Search results for: zinc based metal matrix composites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31157

Search results for: zinc based metal matrix composites

29207 Amorphous Aluminophosphates: An Insight to the Changes in Structural Properties and Catalytic Activity by the Incorporation of Transition Metals

Authors: A. Hamza, H. Kathyayini, N. Nagaraju

Abstract:

Aluminophosphates, both amorphous and crystalline materials find applications as adsorbents, ceramics, and pigments and as catalysts/catalyst supports in organic fine chemical synthesis. Most of the applications are varied depending on the type of metal incorporated, particle size, surface area, porosity and morphology of aluminophosphate. The porous and surface properties of these materials are normally fine-tuned by adopting various preparation methodologies. Numerous crystalline microporous and mesoporous aluminophosphates and metal-aluminophosphates have been reported in literature, in which the synthesis has been carried out by using structure directing organic molecules/surfactants. In present work, amorphous aluminophosphate (AlP) and metal-aluminophosphates MAlP (M = Cu, Zn, Cr, Fe, Ce and Zr) and their mixed forms M-1M2AlP are prepared under a typical precipitation condition, i.e. at low temperature in order to keep the Von-Weirmann relative super saturation of the precipitating medium and obtain small size precipitate particles. These materials are prepared without using any surfactants. All materials are thoroughly characterised for surface and bulk properties by N2 adsorption-desorption technique, XRD, FT-IR, TG and SEM. The materials are also analysed for the amount and the strength of their surface acid sites, by NH3-TPD and CO2-TPD techniques respectively. All the materials prepared in the work are investigated for their catalytic activity in following applications in the synthesis of industrially important Jasminaldehyde via, aldol condensation of n-heptanal and benzaldehyde, in the synthesis of biologically important chalcones by Claisen-shmidth condensation of benzaldehyde and substituted chalcones. The effect of the amount of the catalysts, duration of the reaction, temperature of the reaction, molar ratio of the reactants has been studied. The porosity of pure aluminophosphate is found to be changed significantly by the incorporation of transition metals during preparation of aluminophosphate. The pore size increased from microporous to mesoporous and finally to macroporous by following order of metals Cu = Zn < Cr < Ce < Fe = Zr. The change in surface area and porosity of double metal-aluminophosphates depended on the concentration of both the metals. The acidity of aluminophosphate is either increased or decreased which depended on the type and valence of metals loaded. A good number of basic sites are created in metal-aluminophosphates irrespective of the metals used. A maximum catalytic activity for synthesis of both jasminaldehyde and chalcone is obtained by FeAlP as catalysts; these materials are characterized by decreased strength and concentration of acidic sites with optimum level basic sites.

Keywords: amorphous metal-aluminophosphates, surface properties, acidic-basic properties, Aldol, Claisen-Shmidth condensation, jasminaldehyde, chalcone

Procedia PDF Downloads 287
29206 Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems

Authors: Baba Mbaye

Abstract:

In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies.

Keywords: visitor cold start, recommender systems, collaborative filtering, semantic filtering

Procedia PDF Downloads 206
29205 Chaos Analysis of a 3D Finance System and Generalized Synchronization for N-Dimension

Authors: Muhammad Fiaz

Abstract:

The article in hand is the study of complex features like Zero Hopf Bifurcation, Chaos and Synchronization of integer and fractional order version of a new 3D finance system. Trusted tools of averaging theory and active control method are utilized for investigation of Zero Hopf bifurcation and synchronization for both versions respectively. Inventiveness of the paper is to find the answer of a question that is it possible to find a chaotic system which can be synchronized with any other of the same dimension? Based on different examples we categorically develop a theory that if a couple of master and slave chaotic dynamical system is synchronized by selecting a suitable gain matrix with special conditions then the master system is synchronized with any chaotic dynamical system of the same dimension. With the help of this study we developed generalized theorems for synchronization of n-dimension dynamical systems for integer as well as fractional versions. it proposed that this investigation will contribute a lot to control dynamical systems and only a suitable gain matrix with special conditions is enough to synchronize the system under consideration with any other chaotic system of the same dimension. Chaotic properties of fractional version of the new finance system are also analyzed at fractional order q=0.87. Simulations results, where required, also provided for authenticity of analytical study.

Keywords: complex analysis, chaos, generalized synchronization, control dynamics, fractional order analysis

Procedia PDF Downloads 46
29204 Effect of Germination on Nutritional Values of Isolates from Two Varieties (DAS and BS) of Under-Utilized Nigerian Cultivated Solojo Cowpea (Vigna Unguiculata L. Walp)

Authors: Henry O. Chibudike, Olubamike A. Adeyoju, Bolanle O. Oluwole, Kayode O. Adebowale, Bamidele I. Olu-Owolabi, Chinedum E. Chibudike

Abstract:

Studies on the Mineral Content of Solojo Flour and Protein Isolates from the two varieties (DAS and BS) of Nigeria cultivated solojo cowpeas were conducted to determine their nutritional value. These inorganic elements or minerals were classified into 3 categories: the ultra-trace minerals, which are the third category; the microelements, also known as the trace minerals, in the second category; while the first category is the macro elements, also known as major minerals. Some of the macro-elements are Ca, P, Na and Cl; the second category, micro-elements include iron, copper, cobalt, potassium, magnesium, iodine, zinc, manganese, molybdenum, F, Cr, Se and S. Results show that the proportion of Sodium (Na) which is ingested into the body in the form of NaCl through food intake maintenance of body pH and to retain water ranged from 728.97 to 253.37 ppm (72.90 to 25.34 mg/100 g); 715.24 to 235.45 ppm; 735.28 to 270.37 ppm; 726.59 to 264.35ppm, for FFDAS, FFBS, DAS and BS respectively with all values of the germinated samples all bellow the control. While FFDAS iron content ranged from 4.25 to 13.50 mg/100 g; FFBS ranged from 3.15 to 12.56 mg/100 g; DAS ranged from 3.81 to 12.90 mg/100g; BS ranged from 3.42 to 9.40 mg/100 g. The values of the germinated flours were all greater than the ungerminated flour. Iron helps to transport oxygen round the body and also helps in red blood cells building and to convert food into needed energy by the body. While Manganese an element that is needed in micro quantity but necessary to convert food into energy, is also crucial for healthy bone and cartilage creation. Results also show that zinc quantity increased as germination proceeded, and the values ranged from 38.80 ppm to 230.00 ppm (3.880 mg/100 g to 23.00 mg/100 g; 0.003880% to 0.0230%); 40.84 to 250.01 ppm; 32.85 to 93.41 ppm; 37.07 to 115.00 ppm, for FFDAS, FFBS, DAS and BS respectively. The Ca content improved significantly (p<0.05) with sprouting; the value extended from 250.56 ppm to 760.03 ppm (25.056 to 76.00 mg/100g or 0.0251 to 0.0760 %); 400.40 to 998.22 ppm; 116.87 to 195.69 ppm; 113.48 to 220.75 ppm, for FFDAS, FFBS, DAS and BS respectively. Zinc element although needed at the micro level in the body, is essential for a strong immune system to keep the body in good health. It is also crucial for the maintenance of a healthy sense of taste and odor, while Calcium is critical for strong bones and teeth, blood coagulation, and muscle tightening and relaxation. Magnesium is needed to build enzymes and antioxidants and also for healthy bones, while Potassium is needed to maintain water balance, muscle movement, and nerve impulses. It functions in conjunction with Na to regulate blood pressure.

Keywords: Solojo cowpea, underutilized legumes, protein isolates, BS, DAS, ungerminated

Procedia PDF Downloads 43
29203 A Kinetic Study of Radical Polymerisation of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures

Authors: A. Bouriche, D. Merah, T. Bouchaour, L. Alachaher-Bedjaoui, U. Maschke

Abstract:

Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of mono functional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiator, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light.

Keywords: acrylic monomers, films PDLC, liquid crystal, polymerisation

Procedia PDF Downloads 284
29202 Effect of Molecular Weight Distribution on Toughening Performance of Polybutadiene in Polystyrene

Authors: Mohamad Mohsen Yavarizadeh

Abstract:

Polystyrene (PS) and related homopolymers are brittle materials that typically fail in tensile tests at very low strains. These polymers can be toughened by the addition of rubbery particles which initiate a large number of crazes that produce substantial plastic strain at relatively low stresses. Considerable energy is dissipated in the formation of these crazes, producing a relatively tough material that shows an impact toughness of more than 5 times of pure PS. While cross linking of rubbery phase is necessary in aforementioned mechanism of toughening, another mechanism of toughening was also introduced in which low molecular weight liquid rubbers can also toughen PS when dispersed in the form of small pools in the glassy matrix without any cross linking. However, this new mechanism which is based on local plasticization, fails to act properly at high strain rate deformations, i.e. impact tests. In this work, the idea of combination of these two mechanisms was tried. To do so, Polybutadiene rubbers (PB) with bimodal distribution of molecular weight were prepared in which, comparable fractions of very high and very low molecular weight rubbers were mixed. Incorporation of these materials in PS matrix in a reactive process resulted in more significant increases in toughness of PS. In other words, although low molecular weight PB is ineffective in high strain rate impact test by itself, it showed a significant synergistic effect when combined with high molecular weight PB. Surprisingly, incorporation of just 10% of low molecular weight PB doubled the impact toughness of regular high impact PS (HIPS). It was observed that most of rubbery particles could initiate crazes. The effectiveness of low molecular weight PB in impact test was attributed to low strain rate deformation of each individual craze as a result of producing a large number of crazes in this material. In other words, high molecular weight PB chains make it possible to have an appropriate dispersion of rubbery phase in order to create a large number of crazes in the PS matrix and consequently decrease the velocity of each craze. Low molecular weight PB, in turn, would have enough time to locally plasticize craze fibrils and enhance the energy dissipation.

Keywords: molecular weight distribution, polystyrene, toughness, homopolymer

Procedia PDF Downloads 431
29201 Optimization of Hot Metal Charging Circuit in a Steel Melting Shop Using Industrial Engineering Techniques for Achieving Manufacturing Excellence

Authors: N. Singh, A. Khullar, R. Shrivastava, I. Singh, A. S. Kumar

Abstract:

Steel forms the basis of any modern society and is essential to economic growth. India’s annual crude steel production has seen a consistent increase over the past years and is poised to grow to 300 million tons per annum by 2030-31 from current level of 110-120 million tons per annum. Steel industry is highly capital-intensive industry and to remain competitive, it is imperative that it invests in operational excellence. Due to inherent nature of the industry, there is large amount of variability in its supply chain both internally and externally. Production and productivity of a steel plant is greatly affected by the bottlenecks present in material flow logistics. The internal logistics constituting of transport of liquid metal within a steel melting shop (SMS) presents an opportunity in increasing the throughput with marginal capital investment. The study was carried out at one of the SMS of an integrated steel plant located in the eastern part of India. The plant has three SMS’s and the study was carried out at one of them. The objective of this study was to identify means to optimize SMS hot metal logistics through application of industrial engineering techniques. The study also covered the identification of non-value-added activities and proposed methods to eliminate the delays and improve the throughput of the SMS.

Keywords: optimization, steel making, supply chain, throughput enhancement, workforce productivity

Procedia PDF Downloads 103
29200 Assessment of Water Reuse Potential in a Metal Finishing Factory

Authors: Efe Gumuslu, Guclu Insel, Gülten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tuğba Olmez Hanci, Didem Okutman Tas, Fatoş Germirli Babuna, Derya Firat Ertem, Ökmen Yildirim, Özge Erturan, Betül Kirci

Abstract:

Although water reclamation and reuse are inseparable parts of sustainable production concept all around the world, current levels of reuse constitute only a small fraction of the total volume of industrial effluents. Nowadays, within the perspective of serious climate change, wastewater reclamation and reuse practices should be considered as a requirement. Industrial sector is one of the largest users of water sources. The OECD Environmental Outlook to 2050 predicts that global water demand for manufacturing will increase by 400% from 2000 to 2050 which is much larger than any other sector. Metal finishing industry is one of the industries that requires high amount of water during the manufacturing. Therefore, actions regarding the improvement of wastewater treatment and reuse should be undertaken on both economic and environmental sustainability grounds. Process wastewater can be reused for more purposes if the appropriate treatment systems are installed to treat the wastewater to the required quality level. Recent studies showed that membrane separation techniques may help in solving the problem of attaining a suitable quality of water that allows being recycled back to the process. The metal finishing factory where this study is conducted is one of the biggest white-goods manufacturers in Turkey. The sheet metal parts used in the cookers production have to be exposed to surface pre-treatment processes composed of degreasing, rinsing, nanoceramics coating and deionization rinsing processes, consecutively. The wastewater generating processes in the factory are enamel coating, painting and styrofoam processes. In the factory, the main source of water is the well water. While some part of the well water is directly used in the processes after passing through resin treatment, some portion of it is directed to the reverse osmosis treatment to obtain required water quality for enamel coating and painting processes. In addition to these processes another important source of water that can be considered as a potential water source is rainwater (3660 tons/year). In this study, process profiles as well as pollution profiles were assessed by a detailed quantitative and qualitative characterization of the wastewater sources generated in the factory. Based on the preliminary results the main water sources that can be considered for reuse in the processes were determined as painting and styrofoam processes.

Keywords: enamel coating, painting, reuse, wastewater

Procedia PDF Downloads 364
29199 A Comparative Study of Force Prediction Models during Static Bending Stage for 3-Roller Cone Frustum Bending

Authors: Mahesh Chudasama, Harit Raval

Abstract:

Conical sections and shells of metal plates manufactured by 3-roller conical bending process are widely used in the industries. The process is completed by first bending the metal plates statically and then dynamic roller bending sequentially. It is required to have an analytical model to get maximum bending force, for optimum design of the machine, for static bending stage. Analytical models assuming various stress conditions are considered and these analytical models are compared considering various parameters and reported in this paper. It is concluded from the study that for higher bottom roller inclination, the shear stress affects greatly to the static bending force whereas for lower bottom roller inclination it can be neglected.

Keywords: roller-bending, static-bending, stress-conditions, analytical-modeling

Procedia PDF Downloads 234
29198 Feasibility Studies on the Removal of Fluoride from Aqueous Solution by Adsorption Using Agro-Based Waste Materials

Authors: G. Anusha, J. Raja Murugadoss

Abstract:

In recent years, the problem of water contaminant is drastically increasing due to the disposal of industrial wastewater containing iron, fluoride, mercury, lead, cadmium, phosphorus, silver etc. into water bodies. The non-biodegradable heavy metals could accumulate in the human system through food chain and cause various dreadful diseases and permanent disabilities and in worst cases it leads to casual losses. Further, the presence of the excess quantity of such heavy metals viz. Lead, Cadmium, Chromium, Nickel, Zinc, Copper, Iron etc. seriously affect the natural quality of potable water and necessitates the treatment process for removal. Though there are dozens of standard procedures available for the removal of heavy metals, their cost keeps the industrialists away from adopting such technologies. In the present work, an attempt has been made to remove such contaminants particularly fluoride and to study the efficiency of the removal of fluoride by adsorption using a new agro-based materials namely Limonia acidissima and Emblica officinalis which is commonly referred as wood apple and gooseberry respectively. Accordingly a set of experiments has been conducted using batch and column processes, with the help of activated carbon prepared from the shell of wood apple and seeds of gooseberries. Experiments reveal that the adsorption capacity of the shell of wood apple is significant to yield promising solutions.

Keywords: adsorption, fluoride, agro-based waste materials, Limonia acidissima, Emblica officinalis

Procedia PDF Downloads 417
29197 Energy-efficient Buildings In Construction Industry Using Fly Ash-based Geopolymer Technology

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of nanoparticles additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of nanoparticles flexural strength, water absorption, and micro-structural properties of the cured samples. The results revealed that the inclusion of nanoparticles additive significantly enhanced the mechanical and electrical properties of the geopolymer binder. Micro-structural analysis using scanning electron microscopy (SEM) revealed a more compact and homogeneous structure in the geopolymer samples with nanoparticles. The dispersion of nanoparticles particles within the geopolymer matrix was observed, suggesting improved inter-particle bonding and increased density. Overall, this study demonstrates the positive impact of nanoparticles additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications for the development of construction and infrastructure for energy buildings.

Keywords: fly-ash, geopolymer, energy buildings, nanotechnology

Procedia PDF Downloads 73
29196 Chelator-assisted Phytoextraction of Nickel from Nickeliferous Lateritic Soil by Phyllanthus sp. nov.

Authors: Grecco M. Ante, Princess Rochelle O. Gan

Abstract:

Plants that can absorb greater than 10,000 µg Ni/g dry mass in their stems and leaves are termed as ‘hypernickelophores’. Chelators are chemicals that make the metals in the soil more soluble, making them a potential enhancer for phytoextraction. This study aims to observe the effect of different concentrations of the chelating agent ethylene diamine tetraacetate (EDTA) on the metal uptake (or rate of phytoextraction) of Nickel by Phyllanthus sp. nov. The plant is found to be a hyperickelophore in normal conditions. The addition of EDTA increased the metal uptake of the plant. The increasing amount of the chelating agent causes a decrease in the phytoextraction of the plant but moves the onset of its peak of maximum nickel content in its tissue to an earlier time. The chelator-assisted phytoextraction of nickel by Phyllanthus sp. nov. is proven to be an efficient auxiliary mining operation for nickel laterite mines.

Keywords: phytomining, Phyllanthus sp. nov., EDTA, nickel, laterite

Procedia PDF Downloads 442
29195 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 71
29194 Spectral Properties of Fiber Bragg Gratings

Authors: Y. Hamaizi, H. Triki, A. El-Akrmi

Abstract:

In this paper, the reflection spectra, group delay and dispersion of a uniform fiber Bragg grating (FBG) are obtained. FBGs with two types of apodized variations of the refractive index were modeled to show how the side-lobes can be suppressed. Apodization techniques are used to get optimized reflection spectra. The simulation is based on solving coupled mode equations together with the transfer matrix method.

Keywords: fiber bragg gratings, coupled-mode theory, reflectivity, apodization

Procedia PDF Downloads 691
29193 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement

Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang

Abstract:

Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.

Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement

Procedia PDF Downloads 171
29192 Engineering Microstructural Evolution during Arc Wire Directed Energy Deposition of Magnesium Alloy (AZ31)

Authors: Nivatha Elangovan, Lakshman Neelakantan, Murugaiyan Amirthalingam

Abstract:

Magnesium and its alloys are widely used for various lightweight engineering and biomedical applications as they render high strength to low weight ratio and excellent corrosion resistance. These alloys possess good bio-compatibility and similar mechanical properties to natural bone. However, manufacturing magnesium alloy components by conventional formative and subtractive methods is challenging due to their poor castability, oxidation potential, and machinability. Therefore, efforts are made to produce complex-design containing magnesium alloy components by additive manufacturing (AM). Arc-wire directed energy deposition (AW-DED), also known as wire arc additive manufacturing (WAAM), is more attractive to produce large volume components with increased productivity than any other AM technique. In this research work, efforts were made to optimise the deposition parameters to build thick-walled (about 10 mm) AZ31 magnesium alloy components by a gas metal arc (GMA) based AW-DED process. By using controlled dip short-circuiting metal transfer in a GMA process, depositions were carried out without defects and spatter formation. Current and voltage waveforms were suitably modified to achieve stable metal transfer. Moreover, the droplet transfer behaviour was analysed using high-speed image analysis and correlated with arc energy. Optical and scanning electron microscopy analyses were carried out to correlate the influence of deposition parameters with the microstructural evolution during deposition. The investigation reveals that by carefully controlling the current-voltage waveform and droplet transfer behaviour, it is possible to stabilise equiaxed grain microstructures in the deposited AZ31 components. The printed component exhibited an improved mechanical property as equiaxed grains improve the ductility and enhance the toughness. The equiaxed grains in the component improved the corrosion-resistant behaviour of other conventionally manufactured components.

Keywords: arc wire directed energy deposition, AZ31 magnesium alloy, equiaxed grain, corrosion

Procedia PDF Downloads 106
29191 Visualization and Performance Measure to Determine Number of Topics in Twitter Data Clustering Using Hybrid Topic Modeling

Authors: Moulana Mohammed

Abstract:

Topic models are widely used in building clusters of documents for more than a decade, yet problems occurring in choosing optimal number of topics. The main problem is the lack of a stable metric of the quality of topics obtained during the construction of topic models. The authors analyzed from previous works, most of the models used in determining the number of topics are non-parametric and quality of topics determined by using perplexity and coherence measures and concluded that they are not applicable in solving this problem. In this paper, we used the parametric method, which is an extension of the traditional topic model with visual access tendency for visualization of the number of topics (clusters) to complement clustering and to choose optimal number of topics based on results of cluster validity indices. Developed hybrid topic models are demonstrated with different Twitter datasets on various topics in obtaining the optimal number of topics and in measuring the quality of clusters. The experimental results showed that the Visual Non-negative Matrix Factorization (VNMF) topic model performs well in determining the optimal number of topics with interactive visualization and in performance measure of the quality of clusters with validity indices.

Keywords: interactive visualization, visual mon-negative matrix factorization model, optimal number of topics, cluster validity indices, Twitter data clustering

Procedia PDF Downloads 119
29190 GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK

Authors: Zahid O. Alibrahim, Craig D. Williams, Clive L. Roberts

Abstract:

The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.

Keywords: enrichment factor, geoaccumulation index, GIS, heavy metals, multivariate analysis

Procedia PDF Downloads 338
29189 Uncertainty Quantification of Corrosion Anomaly Length of Oil and Gas Steel Pipelines Based on Inline Inspection and Field Data

Authors: Tammeen Siraj, Wenxing Zhou, Terry Huang, Mohammad Al-Amin

Abstract:

The high resolution inline inspection (ILI) tool is used extensively in the pipeline industry to identify, locate, and measure metal-loss corrosion anomalies on buried oil and gas steel pipelines. Corrosion anomalies may occur singly (i.e. individual anomalies) or as clusters (i.e. a colony of corrosion anomalies). Although the ILI technology has advanced immensely, there are measurement errors associated with the sizes of corrosion anomalies reported by ILI tools due limitations of the tools and associated sizing algorithms, and detection threshold of the tools (i.e. the minimum detectable feature dimension). Quantifying the measurement error in the ILI data is crucial for corrosion management and developing maintenance strategies that satisfy the safety and economic constraints. Studies on the measurement error associated with the length of the corrosion anomalies (in the longitudinal direction of the pipeline) has been scarcely reported in the literature and will be investigated in the present study. Limitations in the ILI tool and clustering process can sometimes cause clustering error, which is defined as the error introduced during the clustering process by including or excluding a single or group of anomalies in or from a cluster. Clustering error has been found to be one of the biggest contributory factors for relatively high uncertainties associated with ILI reported anomaly length. As such, this study focuses on developing a consistent and comprehensive framework to quantify the measurement errors in the ILI-reported anomaly length by comparing the ILI data and corresponding field measurements for individual and clustered corrosion anomalies. The analysis carried out in this study is based on the ILI and field measurement data for a set of anomalies collected from two segments of a buried natural gas pipeline currently in service in Alberta, Canada. Data analyses showed that the measurement error associated with the ILI-reported length of the anomalies without clustering error, denoted as Type I anomalies is markedly less than that for anomalies with clustering error, denoted as Type II anomalies. A methodology employing data mining techniques is further proposed to classify the Type I and Type II anomalies based on the ILI-reported corrosion anomaly information.

Keywords: clustered corrosion anomaly, corrosion anomaly assessment, corrosion anomaly length, individual corrosion anomaly, metal-loss corrosion, oil and gas steel pipeline

Procedia PDF Downloads 295
29188 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency

Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu

Abstract:

In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.

Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal

Procedia PDF Downloads 133
29187 Phase Equilibria in the Ln-Sr-Co-O Systems

Authors: Anastasiia Maklakova

Abstract:

The perovskite type oxides formed in the Ln-Me-Me/-O systems (where Ln – rare-earth, Me – alkaline earth metal, Me/ - 3-d metal) have potential applications as gas sensors, catalysts or cathode materials for IT-SOFCs due to the high values of mixed electronic -ionic conductivity and high oxygen diffusivity. Complex oxides in the Sr-(Pr,Gd)-Co-O systems were prepared via the glycerol-nitrate technique The phase composition was determined using a Shimadzu XRD-7000 diffractometer at room temperature in air. Phase identification was performed using the ICDD database. The structure was refined by the full-profile Rietveld method using Fullprof 2008 software. Gradual substitution of strontium by Pr or Gd leads to the decrease of unit cell parameters and unit cell volume that can be explained by the size factor. An introduction of Pr or Gd into the strontium cobaltite increases the oxygen content in samples.

Keywords: phase equilibria, crystal structure, oxygen nonstoichiometry, solid oxide fuel cell

Procedia PDF Downloads 103
29186 Theoretical Research for Influence of Irradiation on Transient Creep of Metals

Authors: Pavlo Selyshchev, Tetiana Didenko

Abstract:

Via formalism of the Complex systems and in the framework of the climb - glide model a theoretical approach to describe the influence of irradiation on transient creep of metals. We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion that consists in climb and glide. It is shown that there are qualitatively different regimes of a creep as a result of irradiation. Simulation and analysis of this phenomenon are performed. The time dependence of creep rate of metal under an irradiation is theoretically obtained. The conditions of zero minimums of the creep-rate existence as well as the times of their appearance are determined. The changing of the position of creep-rate dips in the conditions of the temperature exposure change is investigated. The obtained results are compared with the experimentally observed dependence of the creep rate on time.

Keywords: creep, climb and glide of dislocations, irradiation, non-linear feed-back, point defects

Procedia PDF Downloads 187
29185 Biosorption of Heavy Metals from Aqueous Solutions by Plant Biomass

Authors: Yamina Zouambia, Khadidja Youcef Ettoumi, Mohamed Krea, Nadji Moulai Mostefa

Abstract:

Environment pollution through various wastes (particularly by heavy metals) is a major environmental problem due to industrialization and the development of various human activities. Considerable attention has been focused, in recent years, upon the field of biosorption which represents a biotechnological innovation as well as an excellent tool for removal of metal ions from aqueous effluents. So the purpose of this study is to valorize by-product which are orange peels and an extract of these peels (pectin; a heteropolysaccharide) in treatment of water containing heavy metals. All biosorption experiments were carried out at room temperature, an indicated pH, a precise amount of biosorbent and under continuous stirring. Biosorption kinetic was determined by evaluating the residual concentration of the metal ion at different time intervals using UV spectroscopy. The results obtained show that the orange peels and pectin are interesting biosorbents with maximum biosorption capacity of up to 140 mg/g.

Keywords: orange peels, pectin, heavy metals, biosorption

Procedia PDF Downloads 319
29184 Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures

Authors: L. Mentar, O. Baka, M. R. Khelladi, A. Azizi

Abstract:

Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.

Keywords: Cl-, electro-deposition, FESEM, Mott-Schottky, XRD, ZnO

Procedia PDF Downloads 275
29183 Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk

Authors: Masbubul Ishtiaque Ahmed

Abstract:

Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity.

Keywords: food chain, determine the levels of minerals, trace elements, heavy metals, production and use, human exposure, toxicity, carcinogenicity

Procedia PDF Downloads 266
29182 Cold Metal Transfer Welding of Dissimilar Thickness 6061-T6 to 5182-O Aluminum Alloys

Authors: A. Elrefaei

Abstract:

The possibility of having sheets with different thicknesses and materials in one assembly facilitates the optimal material distribution within the final product and reduces the weight of the structure. Ability of joining process to assembly these different material combinations is always a challenge to the designer. In this study, 0.6 mm thick 6061-T6 and 2 mm thick 5182-O were robot CMT welded using ER5356 and ER4043 filler metals. The thermal effect of welding resulted in a loss of hardness in the 6061 HAZ. Joints welded by ER5356 filler metal were much higher in fracture load than joints welded by ER4043 and the elongation of joints welded by ER5356 was almost double its corresponding joints welded by ER4043 filler. Owing to the big difference in formability and thickness of base metals, the fracture in forming test occurred in the softened 6061 HAZ out from the weld centerline.

Keywords: aluminum, CMT, mechanical, welding

Procedia PDF Downloads 215
29181 Phase Composition Analysis of Ternary Alloy Materials for Gas Turbine Applications

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to high Turbine Entry Temperatures in the range of 1500 to 1600°C. The blades rotate at very high rotation rates and remove a significant amount of thermal power from the gas stream. At high temperatures, the major component failure mechanism is a creep. During its service over time under high thermal loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades and gas turbine components. The proposed advanced Ti alloy material needs a process that provides a strategic orientation of metallic ordering, uniformity in composition and high metallic strength. The chemical composition of the proposed Ti alloy material (25% Ta/(Al+Ta) ratio), unlike Ti-47Al-2Cr-2Nb, has less excess Al that could limit the service life of turbine blades. Properties and performance of Ti-47Al-2Cr-2Nb and Ti-6Al-4V materials will be compared with that of the proposed Ti alloy material to generalize the performance metrics of various gas turbine components. This paper will involve the summary of the effects of additive manufacturing and heat treatment process conditions on the changes in the phase composition, grain structure, lattice structure of the material, tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness at different temperatures. Based on these results, additive manufacturing and heat treatment process conditions will be optimized to fabricate turbine blade with Ti-43Al matrix alloyed with an optimized amount of refractory Ta metal. Improvement in service temperature of the turbine blades and corrosion resistance dependence on the coercivity of the alloy material will be reported. A correlation of phase composition and creep strain rate will also be discussed.

Keywords: high temperature materials, aerospace, specific strength, creep strain, phase composition

Procedia PDF Downloads 97
29180 Unique NiO Based 1 D Core/Shell Nano-Heterostructure Electrodes for High-Performance Supercapacitor

Authors: Gobinda Gopal Khan, Ashutosh K. Singh, Debasish Sarkar

Abstract:

Unique one-dimensional (1D) Ni-NiO and Co-Ni/Co3O4-NiO core/shell nano-heterostructures are fabricated by combining the electrochemical deposition and annealing. The high-performance pseudo-capacitor electrode based on the Ni-NiO and Co-Ni/Co3O4-NiO core/shell nano-heterostructures is designed and demonstrated. The Co-Ni/Co3O4-NiO core/shell nano-heterostructures exhibit high specific capacitance (2013 Fg-1 at 2.5 Ag-1), high energy and power density (23 Wh kg-1 and 5.5 kW kg-1, at the discharge current density of 20.8 A g-1.), good capacitance retention, and long cyclicality. The remarkable electrochemical property of the large surface area nano-heterostructures is demonstrated based on the novel nano-architectural design of the electrode with the coexistence of the two highly redox active materials at the surface supported by highly conducting metal alloy channel at the core for faster charge transport.

Keywords: nano-heterostructures, energy storage, supercapacitors, electrochemical deposition

Procedia PDF Downloads 310
29179 Structural, Electrochemical and Electrocatalysis Studies of a New 2D Metal-Organic Coordination Polymer of Ni (II) Constructed by Naphthalene-1,4-Dicarboxylic Acid; Oxidation and Determination of Fructose

Authors: Zohreh Derikvand

Abstract:

One new 2D metal-organic coordination polymer of Ni(II) namely [Ni2(ndc)2(DMSO)4(H2O)]n, where ndc = naphthalene-1,4-dicarboxylic acid and DMSO= dimethyl sulfoxide has been synthesized and characterized by elemental analysis, spectral (IR, UV-Vis), thermal (TG/DTG) analysis and single crystal X-ray diffraction. Compound 1 possesses a 2D layer structure constructed from dinuclear nickel(II) building blocks in which two crystallographically independent Ni2+ ions are bridged by ndc2– ligands and water molecule. The ndc2– ligands adopt μ3 bridging modes, linking the metal centers into a two-dimensional coordination framework. The two independent NiII cations are surrounded by dimethyl sulfoxide and naphthalene-1,4-dicarboxylate molecules in distorted octahedron geometry. In the crystal structures of 1 there are non-classical hydrogen bonding arrangements and C-H–π stacking interactions. Electrochemical behavior of [Ni2(ndc)2(DMSO)4(H2O)]n, (Ni-NDA) on the surface of carbon nanotube (CNTs) glassy carbon electrode (GCE) was described. The surface structure and composition of the sensor were characterized by scanning electron microscopy (SEM). Oxidation of fructose on the surface of modified electrode was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS) and the results showed that the Ni-NDA/CNTs film displays excellent electrochemical catalytic activities towards fructose oxidation.

Keywords: naphthalene-1, 4-dicarboxylic acid, crystal structure, coordination polymer, electrocatalysis, impedance spectroscopy

Procedia PDF Downloads 317
29178 Phenolic-Based Chemical Production from Catalytic Depolymerization of Alkaline Lignin over Fumed Silica Catalyst

Authors: S. Totong, P. Daorattanachai, N. Laosiripojana

Abstract:

Lignin depolymerization into phenolic-based chemicals is an interesting process for utilizing and upgrading a benefit and value of lignin. In this study, the depolymerization reaction was performed to convert alkaline lignin into smaller molecule compounds. Fumed SiO₂ was used as a catalyst to improve catalytic activity in lignin decomposition. The important parameters in depolymerization process (i.e., reaction temperature, reaction time, etc.) were also investigated. In addition, gas chromatography with mass spectrometry (GC-MS), flame-ironized detector (GC-FID), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze and characterize the lignin products. It was found that fumed SiO₂ catalyst led the good catalytic activity in lignin depolymerization. The main products from catalytic depolymerization were guaiacol, syringol, vanillin, and phenols. Additionally, metal supported on fumed SiO₂ such as Cu/SiO₂ and Ni/SiO₂ increased the catalyst activity in terms of phenolic products yield.

Keywords: alkaline lignin, catalytic, depolymerization, fumed SiO₂, phenolic-based chemicals

Procedia PDF Downloads 233