Search results for: oil peroxide number
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10237

Search results for: oil peroxide number

8287 Online Monitoring of Airborne Bioaerosols Released from a Composting, Green Waste Site

Authors: John Sodeau, David O'Connor, Shane Daly, Stig Hellebust

Abstract:

This study is the first to employ the online WIBS (Waveband Integrated Biosensor Sensor) technique for the monitoring of bioaerosol emissions and non-fluorescing “dust” released from a composting/green waste site. The purpose of the research was to provide a “proof of principle” for using WIBS to monitor such a location continually over days and nights in order to construct comparative “bioaerosol site profiles”. Current impaction/culturing methods take many days to achieve results available by the WIBS technique in seconds.The real-time data obtained was then used to assess variations of the bioaerosol counts as a function of size, “shape”, site location, working activity levels, time of day, relative humidity, wind speeds and wind directions. Three short campaigns were undertaken, one classified as a “light” workload period, another as a “heavy” workload period and finally a weekend when the site was closed. One main bioaerosol size regime was found to predominate: 0.5 micron to 3 micron with morphologies ranging from elongated to elipsoidal/spherical. The real-time number-concentration data were consistent with an Andersen sampling protocol that was employed at the site. The number-concentrations of fluorescent particles as a proportion of total particles counted amounted, on average, to ~1% for the “light” workday period, ~7% for the “heavy” workday period and ~18% for the weekend. The bioaerosol release profiles at the weekend were considerably different from those monitored during the working weekdays.

Keywords: bioaerosols, composting, fluorescence, particle counting in real-time

Procedia PDF Downloads 355
8286 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems

Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar

Abstract:

Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.

Keywords: air handling unit, air pollution, aspiration efficiency, energy efficiency, particulate matter, ventilation

Procedia PDF Downloads 118
8285 Effect of Phosphorus Solubilizing Bacteria on Yield and Seed Quality of Camelina (Camelina sativa L.) under Drought Stress

Authors: Muhammad Naeem Chaudhry, Fahim Nawaz, Rana Nauman Shabbir

Abstract:

New strategies aimed at increasing the resilience of crop plants to the negative effects of climate change represent important research priorities of plant scientists. The use of soil microorganisms to alleviate abiotic stresses like drought has gained particular importance in recent past. A field experiment was planned to investigate the effect of phosphorous solubilizing bacteria on yield and seed quality of Camelina (Camelina sativa L.) under water deficit conditions. The study was conducted at Agronomic Research Farm, University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur, during 4th week of November, 2013. The available seeds of Camelina sativa were inoculated with two bacterial strains (pseudomonas and Bacillus spp.) and grown under various water stress levels i.e. D0, (four irrigations), D3 (three irrigation), D2 (two irrigations), and D1 (one irrigation). The results revealed that drought stress significantly reduced the plant growth and yield, consequently reducing protein contents and oil concentration in camelina. The exposure to drought stress decreased plant height (16%), plant population (27%), number of fertile branches (41-59%), number of pods per plant (35%) and seed per pod (33%). Drought stress also exerted a negative impact on yield characteristics by reducing the 1000-seed weight (65%), final seed yield (52%), biological yield (22%) and harvest index (39%) of camelina. However, the inoculation of seeds with Pseudomonas and Bacillus spp. promoted the plant growth characterized by increased plant height and enhanced plant population. It was noted that inoculation of seeds with Pseudomonas resulted in the maximum plant population (113.4 cm), primary branches (19 plant-1), and number of pods (664 plant-1), whereas Bacillus inoculation resulted in maximum plant height (113.4 cm), seeds per pod (15.9), 1000-seed weight (1.85 g), and seed yield (3378.8 kg ha-1). Moreover, the inoculation with Bacillus also significantly improved the quality attributes of camelina and gave 3.5% and 2.1% higher oil contents than Pseudomonas and control (no-inoculation), respectively. Similarly, the same strain also resulted in maximum protein contents (33.3%). Our results confirmed the hypothesis that inoculation of seeds with phosphorous solubilizing bacterial strains is an effective, viable and environment-friendly approach to improve yield and quality of camelina under water deficit conditions. However, further studies are suggested to investigate the physiological and molecular processes, stimulated by bacterial strains, for increasing drought tolerance in food crops.

Keywords: Camelina, drought stress, phosphate solubilizing bacteria, seed quality

Procedia PDF Downloads 259
8284 Influence of Magnetized Water on the Split Tensile Strength of Concrete

Authors: Justine Cyril E. Nunag, Nestor B. Sabado Jr., Jienne Chester M. Tolosa

Abstract:

Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength.

Keywords: hardness property, magnetic water, quick-setting admixture, split tensile strength, universal testing machine

Procedia PDF Downloads 146
8283 Length of Pregnancy and Dental Caries Observation in Relation to BMI

Authors: Edit Xhajanka, Gresa Baboci, Irene Malagnino, Mimoza Canga, Vito Antonio Malagnino

Abstract:

Purpose: This study aimed at identifying dental caries increment or reduction, based on factors such as smoking, the scaling of teeth, BMI before and during pregnancy, carbohydrates consumption in relation to childbirth. Material and method: In this observational study, the sample included a total of 98 pregnant women and their age class was 18-45 years old, with a median age of 31.5 years. The setting of the participants resides in Vlora –Albania. Moreover, 64.4% were from the city and 35.6% were from the nearby villages. The study was conducted in the time period January 2018 –June 2021. Body mass index (BMI) was calculated using the standard formula (kg/m²). Maternal pre, during and post-pregnancy BMI was collected by using a validated questionnaire. Statistical analysis was performed using IBM SPSS Statistics 23.0. The significance level (α) was set at 0.05, whereas P-value and analysis of variance (ANOVA) were used to analyze the data. Results: Based on the data analysis, 44.4% of the sample declared that they did smoke before pregnancy and 55.6% not smoked during their pregnancy. As a result, no association was found between smoking and length of pregnancy P=0.95. There is also a strong relation (P=0.000) between the number of teeth with caries before pregnancy and the number of teeth with caries during pregnancy. There is a significant relationship between the scaling of teeth and childbirth, P=0.05. BMI before and during pregnancy in relation to carbohydrates consumption have a significant correlation P=0.004 and P=0.002. The values of BMI before and during pregnancy in relation to childbirth have a strong correlation: P=0.043 and P=0.040, respectively. As a result, obesity was associated with preterm birth. The percentage of children born during 34-36 weeks of pregnancy was 69%, and children born during 32-34 weeks of pregnancy were 31%. CONCLUSION: There was a positive association between dental caries experience, BMI and carbohydrates consumption. Obesity in pregnancy is increasing worldwide; that is why this study suggests the importance of an appropriate weight before and during pregnancy.

Keywords: BMI, dental caries, pregnancy, scaling, smoking

Procedia PDF Downloads 197
8282 Economic Recession and its Psychological Effects on Educated Youth: A Case Study of Pakistan

Authors: Aroona Hashmi

Abstract:

An economic recession can lead people to feel more insecure about their financial situation. The series of events leading into a recession can be especially distressing for Educated Youth. One of the most salient factors linking economic recession to psychological distress is unemployment. It is proved that a large number of educated young people are facing higher unemployment rate in Pakistan. Young people are likely to get frustrated at the lack of opportunities made available to them. If the young population increases more rapidly than job opportunities, then number of unemployment is likely to increase. The aim of present study was to investigate the relationship between economic instability, growing rate of aggression and frustration among educated youth. The study aimed to find out the impact of increased economic instability on the learning abilities of the students. Data was gathered from six university students of Punjab, Pakistan. The sample of the study consisted of three hundred male and female university students. The data was analyzed by applying Chi -square test. The results of the research indicate that there is a significant relationship between low household income and growing rate of aggression among educated youth. The increasing trend of economic instability significantly influences the learning abilities of the students. The study concludes that feeling of deprivation produce frustration and could be expressed through aggression. Therefore, if factors that are responsible for youth unemployment in Pakistan are addressed, psychological effects will be reduced. The right way of tackling the youth bulge is to turn the youth into a productive workforce. There is a dire need to transform the education system to societal needs. At the same time creating demand for the young workforce is achieved through dynamic changes in the economic structure.

Keywords: psychological effects, economic recession, educated youth, environmental factors

Procedia PDF Downloads 388
8281 Environmental Sanitation Parameters Recording in Refugee-Migrants Camps in Greece, 2017

Authors: Crysovaladou Kefaloudi, Kassiani Mellou, Eirini Saranti-Papasaranti, Athanasios Koustenis, Chrysoula Botsi, Agapios Terzidis

Abstract:

Recent migration crisis led to a vast migrant – refugees movement to Greece which created an urgent need for hosting settlements. Taken into account the protection of public health from possible pathogens related to water and food supply as well as waste and sewage accumulation, a 'Living Conditions Recording Form' was created in the context of 'PHILOS' European Program funded by the Asylum Migration and Integration Fund (AMIF) of EU’s DG Migration and Home Affairs, in order to assess a number of environmental sanitation parameters, in refugees – migrants camps in mainland. The assessment will be completed until the end of July. From March to June 2017, mobile unit teams comprised of health inspectors of sub-action 2 of “PHILOS” proceeded with the assessment of living conditions in twenty-two out of thirty-one camps and 'Stata' was used for the statistical analysis of obtained information. Variables were grouped into the following categories: 1) Camp administration, 2) hosted population number, 3) accommodation, 4) heating installations, 5) personal hygiene, 6) sewage collection and disposal, 7) water supply, 8) waste collection and management, 9) pest control, 10) fire safety, 11) food handling and safety. Preliminary analysis of the results showed that camp administration was performed in 90% of the camps by a public authority with the coordination of various NGOs. The median number of hosted population was 222 ranging from 62 to 3200, and the median value of hosted population per accommodation type was 4 in 19 camps. Heating facilities were provided in 86.1% of camps. In 18.2 % of the camps, one personal hygiene facility was available per 6 people ranging in the rest of the camps from 1 per 3 to 1 per 20 hosted refugees-migrants. Waste and sewage collection was performed depending on populations demand in an adequate way in all recorded camps. In 90% of camps, water was supplied through the central water supply system. In 85% of camps quantity and quality of water supply inside camps was regularly monitored for microbial and chemical indices. Pest control was implemented in 86.4% of the camps as well as fire safety measures. Food was supplied by catering companies in 50% of the camps, and the quality and quantity food was monitored at a regular basis. In 77% of camps, food was prepared by the hosted population with the availability of proper storage conditions. Furthermore, in all camps, hosted population was provided with personal hygiene items and health sanitary educational programs were implemented in 77.3% of camps. In conclusion, in the majority of the camps, environmental sanitation parameters were satisfactory. However, waste and sewage accumulation, as well as inadequate pest control measures were recorded in some camps. The obtained data have led to a number of recommendations for the improvement of sanitary conditions, disseminated to all relevant stakeholders. Special emphasis was given to hygiene measures implementation during food handling by migrants – refugees, as well as to waste and sewage accumulation taking in to account the population’s cultural background.

Keywords: environmental sanitation parameters, food borne diseases risk assessment, refugee – migrants camps, water borne diseases risk assessment

Procedia PDF Downloads 229
8280 Effects of Transit Fare Discount Programs on Passenger Volumes and Transferring Behaviors

Authors: Guan-Ying Chen, Han-Tsung Liou, Shou-Ren Hu

Abstract:

To address traffic congestion problems and encourage the use of public transportation systems in the Taipei metropolitan area, the Taipei City Government and the New Taipei City Government implemented a monthly ticket policy on April 16, 2018. This policy offers unlimited rides on the Taipei MRT, Taipei City Bus, New Taipei City Bus, Danhai Light Rail, and Public Bike (YouBike) on a monthly basis. Additionally, both city governments replaced the smart card discount policy with a new frequent flyer discount program (referred to as the loyal customer program) on February 1, 2020, introducing a differential pricing policy. Specifically, the more frequently the Taipei MRT system is used, the greater the discounts users receive. To analyze the impact of the Taipei public transport monthly ticket policy and the frequent user discount program on the passenger volume of the Taipei MRT system and the transferring behaviors of MRT users, this study conducts a trip-chain analysis using transaction data from Taipei MRT smart cards between September 2017 and December 2020. To achieve these objectives, the study employs four indicators: 1) number of passengers, 2) average number of rides, 3) average trip distance, and 4) instances of multiple consecutive rides. The study applies the t-test and Mann-Kendall trend test to investigate whether the proposed indicators have changed over time due to the implementation of the discount policy. Furthermore, the study examines the travel behaviors of passengers who use monthly tickets. The empirical results of the study indicate that the implementation of the Taipei public transport monthly ticket policy has led to an increase in the average number of passengers and a reduction in the average trip distance. Moreover, there has been a significant increase in instances of multiple consecutive rides, attributable to the unlimited rides offered by the monthly tickets. The impact of the frequent user discount program on changes in MRT passengers is not as pronounced as that of the Taipei public transportation monthly ticket policy. This is partly due to the fact that the frequent user discount program is only applicable to the Taipei MRT system, and the passenger volume was greatly affected by the COVID-19 pandemic. The findings of this research can serve as a reference for Taipei MRT Corporation in formulating its fare strategy and can also provide guidance for the Taipei and New Taipei City Governments in evaluating differential pricing policies for public transportation systems.

Keywords: frequent user discount program, mass rapid transit, monthly ticket, smart card

Procedia PDF Downloads 83
8279 Studying the Effects of Ruta Graveolens on Spontaneous Motor Activity, Skeletal Muscle Tone and Strychnine Induced Convulsions in Albino Mice and Rats

Authors: Shaban Saad, Syed Ahmed, Suher Aburawi, Isabel Fong

Abstract:

Ruta graveolens is a plant commonly found in north Africa and south Europe. It is reported that Ruta graveolens is used traditionally for epilepsy and some other illnesses. The acute and sub-acute effects of alcoholic extract residue were tested for possible anti-epileptic and skeletal muscle relaxation activity. The effect of extract on rat spontaneous motor activity (SMA) was also investigated using open filed. We previously proved the anti convulsant activity of the plant against pentylenetetrazol and electrically induced convulsions. Therefore in this study strychnine was used to induce convulsions in order to explore the mechanism of anti-convulsant activity of the plant. The skeletal muscle relaxation activity of Ruta graveolens was studied using pull-up and rod hanging tests in rats. At concentration of 5%w/v the extract protected mice against strychnine induced myoclonic jerks and death. The pull-up and rod hanging tests pointed to a skeletal muscle relaxant activity at higher concentrations. Ruta graveolens extract also significantly decreased the number of squares visited by rats in open field apparatus at all tested concentrations (3.5-20%w/v). However, the significant decrease in number of rearings was only noticed at concentrations of (15 and 20%w/v). The results indicate that Ruta graveolens contains compound(s) capable to inhibit convulsions, decrease SMA and/or diminish skeletal muscle tone in animal models. This data and the previously generated data together point to a general depression trend of CNS produced by Ruta graveolens.

Keywords: Ruta graveolens, open field, skeletal muscle relaxation

Procedia PDF Downloads 418
8278 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach

Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton

Abstract:

Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.

Keywords: competition, growth, model, thinning

Procedia PDF Downloads 128
8277 International Students into the Irish Higher Education System: Supporting the Transition

Authors: Tom Farrelly, Yvonne Kavanagh, Tony Murphy

Abstract:

The sharp rise in international students into Ireland has provided colleges with a number of opportunities but also a number of challenges, both at an institutional and individual lecturer level and of course for the incoming student. Previously, Ireland’s population, particularly its higher education student population was largely homogenous, largely drawn from its own shores and thus reflecting the ethnic, cultural and religious demographics of the day. However, over the twenty years Ireland witnessed considerable economic growth, downturn and subsequent growth all of which has resulted in an Ireland that has changed both culturally and demographically. Propelled by Ireland’s economic success up to the late 2000s, one of the defining features of this change was an unprecedented rise in the number of migrants, both academic and economic. In 2013, Ireland’s National Forum for the Enhancement for Teaching and Learning in Higher Education (hereafter the National Forum) invited proposals for inter-institutional collaborative projects aimed at different student groups’ transitioning in or out of higher education. Clearly, both as a country and a higher education sector we want incoming students to have a productive and enjoyable time in Ireland. One of the ways that will help the sector help the students make a successful transition is by developing strategies and polices that are well informed and student driven. This abstract outlines the research undertaken by the five colleges Institutes of Technology: Carlow; Cork; Tralee & Waterford and University College Cork) in Ireland that constitute the Southern cluster aimed at helping international students transition into the Irish higher education system. The aim of the southern clusters’ project was to develop a series of online learning units that can be accessed by prospective incoming international students prior to coming to Ireland and by Irish based lecturing staff. However, in order to make the units as relevant and informed as possible there was a strong research element to the project. As part of the southern cluster’s research strategy a large-scale online survey using SurveyMonkey was undertaken across the five colleges drawn from their respective international student communities. In total, there were 573 responses from students coming from over twenty different countries. The results from the survey have provided some interesting insights into the way that international students interact with and understand the Irish higher education system. The research and results will act as a model for consistent practice applicable across institutional clusters, thereby allowing institutions to minimise costs and focus on the unique aspects of transitioning international students into their institution.

Keywords: digital, international, support, transitions

Procedia PDF Downloads 283
8276 The Impact of Hospital Intensive Care Unit Window Design on Daylighting and Energy Performance in Desert Climate

Authors: A. Sherif, H. Sabry, A. Elzafarany, M. Gadelhak, R. Arafa, M. Aly

Abstract:

This paper addresses the design of hospital Intensive Care Unit windows for the achievement of visual comfort and energy savings. The aim was to identify the window size and shading system configurations that could fulfill daylighting adequacy, avoid glare and reduce energy consumption. The study focused on addressing the effect of utilizing different shading systems in association with a range of Window-to-Wall Ratios (WWR) in different orientations under the desert clear-sky of Cairo, Egypt. The results of this study demonstrated that solar penetration is a critical concern affecting the design of ICU windows in desert locations, as in Cairo, Egypt. Use of shading systems was found to be essential in providing acceptable daylight performance and energy saving. Careful positioning of the ICU window towards a proper orientation can dramatically improve performance. It was observed that ICU windows facing the north direction enjoyed the widest range of successful window configuration possibilities at different WWRs. ICU windows facing south enjoyed a reasonable number of configuration options as well. By contrast, the ICU windows facing the east orientation had a very limited number of options that provide acceptable performance. These require additional local shading measures at certain times due to glare incidence. Moreover, use of horizontal sun breakers and solar screens to protect the ICU windows proved to be more successful than the other alternatives in a wide range of Window to Wall Ratios. By contrast, the use of light shelves and vertical shading devices seemed questionable.

Keywords: daylighting, desert, energy efficiency, shading

Procedia PDF Downloads 431
8275 Use of RAPD and ISSR Markers in Detection of Genetic Variation among Colletotrichum falcatum Went Isolates from South Gujarat India

Authors: Prittesh Patel, Rushabh Shah, Krishnamurthy Ramar, Vakulbhushan Bhaskar

Abstract:

The present research work aims at finding genetic differences in the genomes of sugarcane red rot isolates Colletotrichum falcatum Went using Random Amplified Polymorphic DNA (RAPD) and interspersed simple sequence repeat (ISSR) molecular markers. Ten isolates of C. falcatum isolated from different red rot infected sugarcane cultivars stalk were used in present study. The amplified bands were scored across the lanes obtained in 15 RAPD primes and 21 ISSR primes successfully. The data were analysed using NTSYSpc 2.2 software. The results showed 80.6% and 68.07% polymorphism in RPAD and ISSR analysis respectively. Based on the RAPD analysis, ten genotypes were grouped into two major clusters at a cut-off value of 0.75. Geographically distant C. falcatum isolate cfGAN from south Gujarat had a level of similarity with Coimbatore isolate cf8436 presented on separate clade of bootstrapped dendrograms. First and second cluster consisted of five and three isolates respectively, indicating the close relation among them. The 21 ISSR primers produced 119 distinct and scorable loci in that 38 were monomorphic. The number of scorable loci for each primer varied from 2 (ISSR822) to 8 (ISSR807, ISSR823 and ISSR15) with an average of 5.66 loci per primer. Primer ISSR835 amplified the highest number of bands (57), while only 16 bands were obtained by primers ISSR822. Four primers namely ISSR830, ISSR845, ISSR4 and ISSR15 showed the highest value of percentage of polymorphism (100%). The results indicated that both of the marker systems RAPD and ISSR, individually can be effectively used in determination of genetic relationship among C falcatum accessions collected from different parts of south Gujarat.

Keywords: Colletotrichum falcatum, ISSR, RAPD, Red Rot

Procedia PDF Downloads 361
8274 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

Authors: Joonas Pääkkönen

Abstract:

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling

Procedia PDF Downloads 124
8273 The Impact of the New Head Injury Pathway on the Number of CTs Performed in a Paediatric Population

Authors: Amel M. A. Osman, Roy Mahony, Lisa Dann, McKenna S.

Abstract:

Background: Computed Tomography (CT) is a significant source of radiation in the pediatric population. A new head injury (HI) pathway was introduced in 2021, which altered the previous process of HI being jointly admitted with general pediatrics and surgery to admit these patients under the Emergency Medicine Team. Admitted patients included those with positive CT findings not requiring immediate neurosurgical intervention and those who did not meet current criteria for urgent CT brain as per NICE guidelines but were still symptomatic for prolonged observations. This approach aims to decrease the number of CT scans performed. The main aim is to assess the variation in CT scanning rates since the change in the admitting process. A retrospective review of patients presenting to CHI PECU with HI over 6-month period (01/01/19-31/05/19) compared to a 6-month period post introduction of the new pathway (01/06/2022-31/12/2022). Data was collected from the electronic record databases, symphony, and PACS. Results: In 2019, there were 869 presentations of HI, among which 32 (3.68%) had CT scans performed. 2 (6.25%) of those scanned had positive findings. In 2022, there were 1122 HI presentations, with 47 (4.19%) CT scans performed and positive findings in 5 (10.6%) cases. 57 patients were admitted under the new pathway for observation, with 1 having a CT scan following admission. Conclusion: Quantitative lifetime radiation risks for children are not negligible. While there was no statistically significant reduction in CTs performed amongst HIs presenting to our department, a significant group met the criteria for admission under the PECU consultant for prolonged monitoring. There was also a greater proportion of abnormalities on CT scans performed in 2022, demonstrating improved patient selection for imaging. Further data analysis is ongoing to determine if those who were admitted would have previously been scanned under the old pathway.

Keywords: head injury, CT, admission, guidline

Procedia PDF Downloads 53
8272 Basins of Attraction for Quartic-Order Methods

Authors: Young Hee Geum

Abstract:

We compare optimal quartic order method for the multiple zeros of nonlinear equations illustrating the basins of attraction. To construct basins of attraction effectively, we take a 600×600 uniform grid points at the origin of the complex plane and paint the initial values on the basins of attraction with different colors according to the iteration number required for convergence.

Keywords: basins of attraction, convergence, multiple-root, nonlinear equation

Procedia PDF Downloads 252
8271 Building an Opinion Dynamics Model from Experimental Data

Authors: Dino Carpentras, Paul J. Maher, Caoimhe O'Reilly, Michael Quayle

Abstract:

Opinion dynamics is a sub-field of agent-based modeling that focuses on people’s opinions and their evolutions over time. Despite the rapid increase in the number of publications in this field, it is still not clear how to apply these models to real-world scenarios. Indeed, there is no agreement on how people update their opinion while interacting. Furthermore, it is not clear if different topics will show the same dynamics (e.g., more polarized topics may behave differently). These problems are mostly due to the lack of experimental validation of the models. Some previous studies started bridging this gap in the literature by directly measuring people’s opinions before and after the interaction. However, these experiments force people to express their opinion as a number instead of using natural language (and then, eventually, encoding it as numbers). This is not the way people normally interact, and it may strongly alter the measured dynamics. Another limitation of these studies is that they usually average all the topics together, without checking if different topics may show different dynamics. In our work, we collected data from 200 participants on 5 unpolarized topics. Participants expressed their opinions in natural language (“agree” or “disagree”). We also measured the certainty of their answer, expressed as a number between 1 and 10. However, this value was not shown to other participants to keep the interaction based on natural language. We then showed the opinion (and not the certainty) of another participant and, after a distraction task, we repeated the measurement. To make the data compatible with opinion dynamics models, we multiplied opinion and certainty to obtain a new parameter (here called “continuous opinion”) ranging from -10 to +10 (using agree=1 and disagree=-1). We firstly checked the 5 topics individually, finding that all of them behaved in a similar way despite having different initial opinions distributions. This suggested that the same model could be applied for different unpolarized topics. We also observed that people tend to maintain similar levels of certainty, even when they changed their opinion. This is a strong violation of what is suggested from common models, where people starting at, for example, +8, will first move towards 0 instead of directly jumping to -8. We also observed social influence, meaning that people exposed with “agree” were more likely to move to higher levels of continuous opinion, while people exposed with “disagree” were more likely to move to lower levels. However, we also observed that the effect of influence was smaller than the effect of random fluctuations. Also, this configuration is different from standard models, where noise, when present, is usually much smaller than the effect of social influence. Starting from this, we built an opinion dynamics model that explains more than 80% of data variance. This model was also able to show the natural conversion of polarization from unpolarized states. This experimental approach offers a new way to build models grounded on experimental data. Furthermore, the model offers new insight into the fundamental terms of opinion dynamics models.

Keywords: experimental validation, micro-dynamics rule, opinion dynamics, update rule

Procedia PDF Downloads 109
8270 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid

Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang

Abstract:

Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.

Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid

Procedia PDF Downloads 432
8269 Cutting Plane Methods for Integer Programming: NAZ Cut and Its Variations

Authors: A. Bari

Abstract:

Integer programming is a branch of mathematical programming techniques in operations research in which some or all of the variables are required to be integer valued. Various cuts have been used to solve these problems. We have also developed cuts known as NAZ cut & A-T cut to solve the integer programming problems. These cuts are used to reduce the feasible region and then reaching the optimal solution in minimum number of steps.

Keywords: Integer Programming, NAZ cut, A-T cut, Cutting plane method

Procedia PDF Downloads 364
8268 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati

Abstract:

Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.

Keywords: coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow

Procedia PDF Downloads 315
8267 An Adaptive Oversampling Technique for Imbalanced Datasets

Authors: Shaukat Ali Shahee, Usha Ananthakumar

Abstract:

A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.

Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling

Procedia PDF Downloads 418
8266 The Impact of Artificial Intelligence on Pharmacy and Pharmacology

Authors: Mamdouh Milad Adly Morkos

Abstract:

Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global health

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theoryclinical simulation, education, pharmacology, simulation, virtual learning low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways

Procedia PDF Downloads 81
8265 A Gauge Repeatability and Reproducibility Study for Multivariate Measurement Systems

Authors: Jeh-Nan Pan, Chung-I Li

Abstract:

Measurement system analysis (MSA) plays an important role in helping organizations to improve their product quality. Generally speaking, the gauge repeatability and reproducibility (GRR) study is performed according to the MSA handbook stated in QS9000 standards. Usually, GRR study for assessing the adequacy of gauge variation needs to be conducted prior to the process capability analysis. Traditional MSA only considers a single quality characteristic. With the advent of modern technology, industrial products have become very sophisticated with more than one quality characteristic. Thus, it becomes necessary to perform multivariate GRR analysis for a measurement system when collecting data with multiple responses. In this paper, we take the correlation coefficients among tolerances into account to revise the multivariate precision-to-tolerance (P/T) ratio as proposed by Majeske (2008). We then compare the performance of our revised P/T ratio with that of the existing ratios. The simulation results show that our revised P/T ratio outperforms others in terms of robustness and proximity to the actual value. Moreover, the optimal allocation of several parameters such as the number of quality characteristics (v), sample size of parts (p), number of operators (o) and replicate measurements (r) is discussed using the confidence interval of the revised P/T ratio. Finally, a standard operating procedure (S.O.P.) to perform the GRR study for multivariate measurement systems is proposed based on the research results. Hopefully, it can be served as a useful reference for quality practitioners when conducting such study in industries. Measurement system analysis (MSA) plays an important role in helping organizations to improve their product quality. Generally speaking, the gauge repeatability and reproducibility (GRR) study is performed according to the MSA handbook stated in QS9000 standards. Usually, GRR study for assessing the adequacy of gauge variation needs to be conducted prior to the process capability analysis. Traditional MSA only considers a single quality characteristic. With the advent of modern technology, industrial products have become very sophisticated with more than one quality characteristic. Thus, it becomes necessary to perform multivariate GRR analysis for a measurement system when collecting data with multiple responses. In this paper, we take the correlation coefficients among tolerances into account to revise the multivariate precision-to-tolerance (P/T) ratio as proposed by Majeske (2008). We then compare the performance of our revised P/T ratio with that of the existing ratios. The simulation results show that our revised P/T ratio outperforms others in terms of robustness and proximity to the actual value. Moreover, the optimal allocation of several parameters such as the number of quality characteristics (v), sample size of parts (p), number of operators (o) and replicate measurements (r) is discussed using the confidence interval of the revised P/T ratio. Finally, a standard operating procedure (S.O.P.) to perform the GRR study for multivariate measurement systems is proposed based on the research results. Hopefully, it can be served as a useful reference for quality practitioners when conducting such study in industries.

Keywords: gauge repeatability and reproducibility, multivariate measurement system analysis, precision-to-tolerance ratio, Gauge repeatability

Procedia PDF Downloads 262
8264 Design of Experiment for Optimizing Immunoassay Microarray Printing

Authors: Alex J. Summers, Jasmine P. Devadhasan, Douglas Montgomery, Brittany Fischer, Jian Gu, Frederic Zenhausern

Abstract:

Immunoassays have been utilized for several applications, including the detection of pathogens. Our laboratory is in the development of a tier 1 biothreat panel utilizing Vertical Flow Assay (VFA) technology for simultaneous detection of pathogens and toxins. One method of manufacturing VFA membranes is with non-contact piezoelectric dispensing, which provides advantages, such as low-volume and rapid dispensing without compromising the structural integrity of antibody or substrate. Challenges of this processinclude premature discontinuation of dispensing and misaligned spotting. Preliminary data revealed the Yp 11C7 mAb (11C7)reagent to exhibit a large angle of failure during printing which may have contributed to variable printing outputs. A Design of Experiment (DOE) was executed using this reagent to investigate the effects of hydrostatic pressure and reagent concentration on microarray printing outputs. A Nano-plotter 2.1 (GeSIM, Germany) was used for printing antibody reagents ontonitrocellulose membrane sheets in a clean room environment. A spotting plan was executed using Spot-Front-End software to dispense volumes of 11C7 reagent (20-50 droplets; 1.5-5 mg/mL) in a 6-test spot array at 50 target membrane locations. Hydrostatic pressure was controlled by raising the Pressure Compensation Vessel (PCV) above or lowering it below our current working level. It was hypothesized that raising or lowering the PCV 6 inches would be sufficient to cause either liquid accumulation at the tip or discontinue droplet formation. After aspirating 11C7 reagent, we tested this hypothesis under stroboscope.75% of the effective raised PCV height and of our hypothesized lowered PCV height were used. Humidity (55%) was maintained using an Airwin BO-CT1 humidifier. The number and quality of membranes was assessed after staining printed membranes with dye. The droplet angle of failure was recorded before and after printing to determine a “stroboscope score” for each run. The DOE set was analyzed using JMP software. Hydrostatic pressure and reagent concentration had a significant effect on the number of membranes output. As hydrostatic pressure was increased by raising the PCV 3.75 inches or decreased by lowering the PCV -4.5 inches, membrane output decreased. However, with the hydrostatic pressure closest to equilibrium, our current working level, membrane output, reached the 50-membrane target. As the reagent concentration increased from 1.5 to 5 mg/mL, the membrane output also increased. Reagent concentration likely effected the number of membrane output due to the associated dispensing volume needed to saturate the membranes. However, only hydrostatic pressure had a significant effect on stroboscope score, which could be due to discontinuation of dispensing, and thus the stroboscope check could not find a droplet to record. Our JMP predictive model had a high degree of agreement with our observed results. The JMP model predicted that dispensing the highest concentration of 11C7 at our current PCV working level would yield the highest number of quality membranes, which correlated with our results. Acknowledgements: This work was supported by the Chemical Biological Technologies Directorate (Contract # HDTRA1-16-C-0026) and the Advanced Technology International (Contract # MCDC-18-04-09-002) from the Department of Defense Chemical and Biological Defense program through the Defense Threat Reduction Agency (DTRA).

Keywords: immunoassay, microarray, design of experiment, piezoelectric dispensing

Procedia PDF Downloads 182
8263 Software Development for Both Small Wind Performance Optimization and Structural Compliance Analysis with International Safety Regulations

Authors: K. M. Yoo, M. H. Kang

Abstract:

Conventional commercial wind turbine design software is limited to large wind turbines due to not incorporating with low Reynold’s Number aerodynamic characteristics typically for small wind turbines. To extract maximum annual energy product from an intermediately designed small wind turbine associated with measured wind data, numerous simulation is highly recommended to have a best fitting planform design with proper airfoil configuration. Since depending upon wind distribution with average wind speed, an optimal wind turbine planform design changes accordingly. It is theoretically not difficult, though, it is very inconveniently time-consuming design procedure to finalize conceptual layout of a desired small wind turbine. Thus, to help simulations easier and faster, a GUI software is developed to conveniently iterate and change airfoil types, wind data, and geometric blade data as well. With magnetic generator torque curve, peak power tracking simulation is also available to better match with the magnetic generator. Small wind turbine often lacks starting torque due to blade optimization. Thus this simulation is also embedded along with yaw design. This software provides various blade cross section details at user’s design convenience such as skin thickness control with fiber direction option, spar shape, and their material properties. Since small wind turbine is under international safety regulations with fatigue damage during normal operations and safety load analyses with ultimate excessive loads, load analyses are provided with each category mandated in the safety regulations.

Keywords: GUI software, Low Reynold’s number aerodynamics, peak power tracking, safety regulations, wind turbine performance optimization

Procedia PDF Downloads 304
8262 Factors Affecting Air Surface Temperature Variations in the Philippines

Authors: John Christian Lequiron, Gerry Bagtasa, Olivia Cabrera, Leoncio Amadore, Tolentino Moya

Abstract:

Changes in air surface temperature play an important role in the Philippine’s economy, industry, health, and food production. While increasing global mean temperature in the recent several decades has prompted a number of climate change and variability studies in the Philippines, most studies still focus on rainfall and tropical cyclones. This study aims to investigate the trend and variability of observed air surface temperature and determine its major influencing factor/s in the Philippines. A non-parametric Mann-Kendall trend test was applied to monthly mean temperature of 17 synoptic stations covering 56 years from 1960 to 2015 and a mean change of 0.58 °C or a positive trend of 0.0105 °C/year (p < 0.05) was found. In addition, wavelet decomposition was used to determine the frequency of temperature variability show a 12-month, 30-80-month and more than 120-month cycles. This indicates strong annual variations, interannual variations that coincide with ENSO events, and interdecadal variations that are attributed to PDO and CO2 concentrations. Air surface temperature was also correlated with smoothed sunspot number and galactic cosmic rays, the results show a low to no effect. The influence of ENSO teleconnection on temperature, wind pattern, cloud cover, and outgoing longwave radiation on different ENSO phases had significant effects on regional temperature variability. Particularly, an anomalous anticyclonic (cyclonic) flow east of the Philippines during the peak and decay phase of El Niño (La Niña) events leads to the advection of warm southeasterly (cold northeasterly) air mass over the country. Furthermore, an apparent increasing cloud cover trend is observed over the West Philippine Sea including portions of the Philippines, and this is believed to lessen the effect of the increasing air surface temperature. However, relative humidity was also found to be increasing especially on the central part of the country, which results in a high positive trend of heat index, exacerbating the effects on human discomfort. Finally, an assessment of gridded temperature datasets was done to look at the viability of using three high-resolution datasets in future climate analysis and model calibration and verification. Several error statistics (i.e. Pearson correlation, Bias, MAE, and RMSE) were used for this validation. Results show that gridded temperature datasets generally follows the observed surface temperature change and anomalies. In addition, it is more representative of regional temperature rather than a substitute to station-observed air temperature.

Keywords: air surface temperature, carbon dioxide, ENSO, galactic cosmic rays, smoothed sunspot number

Procedia PDF Downloads 323
8261 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem

Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães

Abstract:

This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.

Keywords: path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart

Procedia PDF Downloads 167
8260 Adding a Degree of Freedom to Opinion Dynamics Models

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 119
8259 Motivation of Doctors and its Impact on the Quality of Working Life

Authors: E. V. Fakhrutdinova, K. R. Maksimova, P. B. Chursin

Abstract:

At the present stage of the society progress the health care is an integral part of both the economic system and social, while in the second case the medicine is a major component of a number of basic and necessary social programs. Since the foundation of the health system are highly qualified health professionals, it is logical proposition that increase of doctor`s professionalism improves the effectiveness of the system as a whole. Professionalism of the doctor is a collection of many components, essential role played by such personal-psychological factors as honesty, willingness and desire to help people, and motivation. A number of researchers consider motivation as an expression of basic human needs that have passed through the “filter” which is a worldview and values learned in the process of socialization by the individual, to commit certain actions designed to achieve the expected result. From this point of view a number of researchers propose the following classification of highly skilled employee’s needs: 1. the need for confirmation the competence (setting goals that meet the professionalism and receipt of positive emotions in their decision), 2. The need for independence (the ability to make their own choices in contentious situations arising in the process carry out specialist functions), 3. The need for ownership (in the case of health care workers, to the profession and accordingly, high in the eyes of the public status of the doctor). Nevertheless, it is important to understand that in a market economy a significant motivator for physicians (both legal and natural persons) is to maximize its own profits. In the case of health professionals duality motivational structure creates an additional contrast, as in the public mind the image of the ideal physician; usually a altruistically minded person thinking is not primarily about their own benefit, and to assist others. In this context, the question of the real motivation of health workers deserves special attention. The survey conducted by the American researcher Harrison Terni for the magazine "Med Tech" in 2010 revealed the opinion of more than 200 medical students starting courses, and the primary motivation in a profession choice is "desire to help people", only 15% said that they want become a doctor, "to earn a lot". From the point of view of most of the classical theories of motivation this trend can be called positive, as intangible incentives are more effective. However, it is likely that over time the opinion of the respondents may change in the direction of mercantile motives. Thus, it is logical to assume that well-designed system of motivation of doctor`s labor should be based on motivational foundations laid during training in higher education.

Keywords: motivation, quality of working life, health system, personal-psychological factors, motivational structure

Procedia PDF Downloads 356
8258 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 279