Search results for: Hungarian algorithm
1735 Data Stream Association Rule Mining with Cloud Computing
Authors: B. Suraj Aravind, M. H. M. Krishna Prasad
Abstract:
There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.Keywords: data stream, association rule mining, cloud computing, frequent itemsets
Procedia PDF Downloads 5051734 Comparative Study of Scheduling Algorithms for LTE Networks
Authors: Samia Dardouri, Ridha Bouallegue
Abstract:
Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.Keywords: LTE, multimedia flows, scheduling algorithms, mobile computing
Procedia PDF Downloads 3861733 Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning
Authors: Andreas D. Jansson
Abstract:
The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm.Keywords: autonomous vehicles, industry 4.0, multi-agent system, obstacle avoidance, Q-learning, simulation
Procedia PDF Downloads 1401732 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 4911731 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 4231730 An Approximation Algorithm for the Non Orthogonal Cutting Problem
Abstract:
We study the problem of cutting a rectangular material entity into smaller sub-entities of trapezoidal forms with minimum waste of the material. This problem will be denoted TCP (Trapezoidal Cutting Problem). The TCP has many applications in manufacturing processes of various industries: pipe line design (petro chemistry), the design of airfoil (aeronautical) or cuts of the components of textile products. We introduce an orthogonal build to provide the optimal horizontal and vertical homogeneous strips. In this paper we develop a general heuristic search based upon orthogonal build. By solving two one-dimensional knapsack problems, we combine the horizontal and vertical homogeneous strips to give a non orthogonal cutting pattern.Keywords: combinatorial optimization, cutting problem, heuristic
Procedia PDF Downloads 5421729 Glushkov's Construction for Functional Subsequential Transducers
Authors: Aleksander Mendoza
Abstract:
Glushkov's construction has many interesting properties, and they become even more evident when applied to transducers. This article strives to show the vast range of possible extensions and optimisations for this algorithm. Special flavour of regular expressions is introduced, which can be efficiently converted to e-free functional subsequential weighted finite state transducers. Produced automata are very compact, as they contain only one state for each symbol (from input alphabet) of original expression and only one transition for each range of symbols, no matter how large. Such compactified ranges of transitions allow for efficient binary search lookup during automaton evaluation. All the methods and algorithms presented here were used to implement open-source compiler of regular expressions for multitape transducers.Keywords: weighted automata, transducers, Glushkov, follow automata, regular expressions
Procedia PDF Downloads 1641728 Developement of a New Wearable Device for Automatic Guidance Service
Authors: Dawei Cai
Abstract:
In this paper, we present a new wearable device that provide an automatic guidance servie for visitors. By combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor, the head's direction can be calculated. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children.Keywords: wearable device, ubiquitous computing, guide sysem, MEMS sensor, NFC
Procedia PDF Downloads 4261727 Global Optimization Techniques for Optimal Placement of HF Antennas on a Shipboard
Authors: Mustafa Ural, Can Bayseferogulari
Abstract:
In this work, radio frequency (RF) coupling between two HF antennas on a shipboard platform is minimized by determining an optimal antenna placement. Unlike the other works, the coupling is minimized not only at single frequency but over the whole frequency band of operation. Similarly, GAO and PSO, are used in order to determine optimal antenna placement. Throughout this work, outputs of two optimization techniques are compared with each other in terms of antenna placements and coupling results. At the end of the work, far-field radiation pattern performances of the antennas at their optimal places are analyzed in terms of directivity and coverage in order to see that.Keywords: electromagnetic compatibility, antenna placement, optimization, genetic algorithm optimization, particle swarm optimization
Procedia PDF Downloads 2401726 Efficient Alias-Free Level Crossing Sampling
Authors: Negar Riazifar, Nigel G. Stocks
Abstract:
This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide alias-free high-fidelity signal reconstruction for speech signals without exponentially increasing sample number with increasing bit-depth. We introduce methods in LC sampling that reduce the sampling rate close to the Nyquist frequency even for large bit-depth. The results indicate that larger variation in the sampling intervals leads to an alias-free sampling scheme; this is achieved by either reducing the bit-depth or adding jitter to the system for high bit-depths. In conjunction with windowing, the signal is reconstructed from the LC samples using an efficient Toeplitz reconstruction algorithm.Keywords: alias-free, level crossing sampling, spectrum, trigonometric polynomial
Procedia PDF Downloads 2141725 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers
Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken
Abstract:
This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization
Procedia PDF Downloads 3151724 Reactive Power Cost Evaluation with FACTS Devices in Restructured Power System
Authors: A. S. Walkey, N. P. Patidar
Abstract:
It is not always economical to provide reactive power using synchronous alternators. The cost of reactive power can be minimized by optimal placing of FACTS devices in power systems. In this paper a Particle Swarm Optimization- Sequential Quadratic Programming (PSO-SQP) algorithm is applied to minimize the cost of reactive power generation along with real power generation to alleviate the bus voltage violations. The effectiveness of proposed approach tested on IEEE-14 bus systems. In this paper in addition to synchronous generators, an opportunity of FACTS devices are also proposed to procure the reactive power demands in the power system.Keywords: reactive power, reactive power cost, voltage security margins, capability curve, FACTS devices
Procedia PDF Downloads 5081723 Cross-Layer Design of Event-Triggered Adaptive OFDMA Resource Allocation Protocols with Application to Vehicle Clusters
Authors: Shaban Guma, Naim Bajcinca
Abstract:
We propose an event-triggered algorithm for the solution of a distributed optimization problem by means of the projected subgradient method. Thereby, we invoke an OFDMA resource allocation scheme by applying an event-triggered sensitivity analysis at the access point. The optimal resource assignment of the subcarriers to the involved wireless nodes is carried out by considering the sensitivity analysis of the overall objective function as defined by the control of vehicle clusters with respect to the information exchange between the nodes.Keywords: consensus, cross-layer, distributed, event-triggered, multi-vehicle, protocol, resource, OFDMA, wireless
Procedia PDF Downloads 3331722 Optimal Pressure Control and Burst Detection for Sustainable Water Management
Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana
Abstract:
Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring
Procedia PDF Downloads 891721 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 5391720 Adaptive Routing Protocol for Dynamic Wireless Sensor Networks
Authors: Fayez Mostafa Alhamoui, Adnan Hadi Mahdi Al- Helali
Abstract:
The main issue in designing a wireless sensor network (WSN) is the finding of a proper routing protocol that complies with the several requirements of high reliability, short latency, scalability, low power consumption, and many others. This paper proposes a novel routing algorithm that complies with these design requirements. The new routing protocol divides the WSN into several sub-networks and each sub-network is divided into several clusters. This division is designed to reduce the number of radio transmission and hence decreases the power consumption. The network division may be changed dynamically to adapt with the network changes and allows the realization of the design requirements.Keywords: wireless sensor networks, routing protocols, AD HOC topology, cluster, sub-network, WSN design requirements
Procedia PDF Downloads 5391719 Automatic Segmentation of Lung Pleura Based On Curvature Analysis
Authors: Sasidhar B., Bhaskar Rao N., Ramesh Babu D. R., Ravi Shankar M.
Abstract:
Segmentation of lung pleura is a preprocessing step in Computer-Aided Diagnosis (CAD) which helps in reducing false positives in detection of lung cancer. The existing methods fail in extraction of lung regions with the nodules at the pleura of the lungs. In this paper, a new method is proposed which segments lung regions with nodules at the pleura of the lungs based on curvature analysis and morphological operators. The proposed algorithm is tested on 06 patient’s dataset which consists of 60 images of Lung Image Database Consortium (LIDC) and the results are found to be satisfactory with 98.3% average overlap measure (AΩ).Keywords: curvature analysis, image segmentation, morphological operators, thresholding
Procedia PDF Downloads 5981718 Analysis on Thermococcus achaeans with Frequent Pattern Mining
Authors: Jeongyeob Hong, Myeonghoon Park, Taeson Yoon
Abstract:
After the advent of Achaeans which utilize different metabolism pathway and contain conspicuously different cellular structure, they have been recognized as possible materials for developing quality of human beings. Among diverse Achaeans, in this paper, we compared 16s RNA Sequences of four different species of Thermococcus: Achaeans genus specialized in sulfur-dealing metabolism. Four Species, Barophilus, Kodakarensis, Hydrothermalis, and Onnurineus, live near the hydrothermal vent that emits extreme amount of sulfur and heat. By comparing ribosomal sequences of aforementioned four species, we found similarities in their sequences and expressed protein, enabling us to expect that certain ribosomal sequence or proteins are vital for their survival. Apriori algorithms and Decision Tree were used. for comparison.Keywords: Achaeans, Thermococcus, apriori algorithm, decision tree
Procedia PDF Downloads 2921717 Numerical Study of a Nanofluid in a Truncated Cone
Authors: B. Mahfoud, A. Bendjaghlouli
Abstract:
Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.Keywords: heat source, truncated cone, nanofluid, natural convection
Procedia PDF Downloads 3121716 RAPD Analysis of Genetic Diversity of Castor Bean
Authors: M. Vivodík, Ž. Balážová, Z. Gálová
Abstract:
The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses.Keywords: dendrogram, polymorphism, RAPD technique, Ricinus communis L.
Procedia PDF Downloads 4751715 Multi Objective Near-Optimal Trajectory Planning of Mobile Robot
Authors: Amar Khoukhi, Mohamed Shahab
Abstract:
This paper presents the optimal control problem of mobile robot motion as a nonlinear programming problem (NLP) and solved using a direct method of numerical optimal control. The NLP is initialized with a B-Spline for which node locations are optimized using a genetic search. The system acceleration inputs and sampling periods are considered as optimization variables. Different scenarios with different objectives weights are implemented and investigated. Interesting results are found in terms of complying with the expected behavior of a mobile robot system and time-energy minimization.Keywords: multi-objective control, non-holonomic systems, mobile robots, nonlinear programming, motion planning, B-spline, genetic algorithm
Procedia PDF Downloads 3721714 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation
Abstract:
This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation
Procedia PDF Downloads 3261713 Design of a Drift Assist Control System Applied to Remote Control Car
Authors: Sheng-Tse Wu, Wu-Sung Yao
Abstract:
In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.Keywords: drift assist control system, remote control cars, gyroscope, vehicle dynamics
Procedia PDF Downloads 3981712 RNA-Seq Analysis of Coronaviridae Family and SARS-Cov-2 Prediction Using Proposed ANN
Authors: Busra Mutlu Ipek, Merve Mutlu, Ahmet Mutlu
Abstract:
Novel coronavirus COVID-19, which has recently influenced the world, poses a great threat to humanity. In order to overcome this challenging situation, scientists are working on developing effective vaccine against coronavirus. Many experts and researchers have also produced articles and done studies on this highly important subject. In this direction, this special topic was chosen for article to make a contribution to this area. The purpose of this article is to perform RNA sequence analysis of selected virus forms in the Coronaviridae family and predict/classify SARS-CoV-2 (COVID-19) from other selected complete genomes in coronaviridae family using proposed Artificial Neural Network(ANN) algorithm.Keywords: Coronaviridae family, COVID-19, RNA sequencing, ANN, neural network
Procedia PDF Downloads 1471711 A Clinician’s Perspective on Electroencephalography Annotation and Analysis for Driver Drowsiness Estimation
Authors: Ruxandra Aursulesei, David O’Callaghan, Cian Ryan, Diarmaid O’Cualain, Viktor Varkarakis, Alina Sultana, Joseph Lemley
Abstract:
Human errors caused by drowsiness are among the leading causes of road accidents. Neurobiological research gives information about the electrical signals emitted by neurons firing within the brain. Electrical signal frequencies can be determined by attaching bio-sensors to the head surface. By observing the electrical impulses and the rhythmic interaction of neurons with each other, we can predict the mental state of a person. In this paper, we aim to better understand intersubject and intrasubject variability in terms of electrophysiological patterns that occur at the onset of drowsiness and their evolution with the decreasing of vigilance. The purpose is to lay the foundations for an algorithm that detects the onset of drowsiness before the physical signs become apparent.Keywords: electroencephalography, drowsiness, ADAS, annotations, clinician
Procedia PDF Downloads 1171710 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes
Authors: Akram Khaleghei, Ghosheh Balagh, Viliam Makis
Abstract:
In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.Keywords: partially observable system, hidden Markov model, competing risks, residual life prediction
Procedia PDF Downloads 4171709 Bayesian Analysis of Change Point Problems Using Conditionally Specified Priors
Authors: Golnaz Shahtahmassebi, Jose Maria Sarabia
Abstract:
In this talk, we introduce a new class of conjugate prior distributions obtained from conditional specification methodology. We illustrate the application of such distribution in Bayesian change point detection in Poisson processes. We obtain the posterior distribution of model parameters using a general bivariate distribution with gamma conditionals. Simulation from the posterior is readily implemented using a Gibbs sampling algorithm. The Gibbs sampling is implemented even when using conditional densities that are incompatible or only compatible with an improper joint density. The application of such methods will be demonstrated using examples of simulated and real data.Keywords: change point, bayesian inference, Gibbs sampler, conditional specification, gamma conditional distributions
Procedia PDF Downloads 1931708 Pareto Optimal Material Allocation Mechanism
Authors: Peter Egri, Tamas Kis
Abstract:
Scheduling problems have been studied by the algorithmic mechanism design research from the beginning. This paper is focusing on a practically important, but theoretically rather neglected field: the project scheduling problem where the jobs connected by precedence constraints compete for various nonrenewable resources, such as materials. Although the centralized problem can be solved in polynomial-time by applying the algorithm of Carlier and Rinnooy Kan from the Eighties, obtaining materials in a decentralized environment is usually far from optimal. It can be observed in practical production scheduling situations that project managers tend to cache the required materials as soon as possible in order to avoid later delays due to material shortages. This greedy practice usually leads both to excess stocks for some projects and materials, and simultaneously, to shortages for others. The aim of this study is to develop a model for the material allocation problem of a production plant, where a central decision maker—the inventory—should assign the resources arriving at different points in time to the jobs. Since the actual due dates are not known by the inventory, the mechanism design approach is applied with the projects as the self-interested agents. The goal of the mechanism is to elicit the required information and allocate the available materials such that it minimizes the maximal tardiness among the projects. It is assumed that except the due dates, the inventory is familiar with every other parameters of the problem. A further requirement is that due to practical considerations monetary transfer is not allowed. Therefore a mechanism without money is sought which excludes some widely applied solutions such as the Vickrey–Clarke–Groves scheme. In this work, a type of Serial Dictatorship Mechanism (SDM) is presented for the studied problem, including a polynomial-time algorithm for computing the material allocation. The resulted mechanism is both truthful and Pareto optimal. Thus the randomization over the possible priority orderings of the projects results in a universally truthful and Pareto optimal randomized mechanism. However, it is shown that in contrast to problems like the many-to-many matching market, not every Pareto optimal solution can be generated with an SDM. In addition, no performance guarantee can be given compared to the optimal solution, therefore this approximation characteristic is investigated with experimental study. All in all, the current work studies a practically relevant scheduling problem and presents a novel truthful material allocation mechanism which eliminates the potential benefit of the greedy behavior that negatively influences the outcome. The resulted allocation is also shown to be Pareto optimal, which is the most widely used criteria describing a necessary condition for a reasonable solution.Keywords: material allocation, mechanism without money, polynomial-time mechanism, project scheduling
Procedia PDF Downloads 3331707 Contextual Sentiment Analysis with Untrained Annotators
Authors: Lucas A. Silva, Carla R. Aguiar
Abstract:
This work presents a proposal to perform contextual sentiment analysis using a supervised learning algorithm and disregarding the extensive training of annotators. To achieve this goal, a web platform was developed to perform the entire procedure outlined in this paper. The main contribution of the pipeline described in this article is to simplify and automate the annotation process through a system of analysis of congruence between the notes. This ensured satisfactory results even without using specialized annotators in the context of the research, avoiding the generation of biased training data for the classifiers. For this, a case study was conducted in a blog of entrepreneurship. The experimental results were consistent with the literature related annotation using formalized process with experts.Keywords: sentiment analysis, untrained annotators, naive bayes, entrepreneurship, contextualized classifier
Procedia PDF Downloads 3991706 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 543