Search results for: time workflow network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21625

Search results for: time workflow network

19705 Axial Flux Permanent Magnet Motor Design and Optimization by Using Artificial Neural Networks

Authors: Tugce Talay, Kadir Erkan

Abstract:

In this study, the necessary steps for the design of axial flow permanent magnet motors are shown. The design and analysis of the engine were carried out based on ANSYS Maxwell program. The design parameters of the ANSYS Maxwell program and the artificial neural network system were established in MATLAB and the most efficient design parameters were found with the trained neural network. The results of the Maxwell program and the results of the artificial neural networks are compared and optimal working design parameters are found. The most efficient design parameters were submitted to the ANSYS Maxwell 3D design and the cogging torque was examined and design studies were carried out to reduce the cogging torque.

Keywords: AFPM, ANSYS Maxwell, cogging torque, design optimisation, efficiency, NNTOOL

Procedia PDF Downloads 220
19704 Identifying Concerned Citizen Communication Style During the State Parliamentary Elections in Bavaria

Authors: Volker Mittendorf, Andre Schmale

Abstract:

In this case study, we want to explore the Twitter-use of candidates during the state parliamentary elections-year 2018 in Bavaria, Germany. This paper focusses on the seven parties that probably entered the parliament. Against this background, the paper classifies the use of language as populism which itself is considered as a political communication style. First, we determine the election campaigns which started in the years 2017 on Twitter, after that we categorize the posting times of the different direct candidates in order to derive ideal types from our empirical data. Second, we have done the exploration based on the dictionary of concerned citizens which contains German political language of the right and the far right. According to that, we are analyzing the corpus with methods of text mining and social network analysis, and afterwards we display the results in a network of words of concerned citizen communication style (CCCS).

Keywords: populism, communication style, election, text mining, social media

Procedia PDF Downloads 149
19703 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method

Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang

Abstract:

Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.

Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time

Procedia PDF Downloads 270
19702 An Intelligent WSN-Based Parking Guidance System

Authors: Sheng-Shih Wang, Wei-Ting Wang

Abstract:

This paper designs an intelligent guidance system, based on wireless sensor networks, for efficient parking in parking lots. The proposed system consists of a parking space allocation subsystem, a parking space monitoring subsystem, a driving guidance subsystem, and a vehicle detection subsystem. In the system, we propose a novel and effective virtual coordinate system for sensing and displaying devices to determine the proper vacant parking space and provide the precise guidance to the driver. This study constructs a ZigBee-based wireless sensor network on Arduino platform and implements the prototype of the proposed system using Arduino-based complements. Experimental results confirm that the proposed prototype can not only work well, but also provide drivers the correct parking information.

Keywords: Arduino, parking guidance, wireless sensor network, ZigBee

Procedia PDF Downloads 575
19701 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader

Abstract:

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network

Procedia PDF Downloads 276
19700 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 84
19699 Emerging Trends of Geographic Information Systems in Built Environment Education: A Bibliometric Review Analysis

Authors: Kiara Lawrence, Robynne Hansmann, Clive Greentsone

Abstract:

Geographic Information Systems (GIS) are used to store, analyze, visualize, capture and monitor geographic data. Built environment professionals as well as urban planners specifically, need to possess GIS skills to effectively and efficiently plan spaces. GIS application extends beyond the production of map artifacts and can be applied to relate to spatially referenced, real time data to support spatial visualization, analysis, community engagement, scenarios, and so forth. Though GIS has been used in the built environment for a few decades, its use in education has not been researched enough to draw conclusions on the trends in the last 20 years. The study looks to discover current and emerging trends of GIS in built environment education. A bibliometric review analysis methodology was carried out through exporting documents from Scopus and Web of Science using keywords around "Geographic information systems" OR "GIS" AND "built environment" OR “geography” OR "architecture" OR "quantity surveying" OR "construction" OR "urban planning" OR "town planning" AND “education” between the years 1994 to 2024. A total of 564 documents were identified and exported. The data was then analyzed using VosViewer software to generate network analysis and visualization maps on the co-occurrence of keywords, co-citation of documents and countries and co-author network analysis. By analyzing each aspect of the data, deeper insight of GIS within education can be understood. Preliminary results from Scopus indicate that GIS research focusing on built environment education seems to have peaked prior to 2014 with much focus on remote sensing, demography, land use, engineering education and so forth. This invaluable data can help in understanding and implementing GIS in built environment education in ways that are foundational and innovative to ensure that students are equipped with sufficient knowledge and skills to carry out tasks in their respective fields.

Keywords: architecture, built environment, construction, education, geography, geographic information systems, quantity surveying, town planning, urban planning

Procedia PDF Downloads 15
19698 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: few-shot learning, triplet network, adaptive margin, deep learning

Procedia PDF Downloads 171
19697 Urban Flood Resilience Comprehensive Assessment of "720" Rainstorm in Zhengzhou Based on Multiple Factors

Authors: Meiyan Gao, Zongmin Wang, Haibo Yang, Qiuhua Liang

Abstract:

Under the background of global climate change and rapid development of modern urbanization, the frequency of climate disasters such as extreme precipitation in cities around the world is gradually increasing. In this paper, Hi-PIMS model is used to simulate the "720" flood in Zhengzhou, and the continuous stages of flood resilience are determined with the urban flood stages are divided. The flood resilience curve under the influence of multiple factors were determined and the urban flood toughness was evaluated by combining the results of resilience curves. The flood resilience of urban unit grid was evaluated based on economy, population, road network, hospital distribution and land use type. Firstly, the rainfall data of meteorological stations near Zhengzhou and the remote sensing rainfall data from July 17 to 22, 2021 were collected. The Kriging interpolation method was used to expand the rainfall data of Zhengzhou. According to the rainfall data, the flood process generated by four rainfall events in Zhengzhou was reproduced. Based on the results of the inundation range and inundation depth in different areas, the flood process was divided into four stages: absorption, resistance, overload and recovery based on the once in 50 years rainfall standard. At the same time, based on the levels of slope, GDP, population, hospital affected area, land use type, road network density and other aspects, the resilience curve was applied to evaluate the urban flood resilience of different regional units, and the difference of flood process of different precipitation in "720" rainstorm in Zhengzhou was analyzed. Faced with more than 1,000 years of rainstorm, most areas are quickly entering the stage of overload. The influence levels of factors in different areas are different, some areas with ramps or higher terrain have better resilience, and restore normal social order faster, that is, the recovery stage needs shorter time. Some low-lying areas or special terrain, such as tunnels, will enter the overload stage faster in the case of heavy rainfall. As a result, high levels of flood protection, water level warning systems and faster emergency response are needed in areas with low resilience and high risk. The building density of built-up area, population of densely populated area and road network density all have a certain negative impact on urban flood resistance, and the positive impact of slope on flood resilience is also very obvious. While hospitals can have positive effects on medical treatment, they also have negative effects such as population density and asset density when they encounter floods. The result of a separate comparison of the unit grid of hospitals shows that the resilience of hospitals in the distribution range is low when they encounter floods. Therefore, in addition to improving the flood resistance capacity of cities, through reasonable planning can also increase the flood response capacity of cities. Changes in these influencing factors can further improve urban flood resilience, such as raise design standards and the temporary water storage area when floods occur, train the response speed of emergency personnel and adjust emergency support equipment.

Keywords: urban flood resilience, resilience assessment, hydrodynamic model, resilience curve

Procedia PDF Downloads 40
19696 Cost-Effective, Accuracy Preserving Scalar Characterization for mmWave Transceivers

Authors: Mohammad Salah Abdullatif, Salam Hajjar, Paul Khanna

Abstract:

The development of instrument grade mmWave transceivers comes with many challenges. A general rule of thumb is that the performance of the instrument must be higher than the performance of the unit under test in terms of accuracy and stability. The calibration and characterizing of mmWave transceivers are important pillars for testing commercial products. Using a Vector Network Analyzer (VNA) with a mixer option has proven a high performance as an approach to calibrate mmWave transceivers. However, this approach comes with a high cost. In this work, a reduced-cost method to calibrate mmWave transceivers is proposed. A comparison between the proposed method and the VNA technology is provided. A demonstration of significant challenges is discussed, and an approach to meet the requirements is proposed.

Keywords: mmWave transceiver, scalar characterization, coupler connection, magic tee connection, calibration, VNA, vector network analyzer

Procedia PDF Downloads 107
19695 Gulfnet: The Advent of Computer Networking in Saudi Arabia and Its Social Impact

Authors: Abdullah Almowanes

Abstract:

The speed of adoption of new information and communication technologies is often seen as an indicator of the growth of knowledge- and technological innovation-based regional economies. Indeed, technological progress and scientific inquiry in any society have undergone a particularly profound transformation with the introduction of computer networks. In the spring of 1981, the Bitnet network was launched to link thousands of nodes all over the world. In 1985 and as one of the first adopters of Bitnet, Saudi Arabia launched a Bitnet-based network named Gulfnet that linked computer centers, universities, and libraries of Saudi Arabia and other Gulf countries through high speed communication lines. In this paper, the origins and the deployment of Gulfnet are discussed as well as social, economical, political, and cultural ramifications of the new information reality created by the network. Despite its significance, the social and cultural aspects of Gulfnet have not been investigated in history of science and technology literature to a satisfactory degree before. The presented research is based on an extensive archival research aimed at seeking out and analyzing of primary evidence from archival sources and records. During its decade and a half-long existence, Gulfnet demonstrated that the scope and functionality of public computer networks in Saudi Arabia have to be fine-tuned for compliance with Islamic culture and political system of the country. It also helped lay the groundwork for the subsequent introduction of the Internet. Since 1980s, in just few decades, the proliferation of computer networks has transformed communications world-wide.

Keywords: Bitnet, computer networks, computing and culture, Gulfnet, Saudi Arabia

Procedia PDF Downloads 245
19694 A Vision Making Exercise for Twente Region; Development and Assesment

Authors: Gelareh Ghaderi

Abstract:

the overall objective of this study is to develop two alternative plans of spatial and infrastructural development for the Netwerkstad Twente (Twente region) until 2040 and to assess the impacts of those two alternative plans. This region is located on the eastern border of the Netherlands, and it comprises of five municipalities. Based on the strengths and opportunities of the five municipalities of the Netwerkstad Twente, and in order develop the region internationally, strengthen the job market and retain skilled and knowledgeable young population, two alternative visions have been developed; environmental oriented vision, and economical oriented vision. Environmental oriented vision is based mostly on preserving beautiful landscapes. Twente would be recognized as an educational center, driven by green technologies and environment-friendly economy. Market-oriented vision is based on attracting and developing different economic activities in the region based on visions of the five cities of Netwerkstad Twente, in order to improve the competitiveness of the region in national and international scale. On the basis of the two developed visions and strategies for achieving the visions, land use and infrastructural development are modeled and assessed. Based on the SWOT analysis, criteria were formulated and employed in modeling the two contrasting land use visions by the year 2040. Land use modeling consists of determination of future land use demand, assessment of suitability land (Suitability analysis), and allocation of land uses on suitable land. Suitability analysis aims to determine the available supply of land for future development as well as assessing their suitability for specific type of land uses on the basis of the formulated set of criteria. Suitability analysis was operated using CommunityViz, a Planning Support System application for spatially explicit land suitability and allocation. Netwerkstad Twente has highly developed transportation infrastructure, consists of highways network, national road network, regional road network, street network, local road network, railway network and bike-path network. Based on the assumptions of speed limitations on different types of roads provided, infrastructure accessibility level of predicted land use parcels by four different transport modes is investigated. For evaluation of the two development scenarios, the Multi-criteria Evaluation (MCE) method is used. The first step was to determine criteria used for evaluation of each vision. All factors were categorized as economical, ecological and social. Results of Multi-criteria Evaluation show that Environmental oriented cities scenario has higher overall score. Environment-oriented scenario has impressive scores in relation to economical and ecological factors. This is due to the fact that a large percentage of housing tends towards compact housing. Twente region has immense potential, and the success of this project will define the Eastern part of The Netherlands and create a real competitive local economy with innovations and attractive environment as its backbone.

Keywords: economical oriented vision, environmental oriented vision, infrastructure, land use, multi criteria assesment, vision

Procedia PDF Downloads 227
19693 Staying When Everybody Else Is Leaving: Coping with High Out-Migration in Rural Areas of Serbia

Authors: Anne Allmrodt

Abstract:

Regions of South-East Europe are characterised by high out-migration for decades. The reasons for leaving range from the hope of a better work situation to a better health care system and beyond. In Serbia, this high out-migration hits the rural areas in particular so that the population number is in the red repeatedly. It might not be hard to guess that this negative population growth has the potential to create different challenges for those who stay in rural areas. So how are they coping with the – statistically proven – high out-migration? Having this in mind, the study is investigating the people‘s individual awareness of the social phenomenon high out-migration and their daily life strategies in rural areas. Furthermore, the study seeks to find out the people’s resilient skills in that context. Is the condition of high out-migration conducive for resilience? The methodology combines a quantitative and a qualitative approach (mixed methods). For the quantitative part, a standardised questionnaire has been developed, including a multiple choice section and a choice experiment. The questionnaire was handed out to people living in rural areas of Serbia only (n = 100). The sheet included questions about people’s awareness of high out-migration, their own daily life strategies or challenges and their social network situation (data about the social network was necessary here since it is supposed to be an influencing variable for resilience). Furthermore, test persons were asked to make different choices of coping with high out-migration in a self-designed choice experiment. Additionally, the study included qualitative interviews asking citizens from rural areas of Serbia. The topics asked during the interview focused on their awareness of high out-migration, their daily life strategies, and challenges as well as their social network situation. Results have shown the following major findings. The awareness of high out-migration is not the same with all test persons. Some declare it as something positive for their own life, others as negative or not effecting at all. The way of coping generally depended – maybe not surprising – on the people’s social network. However – and this might be the most important finding - not everybody with a certain number of contacts had better coping strategies and was, therefore, more resilient. Here the results show that especially people with high affiliation and proximity inside their network were able to cope better and shew higher resilience skills. The study took one step forward in terms of knowledge about societal resilience as well as coping strategies of societies in rural areas. It has shown part of the other side of nowadays migration‘s coin and gives a hint for a more sustainable rural development and community empowerment.

Keywords: coping, out-migration, resilience, rural development, social networks, south-east Europe

Procedia PDF Downloads 128
19692 Blockchain: Institutional and Technological Disruptions in the Public Sector

Authors: Maria Florencia Ferrer, Saulo Fabiano Amancio-Vieira

Abstract:

The use of the blockchain in the public sector is present today and no longer the future of disruptive institutional and technological models. There are still some cultural barriers and resistance to the proper use of its potential. This research aims to present the strengths and weaknesses of using a public-permitted and distributed network in the context of the public sector. Therefore, bibliographical/documentary research was conducted to raise the main aspects of the studied platform, focused on the use of the main demands of the public sector. The platform analyzed was LACChain, which is a global alliance composed of different actors in the blockchain environment, led by the Innovation Laboratory of the Inter-American Development Bank Group (IDB Lab) for the development of the blockchain ecosystem in Latin America and the Caribbean. LACChain provides blockchain infrastructure, which is a distributed ratio technology (DLT). The platform focuses on two main pillars: community and infrastructure. It is organized as a consortium for the management and administration of an infrastructure classified as public, following the ISO typologies (ISO / TC 307). It is, therefore, a network open to any participant who agrees with the established rules, which are limited to being identified and complying with the regulations. As benefits can be listed: public network (open to all), decentralized, low transaction cost, greater publicity of transactions, reduction of corruption in contracts / public acts, in addition to improving transparency for the population in general. It is also noteworthy that the platform is not based on cryptocurrency and is not anonymous; that is, it is possible to be regulated. It is concluded that the use of record platforms, such as LACChain, can contribute to greater security on the part of the public agent in the migration process of their informational applications.

Keywords: blockchain, LACChain, public sector, technological disruptions

Procedia PDF Downloads 172
19691 Survival Analysis Based Delivery Time Estimates for Display FAB

Authors: Paul Han, Jun-Geol Baek

Abstract:

In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.

Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model

Procedia PDF Downloads 543
19690 Urban Ethical Fashion Networks of Design, Production and Retail in Taiwan

Authors: WenYing Claire Shih, Konstantinos Agrafiotis

Abstract:

The circular economy has become one of the seven fundamental pillars of Taiwan’s economic development, as this is promulgated by the government. The model of the circular economy, with its fundamental premise of waste elimination, can transform the textile and clothing sectors from major pollutant industries to a much cleaner alternative for a better quality of all citizens’ lives. In a related vein, the notion of the creative economy and more specifically the fashion industry can prompt similar results in terms of jobs and wealth creation. The combining forces of the circular and creative economies and their beneficial output have resulted in the configuration of ethical urban networks which potentially may lead to sources of competitive advantage. All actors involved in the configuration of this urban ethical fashion network from public authorities to private enterprise can bring about positive changes in the urban setting. Preliminary results through action research show that this configuration is an attainable task in terms of circularity by reducing fabric waste produced from local textile mills and through innovative methods of design, production and retail around urban spaces where the network has managed to generate a stream of jobs and financial revenues for all participants. The municipal authorities as the facilitating platform have been of paramount importance in this public-private partnership. In the explorative pilot study conducted about a network of production, consumption in terms of circularity of fashion products, we have experienced a positive disposition. As the network will be fully functional by attracting more participant firms from the textile and clothing sectors, it can be beneficial to Taiwan’s soft power in the region and simultaneously elevate citizens’ awareness on circular methods of fashion production, consumption and disposal which can also lead to the betterment of urban lifestyle and may open export horizons for the firms.

Keywords: the circular economy, the creative economy, ethical urban networks, action research

Procedia PDF Downloads 136
19689 Multi-Level Meta-Modeling for Enabling Dynamic Subtyping for Industrial Automation

Authors: Zoltan Theisz, Gergely Mezei

Abstract:

Modern industrial automation relies on service oriented concepts of Internet of Things (IoT) device modeling in order to provide a flexible and extendable environment for service meta-repository. However, state-of-the-art meta-modeling techniques prefer design-time modeling, which results in a heavy usage of class sometimes unnecessary static subtyping. Although this approach benefits from clear-cut object-oriented design principles, it also seals the model repository for further dynamic extensions. In this paper, a dynamic multi-level modeling approach is introduced that enables dynamic subtyping through a more relaxed partial instantiation mechanism. The approach is demonstrated on a simple sensor network example.

Keywords: meta-modeling, dynamic subtyping, DMLA, industrial automation, arrowhead

Procedia PDF Downloads 360
19688 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 79
19687 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 71
19686 Governance of Inter-Organizational Research Cooperation

Authors: Guenther Schuh, Sebastian Woelk

Abstract:

Companies face increasing challenges in research due to higher costs and risks. The intensifying technology complexity and interdisciplinarity require unique know-how. Therefore, companies need to decide whether research shall be conducted internally or externally with partners. On the other hand, research institutes meet increasing efforts to achieve good financing and to maintain high research reputation. Therefore, relevant research topics need to be identified and specialization of competency is necessary. However, additional competences for solving interdisciplinary research projects are also often required. Secured financing can be achieved by bonding industry partners as well as public fundings. The realization of faster and better research drives companies and research institutes to cooperate in organized research networks, which are managed by an administrative organization. For an effective and efficient cooperation, necessary processes, roles, tools and a set of rules need to be determined. The goal of this paper is to show the state-of-art research and to propose a governance framework for organized research networks.

Keywords: interorganizational cooperation, design of network governance, research network

Procedia PDF Downloads 367
19685 Public Health Informatics: Potential and Challenges for Better Life in Rural Communities

Authors: Shishir Kumar, Chhaya Gangwal, Seema Raj

Abstract:

Public health informatics (PHI) which has seen successful implementation in the developed world, become the buzzword in the developing countries in providing improved healthcare with enhanced access. In rural areas especially, where a huge gap exists between demand and supply of healthcare facilities, PHI is being seen as a major solution. There are factors such as growing network infrastructure and the technological adoption by the health fraternity which provide support to these claims. Public health informatics has opportunities in healthcare by providing opportunities to diagnose patients, provide intra-operative assistance and consultation from a remote site. It also has certain barriers in the awareness, adaptation, network infrastructure, funding and policy related areas. There are certain medico-legal aspects involving all the stakeholders which need to be standardized to enable a working system. This paper aims to analyze the potential and challenges of public health informatics services in rural communities.

Keywords: PHI, e-health, public health, health informatics

Procedia PDF Downloads 376
19684 Comparative Study Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-alaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-nearest neighbors algorithm, radial basis function neural network, red blood cells, support vector machine

Procedia PDF Downloads 410
19683 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy

Authors: John Dorrell, Matthew Ambrosia, Abilash

Abstract:

This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.

Keywords: bitcoin, mining, economics, energy

Procedia PDF Downloads 34
19682 Tabu Search Algorithm for Ship Routing and Scheduling Problem with Time Window

Authors: Khaled Moh. Alhamad

Abstract:

This paper describes a tabu search heuristic for a ship routing and scheduling problem (SRSP). The method was developed to address the problem of loading cargos for many customers using heterogeneous vessels. Constraints relate to delivery time windows imposed by customers, the time horizon by which all deliveries must be made and vessel capacities. The results of a computational investigation are presented. Solution quality and execution time are explored with respect to problem size and parameters controlling the tabu search such as tenure and neighbourhood size.

Keywords: heuristic, scheduling, tabu search, transportation

Procedia PDF Downloads 506
19681 The Role of Risk Attitudes and Networks on the Migration Decision: Empirical Evidence from the United States

Authors: Tamanna Rimi

Abstract:

A large body of literature has discussed the determinants of migration decision. However, the potential role of individual risk attitudes on migration decision has so far been overlooked. The research on migration literature has studied how the expected income differential influences migration flows for a risk neutral individual. However, migration takes place when there is no expected income differential or even the variability of income appears as lower than in the current location. This migration puzzle motivates a recent trend in the literature that analyzes how attitudes towards risk influence the decision to migrate. However, the significance of risk attitudes on migration decision has been addressed mostly in a theoretical perspective in the mainstream migration literature. The efficient outcome of labor market and overall economy are largely influenced by migration in many countries. Therefore, attitudes towards risk as a determinant of migration should get more attention in empirical studies. To author’s best knowledge, this is the first study that has examined the relationship between relative risk aversion and migration decision in US market. This paper considers movement across United States as a means of migration. In addition, this paper also explores the network effect due to the increasing size of one’s own ethnic group to a source location on the migration decision and how attitudes towards risk vary with network effect. Two ethnic groups (i.e. Asian and Hispanic) have been considered in this regard. For the empirical estimation, this paper uses two sources of data: 1) U.S. census data for social, economic, and health research, 2010 (IPUMPS) and 2) University of Michigan Health and Retirement Study, 2010 (HRS). In order to measure relative risk aversion, this study uses the ‘Two Sample Two-Stage Instrumental Variable (TS2SIV)’ technique. This is a similar method of Angrist (1990) and Angrist and Kruegers’ (1992) ‘Two Sample Instrumental Variable (TSIV)’ technique. Using a probit model, the empirical investigation yields the following results: (i) risk attitude has a significantly large impact on migration decision where more risk averse people are less likely to migrate; (ii) the impact of risk attitude on migration varies by other demographic characteristics such as age and sex; (iii) people with higher concentration of same ethnic households living in a particular place are expected to migrate less from their current place; (iv) the risk attitudes on migration vary with network effect. The overall findings of this paper relating risk attitude, migration decision and network effect can be a significant contribution addressing the gap between migration theory and empirical study in migration literature.

Keywords: migration, network effect, risk attitude, U.S. market

Procedia PDF Downloads 162
19680 Critical Activity Effect on Project Duration in Precedence Diagram Method

Authors: Salman Ali Nisar, Koshi Suzuki

Abstract:

Precedence Diagram Method (PDM) with its additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activities provides more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in PDM network will have anomalous effect on critical path. Researchers have proposed some classification of critical activity effects. In this paper, we do further study on classifications of critical activity effect and provide more information in detailed. Furthermore, we determine the maximum amount of time for each class of critical activity effect by which the project managers can control the dynamic feature (shortening/lengthening) of critical activities and project duration more efficiently.

Keywords: construction project management, critical path method, project scheduling, precedence diagram method

Procedia PDF Downloads 511
19679 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design

Authors: H. K. Esfahani, B. Datta

Abstract:

Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.

Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site

Procedia PDF Downloads 231
19678 Addressing Primary Care Clinician Burnout in a Value Based Care Setting During the COVID-19 Pandemic

Authors: Robert E. Kenney, Efrain Antunez, Samuel Nodal, Ameer Malik, Richard B. Aguilar

Abstract:

Physician burnout has gained much attention during the COVID pandemic. After-hours workload, HCC coding, HEDIS metrics, and clinical documentation negatively impact career satisfaction. These and other influences have increased the rate of physicians leaving the workforce. In addition, roughly 1% of the entire physician workforce will be retiring earlier than expected based on pre-pandemic trends. The two Medical Specialties with the highest rates of burnout are Family Medicine and Primary Care. With a predicted shortage of primary care physicians looming, the need to address physician burnout is crucial. Commonly reported issues leading to clinician burnout are clerical documentation requirements, increased time working on Electronic Health Records (EHR) after hours, and a decrease in work-life balance. Clinicians experiencing burnout with physical and emotional exhaustion are at an increased likelihood of providing lower quality and less efficient patient care. This may include a lack of suitable clinical documentation, medication reconciliation, clinical assessment, and treatment plans. While the annual baseline turnover rates of physicians hover around 6-7%, the COVID pandemic profoundly disrupted the delivery of healthcare. A report found that 43% of physicians switched jobs during the initial two years of the COVID pandemic (2020 and 2021), tripling the expected average annual rate to 21.5 %/yr. During this same time, an average of 4% and 1.5% of physicians retired or left the workforce for a non-clinical career, respectively. The report notes that 35.2% made career changes for a better work-life balance and another 35% reported the reason as being unhappy with their administration’s response to the pandemic. A physician-led primary care-focused health organization, Cano Health (CH), based out of Florida, sought to preemptively address this problem by implementing several supportive measures. Working with >120 clinics and >280 PCPs from Miami to Tampa and Orlando, managing nearly 120,000 Medicare Advantage lives, CH implemented a number of changes to assist with the clinician’s workload. Supportive services such as after hour and home visits by APRNs, in-clinic care managers, and patient educators were implemented. In 2021, assistive Artificial Intelligence Software (AIS) was integrated into the EHR platform. This AIS converts free text within PDF files into a usable (copy-paste) format facilitating documentation. The software also systematically and chronologically organizes clinical data, including labs, medical records, consultations, diagnostic images, medications, etc., into an easy-to-use organ system or chronic disease state format. This reduced the excess time and documentation burden required to meet payor and CMS guidelines. A clinician Documentation Support team was employed to improve the billing/coding performance. The effects of these newly designed workflow interventions were measured via analysis of clinician turnover from CH’s hiring and termination reporting software. CH’s annualized average clinician turnover rate in 2020 and 2021 were 17.7% and 12.6%, respectively. This represents a 30% relative reduction in turnover rate compared to the reported national average of 21.5%. Retirement rates during both years were 0.1%, demonstrating a relative reduction of >95% compared to the national average (4%). This model successfully promoted the retention of clinicians in a Value-Based Care setting.

Keywords: clinician burnout, COVID-19, value-based care, burnout, clinician retirement

Procedia PDF Downloads 82
19677 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: distributed control, game theory, multi-agent learning, reinforcement learning

Procedia PDF Downloads 458
19676 Design and Implementation of Flexible Metadata Editing System for Digital Contents

Authors: K. W. Nam, B. J. Kim, S. J. Lee

Abstract:

Along with the development of network infrastructures, such as high-speed Internet and mobile environment, the explosion of multimedia data is expanding the range of multimedia services beyond voice and data services. Amid this flow, research is actively being done on the creation, management, and transmission of metadata on digital content to provide different services to users. This paper proposes a system for the insertion, storage, and retrieval of metadata about digital content. The metadata server with Binary XML was implemented for efficient storage space and retrieval speeds, and the transport data size required for metadata retrieval was simplified. With the proposed system, the metadata could be inserted into the moving objects in the video, and the unnecessary overlap could be minimized by improving the storage structure of the metadata. The proposed system can assemble metadata into one relevant topic, even if it is expressed in different media or in different forms. It is expected that the proposed system will handle complex network types of data.

Keywords: video, multimedia, metadata, editing tool, XML

Procedia PDF Downloads 171