Search results for: distinctive features
2218 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 952217 Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution
Authors: Yasser M. Abd-elrhman, Mohamed A. Gepreel, Kiochi Nakamura, Ahmed Abd El-Moneim, Sengo Kobayashi, Mervat M. Ibrahim
Abstract:
Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities.Keywords: titanium alloys, corrosion resistance, Ringer’s solution, electrochemical corrosion
Procedia PDF Downloads 6592216 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures
Authors: José Luis Carrillo-Medina, Roberto Latorre
Abstract:
Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network
Procedia PDF Downloads 4942215 Comparative Analysis of Automation Testing Tools
Authors: Amit Bhanushali
Abstract:
In the ever-changing landscape of software development, automated software testing has emerged as a critical component of the Software Development Life Cycle (SDLC). This research undertakes a comparative study of three major automated testing tools -UFT, Selenium, and RPA- evaluating them on usability, maintenance, and effectiveness. Leveraging existing JAVA-based applications as test cases, the study aims to guide testers in selecting the optimal tool for specific applications. By exploring key features such as source and licensing, testing expenses, object repositories, usability, and language support, the research provides practical insights into UFT, Selenium, and RPA. Acknowledging the pivotal role of these tools in streamlining testing processes amid time constraints and resource limitations, the study assists professionals in making informed choices aligned with their organizational needs.Keywords: software testing tools, software development lifecycle (SDLC), test automation frameworks, automated software, JAVA-based, UFT, selenium and RPA (robotic process automation), source and licensing, object repository
Procedia PDF Downloads 1012214 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey
Authors: Lavanya Madhuri Bollipo, K. V. Kadambari
Abstract:
Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)
Procedia PDF Downloads 3992213 Modeling Thermal Changes of Urban Blocks in Relation to the Landscape Structure and Configuration in Guilan Province
Authors: Roshanak Afrakhteh, Abdolrasoul Salman Mahini, Mahdi Motagh, Hamidreza Kamyab
Abstract:
Urban Heat Islands (UHIs) are distinctive urban areas characterized by densely populated central cores surrounded by less densely populated peripheral lands. These areas experience elevated temperatures, primarily due to impermeable surfaces and specific land use patterns. The consequences of these temperature variations are far-reaching, impacting the environment and society negatively, leading to increased energy consumption, air pollution, and public health concerns. This paper emphasizes the need for simplified approaches to comprehend UHI temperature dynamics and explains how urban development patterns contribute to land surface temperature variation. To illustrate this relationship, the study focuses on the Guilan Plain, utilizing techniques like principal component analysis and generalized additive models. The research centered on mapping land use and land surface temperature in the low-lying area of Guilan province. Satellite data from Landsat sensors for three different time periods (2002, 2012, and 2021) were employed. Using eCognition software, a spatial unit known as a "city block" was utilized through object-based analysis. The study also applied the normalized difference vegetation index (NDVI) method to estimate land surface radiance. Predictive variables for urban land surface temperature within residential city blocks were identified categorized as intrinsic (related to the block's structure) and neighboring (related to adjacent blocks) variables. Principal Component Analysis (PCA) was used to select significant variables, and a Generalized Additive Model (GAM) approach, implemented using R's mgcv package, modeled the relationship between urban land surface temperature and predictor variables.Notable findings included variations in urban temperature across different years attributed to environmental and climatic factors. Block size, shared boundary, mother polygon area, and perimeter-to-area ratio were identified as main variables for the generalized additive regression model. This model showed non-linear relationships, with block size, shared boundary, and mother polygon area positively correlated with temperature, while the perimeter-to-area ratio displayed a negative trend. The discussion highlights the challenges of predicting urban surface temperature and the significance of block size in determining urban temperature patterns. It also underscores the importance of spatial configuration and unit structure in shaping urban temperature patterns. In conclusion, this study contributes to the growing body of research on the connection between land use patterns and urban surface temperature. Block size, along with block dispersion and aggregation, emerged as key factors influencing urban surface temperature in residential areas. The proposed methodology enhances our understanding of parameter significance in shaping urban temperature patterns across various regions, particularly in Iran.Keywords: urban heat island, land surface temperature, LST modeling, GAM, Gilan province
Procedia PDF Downloads 762212 Transient/Steady Natural Convective Flow of Reactive Viscous Fluid in Vertical Porous Pipe
Authors: Ahmad K. Samaila, Basant K. Jha
Abstract:
This paper presents the effects of suction/injection of transient/steady natural convection flow of reactive viscous fluid in a vertical porous pipe. The mathematical model capturing the time dependent flow of viscous reactive fluid is solved using implicit finite difference method while the corresponding steady state model is solved using regular perturbation technique. Results of analytical and numerical solutions are reported for various parametric conditions to illustrate special features of the solutions. The coefficient of skin friction and rate of heat transfer are obtained and illustrated graphically. The numerical solution is shown to be in excellent agreement with the closed form analytical solution. It is interesting to note that time required to reach steady state is higher in case of injection in comparison to suction.Keywords: porous pipe, reactive viscous fluid, transient natural-convective flow, analytical solution
Procedia PDF Downloads 2972211 Library on the Cloud: Universalizing Libraries Based on Virtual Space
Authors: S. Vanaja, P. Panneerselvam, S. Santhanakarthikeyan
Abstract:
Cloud Computing is a latest trend in Libraries. Entering in to cloud services, Librarians can suit the present information handling and they are able to satisfy needs of the knowledge society. Libraries are now in the platform of universalizing all its information to users and they focus towards clouds which gives easiest access to data and application. Cloud computing is a highly scalable platform promising quick access to hardware and software over the internet, in addition to easy management and access by non-expert users. In this paper, we discuss the cloud’s features and its potential applications in the library and information centers, how cloud computing actually works is illustrated in this communication and how it will be implemented. It discuss about what are the needs to move to cloud, process of migration to cloud. In addition to that this paper assessed the practical problems during migration in libraries, advantages of migration process and what are the measures that Libraries should follow during migration in to cloud. This paper highlights the benefits and some concerns regarding data ownership and data security on the cloud computing.Keywords: cloud computing, cloud-service, cloud based-ILS, cloud-providers, discovery service, IaaS, PaaS, SaaS, virtualization, Web scale access
Procedia PDF Downloads 6642210 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis
Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin
Abstract:
Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve
Procedia PDF Downloads 3412209 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation
Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang
Abstract:
In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building, Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that this simplification would only lead to the error that is less than 7% for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which can cover most situations.Keywords: building energy model, simulation, geometric simplification, design, regression
Procedia PDF Downloads 1822208 Developing Logistics Indices for Turkey as an an Indicator of Economic Activity
Authors: Gizem İntepe, Eti Mizrahi
Abstract:
Investment and financing decisions are influenced by various economic features. Detailed analysis should be conducted in order to make decisions not only by companies but also by governments. Such analysis can be conducted either at the company level or on a sectoral basis to reduce risks and to maximize profits. Sectoral disaggregation caused by seasonality effects, subventions, data advantages or disadvantages may appear in sectors behaving parallel to BIST (Borsa Istanbul stock exchange) Index. Proposed logistic indices could serve market needs as a decision parameter in sectoral basis and also helps forecasting activities in import export volume changes. Also it is an indicator of logistic activity, which is also a sign of economic mobility at the national level. Publicly available data from “Ministry of Transport, Maritime Affairs and Communications” and “Turkish Statistical Institute” is utilized to obtain five logistics indices namely as; exLogistic, imLogistic, fLogistic, dLogistic and cLogistic index. Then, efficiency and reliability of these indices are tested.Keywords: economic activity, export trade data, import trade data, logistics indices
Procedia PDF Downloads 3372207 Rethinking News Aggregation to Achieve Depolarization
Authors: Kushagra Khandelwal, Chinmay Anand, Sharmistha Banerjee
Abstract:
This paper presents an approach to news aggregation that is aimed at solving the issues centered on depolarization and manipulation of news information and stories. Largest democracies across the globe face numerous issues related to news democratization. With the advancements in technology and increasing outreach, web has become an important information source which is inclusive of news. Research was focused on the current millennial population consisting of modern day internet users. The study involved literature review, an online survey, an expert interview with a journalist and a focus group discussion with the user groups. The study was aimed at investigating problems associated with the current news system from both the consumer as well as distributor point of view. The research findings helped in producing five key potential opportunity areas which were explored for design intervention. Upon ideation, we identified five design features which include opinion aggregation. Categorized opinions, news tracking, online discussion and ability to take actions that support news democratization.Keywords: citizen journalism, democratization, depolarized news, napsterization, news aggregation, opinions
Procedia PDF Downloads 2222206 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition
Authors: L. Hamsaveni, Navya Prakash, Suresha
Abstract:
Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.Keywords: grayscale image format, image fusing, RGB image format, SURF detection, YCbCr image format
Procedia PDF Downloads 3772205 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect
Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk
Abstract:
This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect
Procedia PDF Downloads 2982204 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging
Authors: Jinan Fiaidhi, Sabah Mohammed
Abstract:
Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics
Procedia PDF Downloads 592203 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations
Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi
Abstract:
Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis
Procedia PDF Downloads 2002202 Seismo-Volcanic Hazards in Great Ararat Region, Eastern Turkey
Authors: Mehmet Salih Bayraktutan, Emre Tokmak
Abstract:
Great Ararat Volcano is the highest peak in South Caucasus Volcanic Plateau. Uplifted by Quaternary basaltic pyroclastic and lava flows. Numerous volcanic cones formed along with the tensional fractures under N-S compressional geodynamic framework. Basaltic flows have fresh surface morphology give ages of 650-680 K years. Hyperstene andesites constitute a major mass of Greater Ararat gives ages of 450-490 K years. During the early eruption period, predominately pyroclastics, cinder, lapilly-ash volcanic bombs were extruded. Third-period eruptions dominantly basaltic lava flows. Andesitic domes aligned along with the NW-SE striking fractures. Hyalo basalt and hornblende basaltic lavas are the latest lava eruptions. Hyalo-basaltic eruptions occurred via parasitic cones distributed far from the center. Parasitic cones are most common at the foot of Mount covered by recent NW flowing basaltic lava. Some of the cones are distributed on a circular pattern. One of the most hazardous disasters recorded in Eastern Turkey was July 1840 Cehennem Canyon Flood. Volcanic activities seismically triggered resulted in melting of glacier cap, mixed with ash and pyroclastics, flowed down along the Valley. Mud rich Slush urged catastrophically northwards, crossed Ars River and damned Surmeli Basin, forming reservoir behind. Ararat volcanoes are located on NW-SE striking Agri Fault Zone. Right lateral extensional faults, along which a series of andesitic domes formed. Great Ararat, in general strato-type volcano. This huge structure, developed in two main parts with different topographic and morphological features. The large lower base covers a widespread area composed of predominantly pyroclastics, ignimbrites, aglomerates, thick pumice, perlite deposits. Approximately 1/3 of the Crest by height formed of this basement. And 2/3 of the upper part with a conic- shape composed of basaltic lava flows. The active tectonic structure consists of three different patterns. The first network is radially distributed fractures formed during the last stage of lava eruptions. The second group of active faults striking in NW direction, and continue in N30W strike, formes Igdir Fault Zone. The third set of faults, dipping in the northwest with 75-80 degrees, strikes NE- SW across the whole Mount, slicing Great Ararat into four segments. In the upper stage of Cehennem Canyon, this set cutting volcanic layers caused numerous Waterfalls, Rock Avalanches, Mud Flows along the canyon, threatens the Village of Yanidogan, at the apex of flood deposits. Great Ararat Region has high seismo-tectonic risk and by occurrence frequency and magnitude, which caused in history caused heavy disasters, at villages surrounding the Ararat Basement.Keywords: Eastern Turkey, geohazard, great ararat volcano, seismo-tectonic features
Procedia PDF Downloads 1832201 Hydroxyapatite-Chitosan Composites for Tissue Engineering Applications
Authors: Georgeta Voicu, Cristina Daniela Ghitulica, Andreia Cucuruz, Cristina Busuioc
Abstract:
In the field of tissue engineering, the compositional and microstructural features of the employed materials play an important role, with implications on the mechanical and biological behaviour of the medical devices. In this context, the development of apatite - natural biopolymer composites represents a choice of many scientific groups. Thus, hydroxyapatite powders were synthesized by a wet method, namely co-precipitation, starting from high purity reagents (CaO, MgO, and H3PO4). Moreover, the substitution of calcium with magnesium have been approached, in the 5 - 10 wt.% range. Afterward, the phosphate powders were integrated in two types of composites with chitosan, different from morphological point of view. First, 3D porous scaffolds were obtained by a freeze-drying procedure. Second, uniform, compact films were achieved by film casting. The influence of chitosan molecular weight (low, medium and high), as well as apatite powder to polymer ratio (1:1 and 1:2) on the morphological properties, were analysed in detail. In conclusion, the reported biocomposites, prepared by a straightforward route are suitable for bone substitution or repairing applications.Keywords: bone reconstruction, chitosan, composite scaffolds, hydroxyapatite
Procedia PDF Downloads 3232200 Research Activity in Computational Science Using High Performance Computing: Co-Authorship Network Analysis
Authors: Sul-Ah Ahn, Youngim Jung
Abstract:
The research activities of the computational scientists using high-performance computing are analyzed using bibliometric approaches. This study aims at providing computational scientists using high-performance computing and relevant policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of computational scientists using high-performance computing as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2006-2015. We extracted the author rank in the computational science field using high-performance computing by the number of papers published during ten years from 2006. Finally, we drew the co-authorship network for 50 top-authors and their coauthors and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.Keywords: co-authorship network analysis, computational science, high performance computing, research activity
Procedia PDF Downloads 3232199 Clinical Characteristics of Children Presenting with History of Child Sexual Abuse to a Tertiary Care Centre in India
Authors: T. S. Sowmya Bhaskaran, Shekhar Seshadri
Abstract:
This study aims to study the clinical features of with a history of Child Sexual Abuse (CSA). A chart review of 40 children (<16 years) with history of CSA evaluated at the Department of Child and Adolescent Psychiatry of NIMHANS during a two year period was performed. Results:The most common form of abuse was contact penetrative abuse (65%) followed by non-contact penetrative abuse (32.5%). 75% (N=30) had a psychiatric diagnosis at baseline. 50% of these children had one or more psychiatric comorbidities. Anxiety disorder was the most common diagnosis (27.5%) which included PTSD (11%) followed by Depressive disorder (25.2%). Children abused by multiple perpetrators were found to be more likely to have depression, to having a comorbid psychiatric disorder and more prone to exhibit sexualized behaviour. Children who also experienced physical violence at home were more likely to develop psychiatric illness following child sexual abuse. Psychiatric morbidity is high in clinic population of children with history of CSA. It is important to increase the awareness regarding the consequences of CSA in order to increase help seeking.Keywords: child sexual abuse, India, tertiary care centre, clinical characteristics
Procedia PDF Downloads 4582198 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis
Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su
Abstract:
The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.Keywords: dataset, GTTM, local boundary, neural network
Procedia PDF Downloads 1472197 Bridging Educational Research and Policymaking: The Development of Educational Think Tank in China
Authors: Yumei Han, Ling Li, Naiqing Song, Xiaoping Yang, Yuping Han
Abstract:
Educational think tank is agreeably regarded as significant part of a nation’s soft power to promote the scientific and democratic level of educational policy making, and it plays critical role of bridging educational research in higher institutions and educational policy making. This study explores the concept, functions and significance of educational think tank in China, and conceptualizes a three dimensional framework to analyze the approaches of transforming research-based higher institutions into effective educational think tanks to serve educational policy making in the nation wide. Since 2014, the Ministry of Education P.R. China has been promoting the strategy of developing new type of educational think tanks in higher institutions, and such a strategy has been put into the agenda for the 13th Five Year Plan for National Education Development released in 2017.In such context, increasing scholars conduct studies to put forth strategies of promoting the development and transformation of new educational think tanks to serve educational policy making process. Based on literature synthesis, policy text analysis, and analysis of theories about policy making process and relationship between educational research and policy-making, this study constructed a three dimensional conceptual framework to address the following questions: (a) what are the new features of educational think tanks in the new era comparing traditional think tanks, (b) what are the functional objectives of the new educational think tanks, (c) what are the organizational patterns and mechanism of the new educational think tanks, (d) in what approaches traditional research-based higher institutions can be developed or transformed into think tanks to effectively serve the educational policy making process. The authors adopted case study approach on five influential education policy study centers affiliated with top higher institutions in China and applied the three dimensional conceptual framework to analyze their functional objectives, organizational patterns as well as their academic pathways that researchers use to contribute to the development of think tanks to serve education policy making process.Data was mainly collected through interviews with center administrators, leading researchers and academic leaders in the institutions. Findings show that: (a) higher institution based think tanks mainly function for multi-level objectives, providing evidence, theoretical foundations, strategies, or evaluation feedbacks for critical problem solving or policy-making on the national, provincial, and city/county level; (b) higher institution based think tanks organize various types of research programs for different time spans to serve different phases of policy planning, decision making, and policy implementation; (c) in order to transform research-based higher institutions into educational think tanks, the institutions must promote paradigm shift that promotes issue-oriented field studies, large data mining and analysis, empirical studies, and trans-disciplinary research collaborations; and (d) the five cases showed distinguished features in their way of constructing think tanks, and yet they also exposed obstacles and challenges such as independency of the think tanks, the discourse shift from academic papers to consultancy report for policy makers, weakness in empirical research methods, lack of experience in trans-disciplinary collaboration. The authors finally put forth implications for think tank construction in China and abroad.Keywords: education policy-making, educational research, educational think tank, higher institution
Procedia PDF Downloads 1592196 The Impact of Technology on Computer Systems and Technology
Authors: Bishoy Abouelsoud Saad Amin
Abstract:
This paper examines the use of computer and its related health hazard among computer users in South-Western zone of Nigeria. Two hundred and eighteen (218) computer users constituted the population used to evaluate association between posture, extensive computer use and related health hazard. The instruments for the study are a questionnaire on demographics, lifestyle, body features and work ability index while mean rating, standard deviation and t test were used for data analysis. Identified health related hazard include damages to the eyesight, bad posture, arthritis, musculoskeletal disorders, headache, stress and so on. The results showed that factors such as work demand, posture, closeness to computer screen and excessive working hours on computers constitute health hazards in both old and young computer users of various gender. It is therefore recommended that total number of hours spent with computer should be monitored and controlled.Keywords: computer game, metaphor, middle school students, virtual environments computer auditing, risk, measures to prevent, information management computer-related health hazard, musculoskeletal disorders, computer usage, work ability index
Procedia PDF Downloads 692195 Red Dawn in the Desert: A World-Systems Analysis of the Maritime Silk Road Initiative
Authors: Toufic Sarieddine
Abstract:
The current debate on the hegemonic impact of China’s Belt and Road Initiative (BRI) is of two opposing strands: Resilient and absolute US hegemony on the one hand and various models of multipolar hegemony such as bifurcation on the other. Bifurcation theories illustrate an unprecedented division of hegemonic functions between China and the US, whereby Beijing becomes the world’s economic hegemon, leaving Washington the world’s military hegemon and security guarantor. While consensus points to China being the main driver of unipolarity’s rupturing, the debate among bifurcationists is on the location of the first rupture. In this regard, the Middle East and North Africa (MENA) region has seen increasing Chinese foreign direct investment in recent years while that to other regions has declined, ranking it second in 2018 as part of the financing for the Maritime Silk Road Initiative (MSRI). China has also become the top trade partner of 11 states in the MENA region, as well as its top source of machine imports, surpassing the US and achieving an overall trade surplus almost double that of Washington’s. These are among other features outlined in world-systems analysis (WSA) literature which correspond with the emergence of a new hegemon. WSA is further utilized to gauge other facets of China’s increasing involvement in MENA and assess whether bifurcation is unfolding therein. These features of hegemony include the adoption of China’s modi operandi, economic dominance in production, trade, and finance, military capacity, cultural hegemony in ideology, education, and language, and the promotion of a general interest around which to rally potential peripheries (MENA states in this case). China’s modi operandi has seen some adoption with regards to support against the United Nations Convention on the Law of the Sea, oil bonds denominated in the yuan, and financial institutions such as the Shanghai Gold Exchange enjoying increasing Arab patronage. However, recent elections in Qatar, as well as liberal reforms in Saudi Arabia, demonstrate Washington’s stronger normative influence. Meanwhile, Washington’s economic dominance is challenged by China’s sizable machine exports, increasing overall imports, and widening trade surplus, but retains some clout via dominant arms and transport exports, as well as free-trade deals across the region. Militarily, Washington bests Beijing’s arms exports, has a dominant and well-established presence in the region, and successfully blocked Beijing’s attempt to penetrate through the UAE. Culturally, Beijing enjoys higher favorability in Arab public opinion, and its broadcast networks have found some resonance with Arab audiences. In education, the West remains MENA students’ preferred destination. Further, while Mandarin has become increasingly available in schools across MENA, its usage and availability still lag far behind English. Finally, Beijing’s general interest in infrastructure provision and prioritizing economic development over social justice and democracy provides an avenue for increased incorporation between Beijing and the MENA region. The overall analysis shows solid progress towards bifurcation in MENA.Keywords: belt and road initiative, hegemony, Middle East and North Africa, world-systems analysis
Procedia PDF Downloads 1092194 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 502193 Headache Masquerading as Common Psychiatric Disorders in Patients of Low Economic Class in a Tertiary Care Setting
Authors: Seema Singh Parmar, Shweta Chauhan
Abstract:
Aims & Objectives: To evaluate the presence of various psychiatric disorders in patients reporting with a headache as the only symptom. Methodology: 200 patients with the chief complain of a headache who visited the psychiatric OPD of a tertiary care were investigated. Out of them 50 who had pure psychiatric illness without any other neurological disease were investigated, and their diagnosis was made. Independent sample t-tests were applied to generate results. Results: The most common psychiatric diagnosis seen in the sample was Depression (64%) out of which 47% showed features of Depression with anxious distress. Other psychiatric disorders seen were Generalized Anxiety Disorder, Panic Attacks, Somatic Symptom Disorder and Obsessive Compulsive Disorder. For pure psychiatry, headache related illnesses female to male ratio was 1.64. Conclusion: The increasing frequency of psychiatric disorders among patients who only visit the doctor seeking treat a headache shows the need for better identification of psychiatric disorders because proper diagnosis and target of psychiatric treatment shall give complete relief to the patient’s symptomatology.Keywords: anxiety disorders, depression, headache, panic attacks
Procedia PDF Downloads 3772192 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device
Procedia PDF Downloads 1302191 Electromagnetic and Physicochemical Properties in the Addition of Silicon Oxide on the SSPS Renewable Films
Authors: Niloofar Alipoormazandarani
Abstract:
The rift environmental, efficiency and being environmental-friendly of these innovative food packaging in edible films made them as an alternative to synthetic packages. This issue has been widely studied in this experiment. Some of the greatest advances in food packaging industry is associated with nanotechnology. Recently, a polysaccharide extracted from the cell wall of soybean cotyledons: A soluble soybean polysaccharide (SSPS), a pectin-like structure. In this study, the addition (0%, 1%, 3%, and 5%) of nano silica dioxide (SiO2) film is examined SSPS in different features. The research aims to investigate the effect of nano-SiO2 on the physicochemical and electromagnetic properties of the SSPS films were sonicated and then heated to the melting point, besides the addition of plasticizer. After that, it has been cooled into the room temperature and were dried with Casting method. In final examinations,improvement in Moisture Content and Water Absorption was observed with a significant decrease.Also, in Color measurements there were some obvious differences. These reports indicate that the incorporation of nano-SiO2 and SSPS has the power to be extensively used in pharmaceutical and food packaging industry as well.Keywords: SSPS, NanoSiO2, food packaging, renewable films
Procedia PDF Downloads 3952190 Smart Grids in Morocco: An Outline of the Recent Development, Key Drivers and Recommendations for Future Implementation
Authors: Mohamed Laamim, Aboubakr Benazzouz, Abdelilah Rochd, Abdellatif Ghennioui, Abderrahim El Fadili
Abstract:
Smart grids have recently sparked a lot of interest in the energy sector as they allow for the modernization and digitization of the existing power infrastructure. Smart grids have several advantages in terms of reducing the environmental impact of generating power from fossil fuels due to their capacity to integrate large amounts of distributed energy resources. On the other hand, smart grid technologies necessitate many field investigations and requirements. This paper focuses on the major difficulties that governments face around the world and compares them to the situation in Morocco. Also presented in this study are the current works and projects being developed to improve the penetration of smart grid technologies into the electrical system. Furthermore, the findings of this study will be useful to promote the smart grid revolution in Morocco, as well as to construct a strong foundation and develop future needs for better penetration of technologies that aid in the integration of smart grid features.Keywords: smart grids, microgrids, virtual power plants, digital twin, distributed energy resources, vehicle-to-grid, advanced metering infrastructure
Procedia PDF Downloads 1582189 Trafficking in Children as a Qualified Form of the Crime of Trafficking in Human Beings
Authors: Vanda Božić, Željko Nikač
Abstract:
Trafficking in children, especially vulnerable victims, is a qualified form of committing the crime of human trafficking, and a special form of abuse and violation of children's rights. Given that trafficking in children is dangerous, but also a specific form of crime in relation to trafficking in human beings, this paper will in the first part indicate the forms of trafficking in children (trafficking in children for sexual exploitation, child pornography, and pedophilia, exploitation of labor, begging, performance of criminal acts, adoption, marriage and participation in armed conflicts). The second part references the international documents which regulate this matter as well as the solutions in national criminal legislations of Republic of Croatia and Republic of Serbia. It points to the essential features and characteristics of the victims, according to sex, age, and citizenship, as well as the age of children at the stage of solicitation and recruitment and the status of the family from which the child comes from. The work includes a special emphasis on international police cooperation in the fight against trafficking in children. Concluding remarks set out proposals de lege ferenda that can be of significant impact, particularly on prevention, and then also on repression in combating this serious crime.Keywords: trafficking in children, trafficking in human beings, child as a victim of human trafficking, children’s rights
Procedia PDF Downloads 360