marina Guerra Martins, Erika Veríssimo Dias Sousa, Lizandra Sampaio de Oliveira, Lívia Moreira Barros, Joselany Áfio Caetano
Abstract:
Patients with chronic kidney disease are vulnerable to episodes which make the safety of their health vulnerable, mainly due to the treatment process that exposes them to high rates of interventions during hemodialysis sessions. Some factors associated with health care contribute to the risk of death and complications. However, there are a small number of scientific studies evaluating the level of safety of hemodialysis clinics, and the sociodemographic characteristics of patients and professionals associated with this safety. Therefore, the present study aims to examine the level of patient safety in hemodialysis clinics in the Brazilian capital, to identify the sociodemographic and clinical factors of patients and nursing staff associated with the level of safety. This is an observational, descriptive and quantitative research conducted in three hemodialysis clinics placed in the city of Fortaleza-CE, Brazil, from September to November 2019. The sample was formed after a sample calculation for finite inhabitants of correlation with 200 chronic renal patients, 30 nursing technicians and seven nurses. Conventional sampling was used based on the inclusion criteria: being present at the hemodialysis session on the day the researcher performed the data collection and being 18 years of age or older. Participants who presented communication difficulties to listen to and/or answer the sociodemographic and clinical questionnaire were excluded. Two instruments were applied: sociodemographic and clinical characterization form and Chronic Renal Patient Safety Assessment Scale on Hemodialysis (EASPRCH). The data were analyzed using the Kruskal Walls Test for categorical variables and Spearman correlation coefficient for non-categorical variables, using the Statistical Package SPSS version 20.0. The present study respected the ethical and legal principles determined by resolution 466/2012 of the National Health Council, under the approval of the Ethics and Research Committee with an opinion number: 3,255,635. The results showed that a hemodialysis clinic presented unsafe care practices of 32 points in the EASPRCH (p=0.001). A statistical association was identified between the level of safety and the variables of the patients: level of education (p=0.018), family income (p=0.049), type of employment (p=0.012), venous access site (p=0.009), use of medication during the session (p=0.008) and time of hemodialysis (p=0.002). When evaluating the profile of nurses, a statistical association was evidenced between the level of safety with the variables: marital status (p=0.000), race (p=0.017), schooling (p= 0.000), income (p=0.013), age (p=0.000), clinic workload (p=0.000), time working with hemodialysis (p=0.000), time working in the clinic (p= 0.007) and clinic sizing (p=0.000). In order, the sociodemographic factors of nursing technicians associated with the level of patient safety were: race (p= 0.001) and weekly workload at (p=0.010). Therefore, it is concluded that there is a non-conformity in the level of patient safety in one of the clinics studied and, that sociodemographic and clinical factors of patients and health professionals corroborate the level of safety of the health unit.Keywords: hemodialysis, nursing, patient safety, quality improvement
Procedia PDF Downloads 196530 Anyword: A Digital Marketing Tool to Increase Productivity in Newly Launching Businesses
Authors: Jana Atteah, Wid Jan, Yara AlHibshi, Rahaf AlRougi
Abstract:
Anyword is an AI copywriting tool that helps marketers create effective campaigns for specific audiences. It offers a wide range of templates for various platforms, brand voice guidelines, and valuable analytics insights. Anyword is used by top global companies and has been recognized as one of the "Fastest Growing Products" in the 2023 software awards. A recent study examined the utilization and impact of AI-powered writing tools, specifically focusing on the adoption of AI in writing pursuits and the use of the Anyword platform. The results indicate that a majority of respondents (52.17%) had not previously used Anyword, but those who had were generally satisfied with the platform. Notable productivity improvements were observed among 13% of the participants, while an additional 34.8% reported a slight increase in productivity. A majority (47.8%) maintained a neutral stance, suggesting that their productivity remained unaffected. Only a minimal percentage (4.3%) claimed that their productivity did not improve with the usage of Anyword AI. In terms of the quality of written content generated, the participants responded positively. Approximately 91% of participants gave Anyword AI a score of 5 or higher, with roughly 17% giving it a perfect score. A small percentage (approximately 9%) gave a low score between 0-2. The mode result was a score of 7, indicating a generally positive perception of the quality of content generated using Anyword AI. These findings suggest that AI can contribute to increased productivity and positively influence the quality of written content. Further research and exploration of AI tools in writing pursuits are warranted to fully understand their potential and limitations.Keywords: artificial intelligence, marketing platforms, productivity, user interface
Procedia PDF Downloads 64529 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models
Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur
Abstract:
In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity
Procedia PDF Downloads 69528 Determination of a Novel Artificial Sweetener Advantame in Food by Liquid Chromatography Tandem Mass Spectrometry
Authors: Fangyan Li, Lin Min Lee, Hui Zhu Peh, Shoet Harn Chan
Abstract:
Advantame, a derivative of aspartame, is the latest addition to a family of low caloric and high potent dipeptide sweeteners which include aspartame, neotame and alitame. The use of advantame as a high-intensity sweetener in food was first accepted by Food Standards Australia New Zealand in 2011 and subsequently by US and EU food authorities in 2014, with the results from toxicity and exposure studies showing advantame poses no safety concern to the public at regulated levels. To our knowledge, currently there is barely any detailed information on the analytical method of advantame in food matrix, except for one report published in Japanese, stating a high performance liquid chromatography (HPLC) and liquid chromatography/ mass spectrometry (LC-MS) method with a detection limit at ppm level. However, the use of acid in sample preparation and instrumental analysis in the report raised doubt over the reliability of the method, as there is indication that stability of advantame is compromised under acidic conditions. Besides, the method may not be suitable for analyzing food matrices containing advantame at low ppm or sub-ppm level. In this presentation, a simple, specific and sensitive method for the determination of advantame in food is described. The method involved extraction with water and clean-up via solid phase extraction (SPE) followed by detection using liquid chromatography tandem mass spectrometry (LC-MS/MS) in negative electrospray ionization mode. No acid was used in the entire procedure. Single laboratory validation of the method was performed in terms of linearity, precision and accuracy. A low detection limit at ppb level was achieved. Satisfactory recoveries were obtained using spiked samples at three different concentration levels. This validated method could be used in the routine inspection of the advantame level in food.Keywords: advantame, food, LC-MS/MS, sweetener
Procedia PDF Downloads 477527 Low Impact Development Strategies Applied in the Water System Planning in the Coastal Eco-Green Campus
Authors: Ying Li, Zaisheng Hong, Weihong Wang
Abstract:
With the rapid enlargement of the size of Chinese universities, newly built campuses are springing up everywhere in recent years. It is urged to build eco-green campus because the role of higher education institutions in the transition to a more sustainable society has been highlighted for almost three decades. On condition that a new campus is usually built on an undeveloped site, where the basic infrastructure is not completed, finding proper strategies in planning and design of the campus becomes a primary concern. Low Impact Development (LID) options have been proposed as an alternative approach to make better use of rainwater in planning and design of an undeveloped site. On the basis of analyzing the natural circumstance, geographic condition, and other relative information, four main LID approaches are coordinated in this study of Hebei Union University, which are ‘Storage’, ‘Retaining’, ‘Infiltration’ and ‘Purification’. ‘Storage’ refers to a big central lake in the campus for rainwater harvesting. ‘Retaining’ means rainwater gardens scattered in the campus, also being known as bioretention areas which mimic the naturally created pools of water, to decrease surface flow runoff. ‘Infiltration’ is designed of grassed swales, which also play a part of floodway channel. ‘Purification’ is known as either natural or artificial wetland to reduce pollutants such as nitrogen and phosphorous in the waterbody. With above mentioned measures dealing with the synthetic use of rainwater in the acid & alkali area in the coastal district, an eco-green campus construction and an ecological sustainability will be realized, which will give us more enlightenment and reference.Keywords: newly built campus, low impact development, planning design, rainwater reuse
Procedia PDF Downloads 249