Search results for: director networks
952 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers
Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent
Abstract:
This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.Keywords: graphs, mathematics, networks, urban studies
Procedia PDF Downloads 184951 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 65950 User Selections on Social Network Applications
Authors: C. C. Liang
Abstract:
MSN used to be the most popular application for communicating among social networks, but Facebook chat is now the most popular. Facebook and MSN have similar characteristics, including usefulness, ease-of-use, and a similar function, which is the exchanging of information with friends. Facebook outperforms MSN in both of these areas. However, the adoption of Facebook and abandonment of MSN have occurred for other reasons. Functions can be improved, but users’ willingness to use does not just depend on functionality. Flow status has been established to be crucial to users’ adoption of cyber applications and to affects users’ adoption of software applications. If users experience flow in using software application, they will enjoy using it frequently, and even change their preferred application from an old to this new one. However, no investigation has examined choice behavior related to switching from Facebook to MSN based on a consideration of flow experiences and functions. This investigation discusses the flow experiences and functions of social-networking applications. Flow experience is found to affect perceived ease of use and perceived usefulness; perceived ease of use influences information ex-change with friends, and perceived usefulness; information exchange influences perceived usefulness, but information exchange has no effect on flow experience.Keywords: consumer behavior, social media, technology acceptance model, flow experience
Procedia PDF Downloads 357949 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 85948 Application of Deep Neural Networks to Assess Corporate Credit Rating
Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu
Abstract:
In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating
Procedia PDF Downloads 236947 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision
Authors: Lianzhong Zhang, Chao Huang
Abstract:
Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.Keywords: SAR, sea-land segmentation, deep learning, transformer
Procedia PDF Downloads 184946 Nighttime Dehaze - Enhancement
Authors: Harshan Baskar, Anirudh S. Chakravarthy, Prateek Garg, Divyam Goel, Abhijith S. Raj, Kshitij Kumar, Lakshya, Ravichandra Parvatham, V. Sushant, Bijay Kumar Rout
Abstract:
In this paper, we introduce a new computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a new benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a new network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve SSIM of 0.8962 and PSNR of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task, particularly for autonomous navigation applications, and we hope that our work will open up new frontiers in research. Our dataset and code will be made publicly available upon acceptance of our paper.Keywords: dehazing, image enhancement, nighttime, computer vision
Procedia PDF Downloads 159945 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network
Authors: Kamyar Fakhr, Roozbeh Salmani
Abstract:
Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.Keywords: biometric system, convolutional neural network, cyber-attack, secure
Procedia PDF Downloads 220944 Disaster Resilience Analysis of Atlanta Interstate Highway System within the Perimeter
Authors: Mengmeng Liu, J. David Frost
Abstract:
Interstate highway system within the Atlanta Perimeter plays an important role in residents’ daily life. The serious influence of Atlanta I-85 Collapses implies that transportation system in the region lacks a cohesive and comprehensive transportation plan. Therefore, disaster resilience analysis of the transportation system is necessary. Resilience is the system’s capability to persist or to maintain transportation services when exposed to changes or shocks. This paper analyzed the resilience of the whole transportation system within the Perimeter and see how removing interstates within the Perimeter will affect the resilience of the transportation system. The data used in the paper are Atlanta transportation networks and LEHD Origin-Destination Employment Statistics data. First, we calculate the traffic flow on each road section based on LEHD data assuming each trip travel along the shortest travel time paths. Second, we calculate the measure of resilience, which is flow-based connectivity and centrality of the transportation network, and see how they will change if we remove each section of interstates from the current transportation system. Finally, we get the resilience function curve of the interstates and identify the most resilient interstates section. The resilience analysis results show that the framework of calculation resilience is effective and can provide some useful information for the transportation planning and sustainability analysis of the transportation infrastructures.Keywords: connectivity, interstate highway system, network analysis, resilience analysis
Procedia PDF Downloads 263943 An Effective and Efficient Web Platform for Monitoring, Control, and Management of Drones Supported by a Microservices Approach
Authors: Jorge R. Santos, Pedro Sebastiao
Abstract:
In recent years there has been a great growth in the use of drones, being used in several areas such as security, agriculture, or research. The existence of some systems that allow the remote control of drones is a reality; however, these systems are quite simple and directed to specific functionality. This paper proposes the development of a web platform made in Vue.js and Node.js to control, manage, and monitor drones in real time. Using a microservice architecture, the proposed project will be able to integrate algorithms that allow the optimization of processes. Communication with remote devices is suggested via HTTP through 3G, 4G, and 5G networks and can be done in real time or by scheduling routes. This paper addresses the case of forest fires as one of the services that could be included in a system similar to the one presented. The results obtained with the elaboration of this project were a success. The communication between the web platform and drones allowed its remote control and monitoring. The incorporation of the fire detection algorithm in the platform proved possible a real time analysis of the images captured by the drone without human intervention. The proposed system has proved to be an asset to the use of drones in fire detection. The architecture of the application developed allows other algorithms to be implemented, obtaining a more complex application with clear expansion.Keywords: drone control, microservices, node.js, unmanned aerial vehicles, vue.js
Procedia PDF Downloads 151942 Bibliometric Analysis of Global Research Trends on Organization Culture, Strategic Leadership and Performance Using Scopus Database
Authors: Anyia Nduka, Aslan Bin Amad Senin
Abstract:
Taking a behavioral perspective of Organization Culture, Strategic Leadership, and performance (OC, SLP). We examine the role of Strategic Leadership as key vicious mechanism linking OC,SLP to the organizational capacities. Given the increasing degree of dependence of modern businesses on the use and scientific discovery of relevant data, research efforts around the entire globe have been accelerated. In today's corporate world, Strategic Leadership is still the most sustainable option of performance and competitive advantage. This is why it is critical to gain a deep understanding of research area and to strengthen new collaborative networks in efforts to support research transition towards these integrative efforts. This bibliometric analysis is aimed to examine global trends in OC,SLP research based on publication output, author co-authorships, and co-occurrences of author keywords among authors and affiliated countries. 2829 journal articles were retrieved from the Scopus database Between 1974 and 2021. From the research findings, there is a significant increase in number of publications with strong global collaboration (e.g., USA & UK). We also discovered that while most countries/territories without affiliations were centered in developing countries, the outstanding performance of Asian countries and the volume of their collaborations should be emulated.Keywords: organizational culture, strategic leadership, organizational resilience, performance
Procedia PDF Downloads 86941 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils
Authors: Alim Asamatdinov
Abstract:
Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.Keywords: hydrogel, chemical, polymer, sandy, colloid
Procedia PDF Downloads 144940 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 113939 Urban Resilince and Its Prioritised Components: Analysis of Industrial Township Greater Noida
Authors: N. Mehrotra, V. Ahuja, N. Sridharan
Abstract:
Resilience is an all hazard and a proactive approach, require a multidisciplinary input in the inter related variables of the city system. This research based to identify and operationalize indicators for assessment in domain of institutions, infrastructure and knowledge, all three operating in task oriented community networks. This paper gives a brief account of the methodology developed for assessment of Urban Resilience and its prioritized components for a target population within a newly planned urban complex integrating Surajpur and Kasna village as nodes. People’s perception of Urban Resilience has been examined by conducting questionnaire survey among the target population of Greater Noida. As defined by experts, Urban Resilience of a place is considered to be both a product and process of operation to regain normalcy after an event of disturbance of certain level. Based on this methodology, six indicators are identified that contribute to perception of urban resilience both as in the process of evolution and as an outcome. The relative significance of 6 R’ has also been identified. The dependency factor of various resilience indicators have been explored in this paper, which helps in generating new perspective for future research in disaster management. Based on the stated factors this methodology can be applied to assess urban resilience requirements of a well planned town, which is not an end in itself, but calls for new beginnings.Keywords: disaster, resilience, system, urban
Procedia PDF Downloads 461938 Tsunami Vulnerability of Critical Infrastructure: Development and Application of Functions for Infrastructure Impact Assessment
Authors: James Hilton Williams
Abstract:
Recent tsunami events, including the 2011 Tohoku Tsunami, Japan, and the 2015 Illapel Tsunami, Chile, have highlighted the potential for tsunami impacts on the built environment. International research in the tsunami impacts domain has been largely focused toward impacts on buildings and casualty estimations, while only limited attention has been placed on the impacts on infrastructure which is critical for the recovery of impacted communities. New Zealand, with 75% of the population within 10 km of the coast, has a large amount of coastal infrastructure exposed to local, regional and distant tsunami sources. To effectively manage tsunami risk for New Zealand critical infrastructure, including energy, transportation, and communications, the vulnerability of infrastructure networks and components must first be determined. This research develops infrastructure asset vulnerability, functionality and repair- cost functions based on international post-event tsunami impact assessment data from technologically similar countries, including Japan and Chile, and adapts these to New Zealand. These functions are then utilized within a New Zealand based impact framework, allowing for cost benefit analyses, effective tsunami risk management strategies and mitigation options for exposed critical infrastructure to be determined, which can also be applied internationally.Keywords: impact assessment, infrastructure, tsunami impacts, vulnerability functions
Procedia PDF Downloads 162937 Effect of Electronic Banking on the Performance of Deposit Money Banks in Nigeria: Using ATM and Mobile Phone as a Case Study
Authors: Charity Ifunanya Osakwe, Victoria Ogochuchukwu Obi-Nwosu, Chima Kenneth Anachedo
Abstract:
The study investigates how automated teller machines (ATM) and mobile banking affect deposit money banks in the Nigerian economy. The study made use of time series data which were obtained from the Central Bank of Nigeria Statistical Bulletin from 2009 to 2021. The Central Bank of Nigeria (CBN) data on automated teller machine and mobile phones were used to proxy electronic banking while total deposit in banks proxied the performance of deposit money banks. The analysis for the study was done using ordinary least square econometric technique with the aid of economic view statistical package. The results show that the automated teller machine has a positive and significant effect on the total deposits of deposit money banks in Nigeria and that making use of deposits of deposit money banks in Nigeria. It was concluded in the study that e-banking has equally increased banking access to customers and also created room for banks to expand their operations to more customers. The study recommends that banks in Nigeria should prioritize the expansion and maintenance of ATM networks as well as continue to invest in and develop more mobile banking services.Keywords: electronic, banking, automated teller machines, mobile, deposit
Procedia PDF Downloads 55936 Transnational Educators in Japan, Russia, and America: Historical Trends in Global Education in the 1990’s and Early 2000’s
Authors: Peter J. Glinos
Abstract:
The Alternative Education Resource Organization (AERO), one of the largest international hubs for alternative educators led by Jerry Mintz, has had a major impact on the global alternative education movement. The organization’s publications, like the AERO-Gramme Newsletter and its successor, the Education Revolution Magazine, allowed members across the globe to discuss issues, share support, and submit writings on policies and reforms. Stored on AERO's online digital archive, this work uses these publications from 1989 to 2011 to investigate the network's entanglements with America, Canada, Russia, Ukraine, Israel, Palestine, Japan, India, and Guatemala. Inspired by Reinhart Koselleck, this historical analysis will trace AERO’s entanglements within the United States, Japan, and Russia, contextualizing each of these multiple temporalities within the history of each nation’s education system, the developments within AERO, and the global geo-political climate at the time of AERO’s expansion. To help remedy the lack of attention paid by global historians to the role state organizations play supporting global networks, as noted in What is Global History? by Sebastian Conrad, this work will focus on the relationship between AERO and state actors.Keywords: global history, history of education, neoliberalism, transnational history, alternative education
Procedia PDF Downloads 29935 Enhancing Internet of Things Security: A Blockchain-Based Approach for Preventing Spoofing Attacks
Authors: Salha Abdullah Ali Al-Shamrani, Maha Muhammad Dhaher Aljuhani, Eman Ali Ahmed Aldhaheri
Abstract:
With the proliferation of Internet of Things (IoT) devices in various industries, there has been a concurrent rise in security vulnerabilities, particularly spoofing attacks. This study explores the potential of blockchain technology in enhancing the security of IoT systems and mitigating these attacks. Blockchain's decentralized and immutable ledger offers significant promise for improving data integrity, transaction transparency, and tamper-proofing. This research develops and implements a blockchain-based IoT architecture and a reference network to simulate real-world scenarios and evaluate a blockchain-integrated intrusion detection system. Performance measures including time delay, security, and resource utilization are used to assess the system's effectiveness, comparing it to conventional IoT networks without blockchain. The results provide valuable insights into the practicality and efficacy of employing blockchain as a security mechanism, shedding light on the trade-offs between speed and security in blockchain deployment for IoT. The study concludes that despite minor increases in time consumption, the security benefits of incorporating blockchain technology into IoT systems outweigh potential drawbacks, demonstrating a significant potential for blockchain in bolstering IoT security.Keywords: internet of things, spoofing, IoT, access control, blockchain, raspberry pi
Procedia PDF Downloads 75934 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 98933 Air-Blast Ultrafast Disconnectors and Solid-State Medium Voltage DC Breaker: A Modified Version to Lower Losses and Higher Speed
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
MVDC markets for green power generations, Navy, subsea oil and gas electrification, and transportation electrification are extending rapidly. The lack of fast and powerful DC circuit breakers (CB) is the most significant barrier to realizing the medium voltage DC (MVDC) networks. A concept of hybrid circuit breakers (HCBs) benefiting from ultrafast disconnectors (UFD) is proposed. A set of mechanical switches substitute the power electronic commutation switches to reduce the losses during normal operation in HCB. The success of current commutation in such breakers relies on the behaviour of elongated, wall constricted arcs during the opening across the contacts inside the UFD. The arc voltage dependencies on the contact speed of UFDs is discussed through multiphysics simulations contact opening speeds of 10, 20 and 40 m/s. The arc voltage at a given current increases exponentially with the contact opening velocity. An empirical equation for the dynamic arc characteristics is presented for the tested UFD, and the experimentally verfied characteristics for voltage-current are utilized for the current commutation simulation prior to apply on a 14 kV experimental setup. Different failures scenarios due to the current commutation are investigatedKeywords: MVDC breakers, DC circuit breaker, fast operating breaker, ultra-fast elongated arc
Procedia PDF Downloads 85932 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting
Procedia PDF Downloads 385931 Estimation of Transition and Emission Probabilities
Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi
Abstract:
Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics
Procedia PDF Downloads 482930 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN
Authors: Muhammad Atif, Cang Yan
Abstract:
The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.Keywords: low light image enhancement, deep learning, convolutional neural network, image processing
Procedia PDF Downloads 85929 An as-If Ritual and Its Discontents: Everyday Life of North Korean Migrant Women in South Korea
Authors: Sojung Kim
Abstract:
This paper explores how the Partition of Korea is absorbed into everyday life through North Korean migrant women’s rituals for traditional holidays in Korea. In national holidays called myungjul, Koreans traditionally visit their paternal ancestor’s hometowns to hold jesa, the rites for the ancestors, at the graves and home. Due to the physical gaps in the kinship networks, marked by the kin left behind in North Korea, North Korean migrants gather among themselves in the neighborhood in South Korea as if they make the myungjul ritual of the family gatherings. This impossibility of the proper practice of the rites insinuates the violence of the Partition refracted into the family relations between those in the South and those in the North. Yet, the myungjul gathering creates a kind of collective hometown, beside one’s genealogical hometown, where they can express lamentation and guilt over not being able to visit their parents and ancestors in their hometowns, which they are traditionally required to do. In this as-if ritual, myungjul is re-created for and by the women and for others in the community. Yet, the texture of this ritual is marked by discontent and dissatisfaction. Attending to fostering discontents that seep into the collective events, this paper aims to seek ways to study the violence that permeated in everyday life in partitioned Korea.Keywords: as-if ritual, everyday life, kinship, migration
Procedia PDF Downloads 147928 Design of EV Steering Unit Using AI Based on Estimate and Control Model
Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin
Abstract:
Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system
Procedia PDF Downloads 46927 Fuzzy Logic Based Ventilation for Controlling Harmful Gases in Livestock Houses
Authors: Nuri Caglayan, H. Kursat Celik
Abstract:
There are many factors that influence the health and productivity of the animals in livestock production fields, including temperature, humidity, carbon dioxide (CO2), ammonia (NH3), hydrogen sulfide (H2S), physical activity and particulate matter. High NH3 concentrations reduce feed consumption and cause daily weight gain. At high concentrations, H2S causes respiratory problems and CO2 displace oxygen, which can cause suffocation or asphyxiation. Good air quality in livestock facilities can have an impact on the health and well-being of animals and humans. Air quality assessment basically depends on strictly given limits without taking into account specific local conditions between harmful gases and other meteorological factors. The stated limitations may be eliminated. using controlling systems based on neural networks and fuzzy logic. This paper describes a fuzzy logic based ventilation algorithm, which can calculate different fan speeds under pre-defined boundary conditions, for removing harmful gases from the production environment. In the paper, a fuzzy logic model has been developed based on a Mamedani’s fuzzy method. The model has been built on MATLAB software. As the result, optimum fan speeds under pre-defined boundary conditions have been presented.Keywords: air quality, fuzzy logic model, livestock housing, fan speed
Procedia PDF Downloads 374926 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio
Procedia PDF Downloads 164925 An Improved Image Steganography Technique Based on Least Significant Bit Insertion
Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo
Abstract:
In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.Keywords: steganography, image steganography, least significant bits, bit map image
Procedia PDF Downloads 267924 Sorption of Charged Organic Dyes from Anionic Hydrogels
Authors: Georgios Linardatos, Miltiadis Zamparas, Vlasoula Bekiari, Georgios Bokias, Georgios Hotos
Abstract:
Hydrogels are three-dimensional, hydrophilic, polymeric networks composed of homopolymers or copolymers and are insoluble in water due to the presence of chemical or physical cross-links. When hydrogels come in contact with aqueous solutions, they can effectively sorb and retain the dissolved substances, depending on the nature of the monomeric units comprising the hydrogel. For this reason, hydrogels have been proposed in several studies as water purification agents. At the present work anionic hydrogels bearing negatively charged –COO- groups were prepared and investigated. These gels are based on sodium acrylate (ANa), either homopolymerized (poly(sodiumacrylate), PANa) or copolymerized (P(DMAM-co-ANa)) with N,N Dimethylacrylamide (DMAM). The hydrogels were used to extract some model organic dyes from water. It is found that cationic dyes are strongly sorbed and retained by the hydrogels, while sorption of anionic dyes was negligible. In all cases it was found that both maximum sorption capacity and equilibrium binding constant varied from one dye to the other depending on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. Finally, the nonionic hydrogel of the homopolymer poly(N,N-dimethylacrylamide), PDMAM, was also used for reasons of comparison.Keywords: anionic organic hydrogels, sorption, organic dyes, water purification agents
Procedia PDF Downloads 260923 Computational Fluid Dynamics Simulation to Study the Effect of Ambient Temperature on the Ventilation in a Metro Tunnel
Authors: Yousef Almutairi, Yajue Wu
Abstract:
Various large-scale trends have characterized the current century thus far, including increasing shifts towards urbanization and greater movement. It is predicted that there will be 9.3 billion people on Earth in 2050 and that over two-thirds of this population will be city dwellers. Moreover, in larger cities worldwide, mass transportation systems, including underground systems, have grown to account for the majority of travel in those settings. Underground networks are vulnerable to fires, however, endangering travellers’ safety, with various examples of fire outbreaks in this setting. This study aims to increase knowledge of the impacts of extreme climatic conditions on fires, including the role of the high ambient temperatures experienced in Middle Eastern countries and specifically in Saudi Arabia. This is an element that is not always included when assessments of fire safety are made (considering visibility, temperatures, and flows of smoke). This paper focuses on a tunnel within Riyadh’s underground system as a case study and includes simulations based on computational fluid dynamics using ANSYS Fluent, which investigates the impact of various ventilation systems while identifying smoke density, speed, pressure and temperatures within this tunnel.Keywords: fire, subway tunnel, CFD, mechanical ventilation, smoke, temperature, harsh weather
Procedia PDF Downloads 133