Search results for: sensori motor training
2902 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning
Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho
Abstract:
Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning
Procedia PDF Downloads 1012901 The Effect of Eight Weeks of Aerobic Training on Indices of Cardio-Respiratory and Exercise Tolerance in Overweight Women with Chronic Asthma
Authors: Somayeh Negahdari, Mohsen Ghanbarzadeh, Masoud Nikbakht, Heshmatolah Tavakol
Abstract:
Asthma, obesity and overweight are the main factors causing change within the heart and respiratory airways. Asthma symptoms are normally observed during exercising. Epidemiological studies have indicated asthma symptoms occurring due to certain lifestyle habits; for example, a sedentary lifestyle. In this study, eight weeks of aerobic exercises resulted in a positive effect overall in overweight women experiencing mild chronic asthma. The quasi-experimental applied research has been done based on experimental and control groups. The experimental group (seven patients) and control group (n = 7) were graded before and after the test. According to the Borg dyspnea and fatigue Perception Index, the training intensity has determined. Participants in the study performed a sub-maximal aerobic activity schedule (45% to 80% of maximum heart rate) for two months, while the control group (n = 7) stayed away from aerobic exercise. Data evaluation and analysis of covariance compared both the pre-test and post-test with paired t-test at significance level of P≤ 0.05. After eight weeks of exercise, the results of the experimental group show a significant decrease in resting heart rate, systolic blood pressure, minute ventilation, while a significant increase in maximal oxygen uptake and tolerance activity (P ≤ 0.05). In the control group, there was no significant difference in these parameters ((P ≤ 0.05). The results indicate the aerobic activity can strengthen the respiratory muscles, while other physiological factors could result in breathing and heart recovery. Aerobic activity also resulted in favorable changes in cardiovascular parameters, and exercise tolerance of overweight women with chronic asthma.Keywords: asthma, respiratory cardiac index, exercise tolerance, aerobic, overweight
Procedia PDF Downloads 2362900 Intelligent Semi-Active Suspension Control of a Electric Model Vehicle System
Authors: Shiuh-Jer Huang, Yun-Han Yeh
Abstract:
A four-wheel drive electric vehicle was built with hub DC motors and FPGA embedded control structure. A 40 steps manual adjusting motorcycle shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. An intelligent fuzzy logic controller was proposed to real-time search appropriate damping ratio based on vehicle running condition. Then, a robust fuzzy sliding mode controller (FSMC) is employed to regulate the target damping ratio of each wheel axis semi-active suspension system. Finally, different road surface conditions are chosen to evaluate the control performance of this semi-active suspension and compare with that of passive system based on wheel axis acceleration signal.Keywords: acceleration, FPGA, Fuzzy sliding mode control, semi-active suspension
Procedia PDF Downloads 4202899 'Get the DNR': Exploring the Impact of an Educational eModule on Internal Medicine Residents' Attitudes and Approaches to Goals of Care Conversations
Authors: Leora Branfield Day, Stephanie Saunders, Leah Steinberg, Shiphra Ginsburg, Christine Soong
Abstract:
Introduction: Discordance between patients expressed and documented preferences at the end of life is common. Although junior trainees frequently lead goals of care (GOC) conversations, lack of training can result in poor communication. Based on a needs assessment, we developed an interactive electronic learning module (eModule) for conducting patient-centred GOC discussions. The purpose of this study was to evaluate the impact of the eModule on residents’ attitudes towards GOC conversations. Methods: First-year internal medicine residents (n=11) from the University of Toronto selected using purposive sampling underwent semi-structured interviews before and after completing a GOC eModule. Interviews were anonymized, transcribed and open-coded using NVivo. Using a constructivist grounded theory approach, we developed a framework to understand the attitudes of residents to GOC conversations before and after viewing the module. Results: Before the module, participants described limited training and negative emotions towards GOC conversations. Many focused on code status and procedure choices (e.g., ventilation) instead of eliciting patient-centered values. Pressure to “get the DNR" led to conflicting feelings and distress. After the module, participants’ approached conversations with a greater focus on patient values and process. They felt more prepared and comfortable, recognizing the complexity of conversations and the importance of patient-centeredness. Conclusions: A novel GOC eModule allowed residents to develop a patient-centered and standardized approach to GOC conversations while improving confidence and preparedness. This resource could be an effective strategy toward attaining a critical communication competency among learners with the potential to enhance accurate GOC documentation.Keywords: goals of care conversations, communication skills, emodule, medical education
Procedia PDF Downloads 1382898 Smart Oxygen Deprivation Mask: An Improved Design with Biometric Feedback
Authors: Kevin V. Bui, Richard A. Claytor, Elizabeth M. Priolo, Weihui Li
Abstract:
Oxygen deprivation masks operate through the use of restricting valves as a means to reduce respiratory flow where flow is inversely proportional to the resistance applied. This produces the same effect as higher altitudes where lower pressure leads to reduced respiratory flow. Both increased resistance with restricting valves and reduce the pressure of higher altitudes make breathing difficultier and force breathing muscles (diaphragm and intercostal muscles) working harder. The process exercises these muscles, improves their strength and results in overall better breathing efficiency. Currently, these oxygen deprivation masks are purely mechanical devices without any electronic sensor to monitor the breathing condition, thus not be able to provide feedback on the breathing effort nor to evaluate the lung function. That is part of the reason that these masks are mainly used for high-level athletes to mimic training in higher altitude conditions, not suitable for patients or customers. The design aims to improve the current method of oxygen deprivation mask to include a larger scope of patients and customers while providing quantitative biometric data that the current design lacks. This will be accomplished by integrating sensors into the mask’s breathing valves along with data acquisition and Bluetooth modules for signal processing and transmission. Early stages of the sensor mask will measure breathing rate as a function of changing the air pressure in the mask, with later iterations providing feedback on flow rate. Data regarding breathing rate will be prudent in determining whether training or therapy is improving breathing function and quantify this improvement.Keywords: oxygen deprivation mask, lung function, spirometer, Bluetooth
Procedia PDF Downloads 2202897 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance
Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.Keywords: machine learning, MR prostate, PI-Rads 3, radiomics
Procedia PDF Downloads 1902896 In Search for the 'Bilingual Advantage' in Immersion Education
Authors: M. E. Joret, F. Germeys, P. Van de Craen
Abstract:
Background: Previous studies have shown that ‘full’ bilingualism seems to enhance the executive functions in children, young adults and elderly people. Executive functions refer to a complex cognitive system responsible for self-controlled and planned behavior and seem to predict academic achievement. The present study aimed at investigating whether similar effects could be found in children learning their second language at school in immersion education programs. Methods: In this study, 44 children involved in immersion education for 4 to 5 years were compared to 48 children in traditional schools. All children were between 9 and 11 years old. To assess executive functions, the Simon task was used, a neuropsychological measure assessing executive functions with reaction times and accuracy on congruent and incongruent trials. To control for background measures, all children underwent the Raven’s coloured progressive matrices, to measure non-verbal intelligence and the Echelle de Vocabulaire en Images Peabody (EVIP), assessing verbal intelligence. In addition, a questionnaire was given to the parents to control for other confounding variables, such as socio-economic status (SES), home language, developmental disorders, etc. Results: There were no differences between groups concerning non-verbal intelligence and verbal intelligence. Furthermore, the immersion learners showed overall faster reaction times on both congruent and incongruent trials compared to the traditional learners, but only after 5 years of training, not before. Conclusion: These results show that the cognitive benefits found in ‘full’ bilinguals also appear in children involved in immersion education, but only after a sufficient exposure to the second language. Our results suggest that the amount of second language training needs to be sufficient before these cognitive effects may emerge.Keywords: bilingualism, executive functions, immersion education, Simon task
Procedia PDF Downloads 4432895 Feasibility and Efficacy of Matrix Model in Arabic Countries
Authors: Yasin Ibrahim, Hisham Almohandes, Chia Hsu, Regina Baronia, Jesse Worsham, Sara Abdelgawad, Mansour Shawky, Mohammed Abdelfattah, Nesif Alhemiary
Abstract:
Background: The matrix model (MM) is an evidence-based program for treating substance use disorders. Since first translated into Arabic in 2010, the MM has been gaining popularity in Arabic countries. However, there is no published data as pertains to its efficacy and feasibility in Arabic communities. Here we aimed at exploring providers’ perspectives on its feasibility and efficacy. Methods: Eight addiction treatment centers from four Arabic countries, namely Egypt, Kingdom of Saudi Arabia, the United Arab Emirates, and Iraq, were contacted via email. They were asked to fill in a 21-item questionnaire. Results: Matrix model continues to be utilized in 6 out of the 8 contacted programs. One center in Egypt has discontinued the MM as the providers felt it was not suitable for substance disorders other than stimulants, which are not common in Egypt. Baghdad University Medical Center has substituted MM with Colombo Program as there have been more training opportunities available for it. Data showed wide variability in regards to number of clients treated with the MM (from 300 to 2500). The Arabic version was utilized for training providers in 5 out of the 8 centers while the providers of the other 3 have been trained in the United States. All providers reported that MM made their job significantly easier, and seven providers believed that MM has favorably affected the relapse rate. In all of the six centers, MM is being utilized for many substance use disorders in addition to stimulant use disorders. Reported challenges included the acceptability of patients and their families, difficulty understanding some concepts, and high drop rates in some centers. Conclusion: Matrix model seems to be a valuable modality for the treatment of substance use disorders in Arabic countries. It has its own challenges and limitations that call for more culturally adapted versions.Keywords: addiction, Arabic countries, developing countries, matrix model
Procedia PDF Downloads 1582894 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa
Authors: Adesuyi Ayodeji Steve, Zahn Munch
Abstract:
This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.Keywords: change detection, land cover, modis, NDVI
Procedia PDF Downloads 4042893 Exploring the Development of Communicative Skills in English Teaching Students: A Phenomenological Study During Online Instruction
Authors: Estephanie S. López Contreras, Vicente Aranda Palacios, Daniela Flores Silva, Felipe Oliveros Olivares, Romina Riquelme Escobedo, Iñaki Westerhout Usabiaga
Abstract:
This research explored whether the context of online instruction has influenced the development of first-year English-teaching students' communication skills, being these speaking and listening. The theoretical basis finds its niche in the need to bridge the gap in knowledge about the Chilean online educational context and the development of English communicative skills. An interpretative paradigm and a phenomenological design were implemented in this study. Twenty- two first-year students and two teachers from an English teaching training program participated in the study. The students' ages ranged from 18 to 26 years of age, and the teachers' years of experience ranged from 5 to 13 years in the program. For data collection purposes, semi- structured interviews were applied to both students and teachers. Interview questions were based on the initial conceptualization of the central phenomenon. Observations, field notes, and focus groups with the students are also part of the data collection process. Data analysis considered two-cycle methods. The first included descriptive coding for field notes, initial coding for interviews, and creating a codebook. The second cycle included axial coding for both field notes and interviews. After data analysis, the findings show that students perceived online classes as instances in which active communication cannot always occur. In addition, changes made to the curricula as a consequence of the COVID-19 pandemic have affected students' speaking and listening skills.Keywords: attitudes, communicative skills, EFL teaching training program, online instruction, and perceptions
Procedia PDF Downloads 1222892 A Bayesian Approach for Health Workforce Planning in Portugal
Authors: Diana F. Lopes, Jorge Simoes, José Martins, Eduardo Castro
Abstract:
Health professionals are the keystone of any health system, by delivering health services to the population. Given the time and cost involved in training new health professionals, the planning process of the health workforce is particularly important as it ensures a proper balance between the supply and demand of these professionals and it plays a central role on the Health 2020 policy. In the past 40 years, the planning of the health workforce in Portugal has been conducted in a reactive way lacking a prospective vision based on an integrated, comprehensive and valid analysis. This situation may compromise not only the productivity and the overall socio-economic development but the quality of the healthcare services delivered to patients. This is even more critical given the expected shortage of the health workforce in the future. Furthermore, Portugal is facing an aging context of some professional classes (physicians and nurses). In 2015, 54% of physicians in Portugal were over 50 years old, and 30% of all members were over 60 years old. This phenomenon associated to an increasing emigration of young health professionals and a change in the citizens’ illness profiles and expectations must be considered when planning resources in healthcare. The perspective of sudden retirement of large groups of professionals in a short time is also a major problem to address. Another challenge to embrace is the health workforce imbalances, in which Portugal has one of the lowest nurse to physician ratio, 1.5, below the European Region and the OECD averages (2.2 and 2.8, respectively). Within the scope of the HEALTH 2040 project – which aims to estimate the ‘Future needs of human health resources in Portugal till 2040’ – the present study intends to get a comprehensive dynamic approach of the problem, by (i) estimating the needs of physicians and nurses in Portugal, by specialties and by quinquenium till 2040; (ii) identifying the training needs of physicians and nurses, in medium and long term, till 2040, and (iii) estimating the number of students that must be admitted into medicine and nursing training systems, each year, considering the different categories of specialties. The development of such approach is significantly more critical in the context of limited budget resources and changing health care needs. In this context, this study presents the drivers of the healthcare needs’ evolution (such as the demographic and technological evolution, the future expectations of the users of the health systems) and it proposes a Bayesian methodology, combining the best available data with experts opinion, to model such evolution. Preliminary results considering different plausible scenarios are presented. The proposed methodology will be integrated in a user-friendly decision support system so it can be used by politicians, with the potential to measure the impact of health policies, both at the regional and the national level.Keywords: bayesian estimation, health economics, health workforce planning, human health resources planning
Procedia PDF Downloads 2542891 The Potential of 48V HEV in Real Driving
Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay
Abstract:
This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation.Keywords: customer use, dimensioning, hybrid electric vehicles, vehicle simulation, 48V hybrid system
Procedia PDF Downloads 5122890 The Problems of Women over 65 with Incontinence Diagnosis: A Case Study in Turkey
Authors: Birsel Canan Demirbag, Kıymet Yesilcicek Calik, Hacer Kobya Bulut
Abstract:
Objective: This study was conducted to evaluate the problems of women over 65 with incontinence diagnosis. Methods: This descriptive study was conducted with women over 65 with incontinence diagnosis in four Family Health Centers in a city in Eastern Black Sea region between November 1, and December 20, 2015. 203, 107, 178, 180 women over 65 were registered in these centers and 262 had incontinence diagnosis at least once and had an ongoing complaint. 177 women were volunteers for the study. During home visits and using face-to-face survey methodology, participants were given socio-demographic characteristics survey, Sandvik severity scale, Incontinence Quality of Life Scale, Urogenital Distress Inventory and a questionnaire including challenges experienced due to incontinence developed by the researcher. Data were analyzed with SPSS program using percentages, numbers, Chi-square, Man-Whitney U and t test with 95% confidence interval and a significance level p <0.05. Findings: 67 ± 1.4 was the mean age, 2.05 ± 0.04 was parity, 44.5 ± 2.12 was menopause age, 66.3% were primary school graduates, 45.7% had deceased spouse, 44.4% lived in a large family, 67.2% had their own room, 77.8% had income, 89.2% could meet self- care, 73.2% had a diagnosis of mixed incontinence, 87.5% suffered for 6-20 years % 78.2 had diuretics, antidepressants and heart medicines, 20.5% had urinary fecal cases, 80.5% had bladder training at least once, 90.1% didn’t have bladder diary calendar/control training programs, 31.1% had hysterectomy for prolapse, 97.1'i% was treated with lower urinary tract infection at least once, 66.3% saw a doctor to get drug in the last three months, 76.2 could not go out alone, 99.2 % had at least one chronic disease, 87.6 % had constipation complain, 2.9% had chronic cough., 45.1% fell due to a sudden rise for toilet. Incontinence Impact Questionnaire Average score was (QOL) 54.3 ± 21.1, Sandvik score was 12.1 ± 2.5, Urogenital Distress Inventory was 47.7 ± 9.2. Difficulties experienced due to incontinence were 99.5% feeling of unhappiness, 67.1% constant feeling of urine smell due to failing to change briefs frequently, % 87.2 move away from social life, 89.7 unable to use pad, 99.2% feeling of disturbing households / other individuals, 87.5% feel dizziness/fall due to sudden rise, 87.4% feeling of others’ imperceptions about the situation, % 94.3 insomnia, 78.2 lack of assistance, 84.7% couldn’t afford urine protection briefs. Results: With this study, it was found out that there were a lot of unsolved issues at individual and community level affecting the life quality of women with incontinence. In accordance with this common problem in women, to facilitate daily life it is obvious that regular home care training programs at institutional level in our country will be effective.Keywords: health problems, incontinence, incontinence quality of life questionnaire, old age, urinary urogenital distress inventory, Sandviken severity, women
Procedia PDF Downloads 3222889 The Impact of Study Abroad Experience on Interpreting Performance
Authors: Ruiyuan Wang, Jing Han, Bruno Di Biase, Mark Antoniou
Abstract:
The purpose of this study is to explore the relationship between working memory (WM) capacity and Chinese-English consecutive interpreting (CI) performance in interpreting learners with different study abroad experience (SAE). Such relationship is not well understood. This study also examines whether Chinese interpreting learners with SAE in English-speaking countries, demonstrate a better performance in inflectional morphology and agreement, notoriously unstable in Chinese speakers of English L2, in their interpreting output than learners without SAE. Fifty Chinese university students, majoring in Chinese-English Interpreting, were recruited in Australia (n=25) and China (n=25). The two groups matched in age, language proficiency, and interpreting training period. Study abroad (SA) group has been studying in an English-speaking country (Australia) for over 12 months, and none of the students recruited in China (the no study abroad = NSA group) had ever studied or lived in an English-speaking country. Data on language proficiency and training background were collected via a questionnaire. Lexical retrieval performance and working memory (WM) capacity data were collected experimentally, and finally, interpreting data was elicited via a direct CI task. Main results of the study show that WM significantly correlated with participants' CI performance independently of learning context. Moreover, SA outperformed NSA learners in terms of subject-verb number agreement. Apart from that, WM capacity was also found to correlate significantly with their morphosyntactic accuracy. This paper sheds some light on the relationship between study abroad, WM capacity, and CI performance. Exploring the effect of study abroad on interpreting trainees and how various important factors correlate may help interpreting educators bring forward more targeted teaching paradigms for participants with different learning experiences.Keywords: study abroad experience, consecutive interpreting, working memory, inflectional agreement
Procedia PDF Downloads 1012888 Flywheel Energy Storage Control Using SVPWM for Small Satellites Application
Authors: Noha El-Gohary, Thanaa El-Shater, A. A. Mahfouz, M. M. Sakr
Abstract:
Searching for high power conversion efficiency and long lifetime are important goals when designing a power supply subsystem for satellite applications. To fulfill these goals, this paper presents a power supply subsystem for small satellites in which flywheel energy storage system is used as a secondary power source instead of chemical battery. In this paper, the model of flywheel energy storage system is introduced; a DC bus regulation control algorithm for charging and discharging of flywheel based on space vector pulse width modulation technique and motor current control is also introduced. Simulation results showed the operation of the flywheel for charging and discharging mode during illumination and shadowed period. The advantages of the proposed system are confirmed by the simulation results of the power supply system.Keywords: small-satellites, flywheel energy storage system, space vector pulse width modulation, power conversion
Procedia PDF Downloads 4022887 Improvement of GVPI Insulation System Characteristics by Curing Process Modification
Authors: M. Shadmand
Abstract:
The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time.Keywords: insulation system, GVPI, PDC, aging
Procedia PDF Downloads 2682886 The Effect of Relaxing Exercises in Water on Endorphin Hormone for the Beginner in Swimming
Authors: Yasmin Hussein Embaby
Abstract:
Introduction: Athletic Training has its essentials, rules, and methods that help individual in reaching the maximum possible athletic level during the exercised physical activity, therefore; it is important for those working in athletic field to recognize and understand what is going on inside our bodies. This will show the close relationship between physiology and athletic training as the science that explains the various changes that happen to respond to the practice of physical activities. Swimming is one of the water sports that play a major role in influencing the full compatibility of body parts and its systems during the practice of different swimming methods, which uses aqueous to move. It is the initial nucleus in swimming learning and through which the beginner gain a sense of security, safety and the ability to move in aqueous by learning basic skills. Research Methodology: The researcher used the experimental methodology by using pre and post measurement on two equal groups (experimental – control) because it is appropriate for the research. Conclusions: Through the results and information found by the researcher, and in light of the related studies, theoretical readings and the statistical treatments of data; the researcher reached the following conclusions: 1. Muscle relaxation exercises have a positive effect on performance level in crawl swimming and on endorphin hormone as it helps in increasing its normal rater in body, the improvement percentage for experimental group in the relaxation ability, level of endorphin hormone exceeds those of control group. 2. The validity of muscle relaxation exercises proposed for the application, which achieved its objectives, namely increasing the level of endorphin hormone in the body; where research results showed a statistically significant difference in the level of endorphin hormone in favor of the experimental sample.Keywords: beginners, endorphin hormone, relaxing exercises, swimming
Procedia PDF Downloads 2142885 Exploring the Relationship between Mediolateral Center of Pressure and Galvanic Skin Response during Balance Tasks
Authors: Karlee J. Hall, Mark Laylor, Jessy Varghese, Paula Polastri, Karen Van Ooteghem, William McIlroy
Abstract:
Balance training is a common part of physiotherapy treatment and often involves a set of proprioceptive exercises which the patient carries out in the clinic and as part of their exercise program. Understanding all contributing factors to altered balance is of utmost importance to the clinical success of treatment of balance dysfunctions. A critical role for the autonomic nervous system (ANS) in the control of balance reactions has been proposed previously, with evidence for potential involvement being inferred from the observation of phasic galvanic skin responses (GSR) evoked by external balance perturbations. The current study explored whether the coupling between ANS reactivity and balance reactions would be observed during spontaneously occurring instability while standing, including standard positions typical of physiotherapy balance assessments. It was hypothesized that time-varying changes in GSR (ANS reactivity) would be associated with time-varying changes in the mediolateral center of pressure (ML-COP) (somatomotor reactivity). Nine individuals (5 females, 4 males, aged 19-37 years) were recruited. To induce varying balance demands during standing, the study compared ML-COP and GSR data across different task conditions varying the availability of vision and width of the base of support. Subjects completed 3, 30-second trials for each of the following stance conditions: standard, narrow, and tandem eyes closed, tandem eyes open, tandem eyes open with dome to shield visual input, and restricted peripheral visual field. ANS activity was evaluated by measures of GSR recorded from Ag-AgCl electrodes on the middle phalanges of digits 2 and 4 on the left hand; balance measures include ML-COP excursion frequency and amplitude recorded from two force plates embedded in the floor underneath each foot. Subjects were instructed to stand as still as possible with arms crossed in front of their chest. When comparing mean task differences across subjects, there was an expected increase in postural sway from tasks with a wide stance and no sensory restrictions (least challenging) to those with a narrow stance and no vision (most challenging). The correlation analysis revealed a significant positive relationship between ML-COP variability and GSR variability when comparing across tasks (r=0.94, df=5, p < 0.05). In addition, correlations coincided within each subject and revealed a significant positive correlation in 7 participants (r= 0.47, 0.57, 0.62, 0.62, 0.81, 0.64, 0.69 respectively, df=19, p < 0.05) and no significant relationship in 2 participants (r=0.36, 0.29 respectively, df=19, p > 0.05). The current study revealed a significant relationship between ML-COP and GSR during balance tasks, revealing the ANS reactivity associated with naturally occurring instability when standing still, which is proportional to the degree of instability. Understanding the link between ANS activity and control of COP is an important step forward in the enhancement of assessment of contributing factors to poor balance and treatment of balance dysfunctions. The next steps will explore the temporal association between the time-varying changes in COP and GSR to establish if the ANS reactivity phase leads or lags the evoked motor reactions, as well as exploration of potential biomarkers for use in screening of ANS activity as a contributing factor to altered balance control clinically.Keywords: autonomic nervous system, balance control, center of pressure, somatic nervous system
Procedia PDF Downloads 1692884 Design of Self-Balancing Bicycle Using Object State Detection in Co-Ordinate System
Authors: Mamta M. Barapatre, V. N. Sahare
Abstract:
Since from long time two wheeled vehicle self-balancing has always been a back-breaking task for both human and robots. Leaning a bicycle driving is long time process and goes through building knowledge base for parameter decision making while balancing robots. In order to create this machine learning phase with embedded system the proposed system is designed. The system proposed aims to construct a bicycle automaton, power-driven by an electric motor, which could balance by itself and move along a specific path. This path could be wavy with bumps and varying widths. The key aim was to construct a cycle which self-balances itself by controlling its handle. In order to take a turn, the mass was transferred to the center. In order to maintain the stability, the bicycle bot automatically turned the handle and a turn. Some problems were faced by the team which were Speed, Steering mechanism through mass- distribution (leaning), Center of mass location and gyroscopic effect of its wheel. The idea proposed have potential applications in automation of transportation system and is most efficient.Keywords: gyroscope-flywheel, accelerometer, servomotor-controller, self stability concept
Procedia PDF Downloads 2802883 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques
Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña
Abstract:
The automatic detection of indigenous languages in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages
Procedia PDF Downloads 182882 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 1232881 Risk Management Practices In The Construction Industry In Malawi
Authors: Taonga Temwani Chibaka
Abstract:
This qualitative research study was conducted to identify the common risk factors that affect the construction industry in Malawi in the building and infrastructure (civil works) projects. The study then evaluates the possible risk responses that are done to mitigate the various risk factors that were identified. I addition the research also established the barriers to risk management implementation with lastly mapping out as where the identified risk factors fall on which stage of the project and then also map out the knowledge areas that need to be worked on the cases on Malawian construction industry in order to mitigate most of the identified risk factors. The study involved the interviewing the professionals from the construction industry in Malawi where insights and ideas were collected, analysed and interpreted. The key study findings show that risks related to clients group are perceived as most critical followed by the contractor related, consultant related and then external group related factors respectively where preventive measures are the most applied risk response technique where the aim to avoid most of the risk factors from happening. Most of the risk factors identified were internal risks and in managerial category which suggested that risk planning was to be emphasized at pre-contract stage to minimize these risks since a bigger percentage of the risk factors were mapped out at implementation stage. Furthermore, barriers to risk management were identified and the key barriers were lack of awareness; lack of knowledge; lack of formal policies in place; regarded as costly and limited time which resulted in proposing that regulating authorities to purposefully introduce intense training on risk management to make known of this new knowledge area. The study then recommends that organisation should formally implement risk management where policies should be introduced to enforce all parties to undertake this. Risk planning was regarded as paramount and this to be done from pre-contract phase so as to mitigate 80% of the risk factors. Finally, training should be done on all project management knowledge areas.Keywords: risk management, risk factors, risks, malawi
Procedia PDF Downloads 3282880 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model
Authors: A. Clementking, C. Jothi Venkateswaran
Abstract:
Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining
Procedia PDF Downloads 4802879 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 1032878 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods
Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo
Abstract:
The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines
Procedia PDF Downloads 6222877 Confidence Levels among UK Emergency Medicine Doctors in Performing Emergency Lateral Canthotomy: Should it be a Key Skill in the ED
Authors: Mohanad Moustafa, Julia Sieberer, Rhys Davies
Abstract:
Background: Orbital compartment syndrome (OCS) is a sight-threatening Ophthalmologic emergency caused by rapidly increasing intraorbital pressure. It is usually caused by a retrobulbar hemorrhage as a result of trauma. If not treated in a timely manner, permanent vision loss can occur. Lateral canthotomy and cantholysis are minor procedures that can be performed bedside with equipment available in the emergency department. The aim of the procedure is to release the attachments between the suspensory ligaments of the eye and the bony orbital wall, leading to a decrease in intraorbital pressure and preventing irreversible loss of vision. As most Ophthalmologists across the UK provide non-resident on-call service, this may lead to a delay in the treatment of OCS and stresses the need for Emergency medical staff to be able to provide this sight-saving procedure independently. Aim: To survey current training, experience, and confidence levels among Emergency Medicine doctors in performing emergency lateral canthotomy and to establish whether these variables change the following teaching from experienced ophthalmologists. RESULTS: Most EM registrars had little to no experience in performing lateral canthotomy and cantholysis. The majority of them showed a significant increase in their confidence to perform the procedure following ophthalmic-led teaching. The survey also showed that the registrars felt such training should be added to/part of the EM curriculum. Conclusion: The involvement of Ophthalmologists in the teaching of EM doctors to recognise and treat OCS independently may prevent delays in treatment and reduce the risk of permanent sight loss. This project showed potential in improving patient care and will lead to a National Survey of EM doctors across the UK.Keywords: lateral canthotomy, retrobulbar hemorrhage, Ophthalmology, orbital compartment syndrome, sight loss, blindness
Procedia PDF Downloads 992876 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer
Procedia PDF Downloads 1382875 The Impact of an Educational Program on Knowledge, Attitude and Practices of Healthcare Professionals towards Family Presence during Resuscitation in an Emergency Department at a Tertiary Care Setting, in Karachi, Pakistan
Authors: Shaista Meghani, Rozina Karmaliani, Khairulnissa Ajani, Shireen Shahzad, Nadeem Ullah Khan
Abstract:
Background: The concept of Family Presence During Resuscitation (FPDR) is gradually gaining recognition in western countries, however, it is rarely considered in South Asian countries including Pakistan. Over time, patients’ and families’ rights have gained recognition and healthcare has progressed to become more patient-family centered. Objectives: The objective of this study was to evaluate the impact of an educational program on the Knowledge, Attitude, and Practices (KAP) of healthcare professionals (HCPs) towards FPDR in Emergency Department (ED), at a tertiary care setting, in Karachi, Pakistan. Methods: This was a Pre-test and Post-test study design. A convenient universal sampling was done, and all ED nurses and physicians with more than one year of experience were eligible. The intervention included one-hour training sessions for physicians (three sessions) and nurses (eight sessions), The KAP of nurses and physicians were assessed immediately after (post-test I), and two weeks(post-test II) after the intervention using a pretested questionnaire. Results: The findings of the study revealed that the mean scores of knowledge and attitude of HCPs at both time points were statistically significant (p-value=<0.001), however, an insignificant difference was found on practice of FPDR (p-value=>0.05). Conclusion: The study findings recommend that the educational program on FPDR for HCPs needs to be offered on an ongoing basis. Moreover, training modules need to be developed for the staff, and formal guidelines need to be proposed for FPDR, through a multidisciplinary team approach.Keywords: family presence, cardiopulmonary resuscitation, attitude, education, practices, health care professionals
Procedia PDF Downloads 1922874 Cytotoxic Drugs: Handling Practices and Clinical Manifestations among Hospital Staff
Authors: Boularas El-Alia, Arbi Raja, Bachir Bouiadjra Sara, Rezk-Kallah Haciba, Rezkkallah Baghdad
Abstract:
Objectives : To determine the handling practices of cytotoxic drugs and to describe clinical manifestations expressed by hospital personnel of Sidi Bel Abbes during the year 2014. Methods: Sectional descriptive study conducted in 3 center university hospital units (Hematology, Oncology and Urology) and Gynecology of EHS Sidi Bel Abbes. A questionnaire was administered to hospital workers regulary exposed to cytotoxic drugs. A work-place visit was performed to have an overview about working conditions. The Cytotoxic Contact Index (CCI) was calculated for each nurse on a period of 15 working days. Treatment of the results was done using SPSS software. Results: The survey reveals that 22 men and 58 women are exposed to cytotoxic drugs for an average of 7 years. Many symptoms such as ocular irritation (38,75%), throat irritation (56,25%), headache (68,75%), dizziness (43,75%), nausea (37,5%), metallic taste (30%), were reported with high frequency. Are noted in the offspring, 3 congenital anomalies,2 diaphragmatic hernia and a cleft palate. The Cytotoxic Contact Index (CCI) was higher than 3 among Oncology nurses and higher than 1 for most of the nurses of Hematology and Gynecology service. The wearing of personal protective clothing was not respected by all workers: (22/23) wear gloves and (20/23) wear a mask,(5/23) wear a cap, (2/23) wear glasses. Only 3 nurses have benefited from continuous training on handling cytotoxic drugs. Conclusion: This study shows a high occupational exposure risk to cytotoxic drugs among persons handling these drugs and the necessity to apply rigorously all measures related to personal protection awareness and training of personnel to minimize these exposure.Keywords: cytotoxic drugs, handling, clinical manifestations, hospital staff
Procedia PDF Downloads 4462873 Evaluation of P300 and CNV Changes in Patients with Essential Tremor
Authors: Sehur Sibel Ozkaynak, Zakir Koc, Ebru Barcın
Abstract:
Essential tremor (ET) is one of the most common movement disorders and has long been considered a monosymptomatic disorder. While ET has traditionally been categorized as a pure motor disease, cross-sectional and longitudinal studies of cognition in ET have been demonstrated that these patients may have cognitive dysfunction. We investigated the neuro physiological aspects of cognition in ET, using event-related potentials (ERPs).Twenty patients with ET and 20 age-education and sex matched healthy controls underwent a neuro physiological evaluation. P300 components and Contingent Negative Variation (CNV) were recorded. The latencies and amplitudes of the P300 and CNV were evaluated. P200-N200 amplitude was significantly smaller in the ET group, while no differences emerged between patients and controls in P300 latencies. CNV amplitude was significantly smaller at Cz electrode site in the ET group. No differences were observed between in the two groups in CNV latencies. As a result, P300 and CNV parameters did not show significant differences between in the two groups, does not mean that there aren't mild cognitive changes in ET patients. In this regard, there is a need to further studies using electro physiological tests related to cognitive changes in ET patients.Keywords: cognition, essential tremor, event related potentials
Procedia PDF Downloads 288