Search results for: Support vector machine (SVM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10023

Search results for: Support vector machine (SVM)

8103 Molecular Characterisation and Expression of Glutathione S-Transferase of Fasciola Gigantica

Authors: J. Adeppa, S. Samanta, O. K. Raina

Abstract:

Fasciolosis is a widespread economically important parasitic infection throughout the world caused by Fasciola hepatica and F. gigantica. In order to identify novel immunogen conferring significant protection against fasciolosis, currently, research has been focused on the defined antigens viz. glutathione S-transferase, fatty acid binding protein, cathepsin-L, fluke hemoglobin, paramyosin, myosin and F. hepatica- Kunitz Type Molecule. Among various antigens, GST which plays a crucial role in detoxification processes, i.e. phase II defense mechanism of this parasite, has a unique position as a novel vaccine candidate and a drug target in the control of this disease. For producing the antigens in large quantities and their purification to complete homogeneity, the recombinant DNA technology has become an important tool to achieve this milestone. RT- PCR was carried out using F. gigantica total RNA as template, and an amplicon of 657 bp GST gene was obtained. TA cloning vector was used for cloning of this gene, and the presence of insert was confirmed by blue-white selection for recombinant colonies. Sequence analysis of the present isolate showed 99.1% sequence homology with the published sequence of the F. gigantica GST gene of cattle origin (accession no. AF112657), with six nucleotide changes at 72, 74, 423, 513, 549 and 627th bp found in the present isolate, causing an overall change of 4 amino acids. The 657 bp GST gene was cloned at BamH1 and HindIII restriction sites of the prokaryotic expression vector pPROEXHTb in frame with six histidine residues and expressed in E. coli DH5α. Recombinant protein was purified from the bacterial lysate under non-denaturing conditions by the process of sonication after lysozyme treatment and subjecting the soluble fraction of the bacterial lysate to Ni-NTA affinity chromatography. Western blotting with rabbit hyper-immune serum showed immuno-reactivity with 25 kDa recombinant GST. Recombinant protein detected F. gigantica experimental as well as field infection in buffaloes by dot-ELISA. However, cross-reactivity studies on Fasciola gigantica GST antigen are needed to evaluate the utility of this protein in the serodiagnosis of fasciolosis.

Keywords: fasciola gigantic, fasciola hepatica, GST, RT- PCR

Procedia PDF Downloads 186
8102 A Mediation Analysis of Social Capital: Direct and Indirect Effects of Community Influences on Civic Engagement among the Household-Header and Non-Household Header Volunteers in Thai Rural Communities

Authors: Aphiradee Wongsiri

Abstract:

The purpose of this study is to investigate the role of social capital in the relationships between community influences consisting of community attachment and community support on civic engagement among the household-header and non-household header volunteers. The data were collected from 216 household header volunteers and 204 non-household header volunteers across rural communities in seven sub-districts in Nong Khai Province, Thailand. A good fit structural equation modeling (SEM) was tested for both groups. The findings indicate that the SEM model for the group of household header volunteers, social capital had a direct effect on civic engagement, while community support had an indirect effect on civic engagement through social capital. On the other hand, the SEM model for the group of non-household header volunteers shows that social capital had a direct effect on civic engagement. Also, community attachment and community support had indirect effects on civic engagement through social capital. Therefore, social capital in this study played an important role as a mediator in the relationships between community influences and civic engagement in both groups.

Keywords: social capital, civic engagement, volunteer, rural development

Procedia PDF Downloads 126
8101 Psycho-Social Predictors of Health-Related Quality of Life among Persons Living with Benign Prostatic Hyperplasia in Ibadan, Nigeria

Authors: A. C. Obosi, H. O. Osinowo, L. I. Okeke

Abstract:

Benign prostatic hyperplasia (BPH) is one among other prostate diseases with an increasing public health concern. The prevalence and increased psychological distress of BPH among men negatively impact on their health-related quality of life (HRQoL). Although several biomedical factors have been implicated in poor HRQoL among people with BPH, there is a dearth of research on the psychosocial factors predicting HRQoL among them especially in developing climes. This study, therefore, examined the psychosocial (knowledge, perceived stigma, depression, anxiety, perceived social support and illness acceptance) predictors of health-related quality of life among persons living with BPH in Ibadan, Nigeria. Biopsychosocial model and Health-related Quality of life guided this study which utilized ex-post facto design. Eighty-seven males living with BPH were purposively selected and actively participated in the study. Participants’ mean age was 61.77 ± 15.80 years. A standardized questionnaire comprising Socio-demographics and measures of health-related quality of life (α = 0.47); knowledge (α = 0.72); psychological distress (α = 0.95); perceived social support (α = 0.96) and Illness acceptance (α = 0.89) scales was utilized in the study. Data were content analysed, while bivariate correlation, hierarchical multiple regression and t-test for independent samples were computed at p < 0.05. Results revealed that 42.5% of the respondents reported poor HRQoL. Furthermore, age, length of illness, perceived stigma, depression, anxiety, knowledge, perceived social support and illness acceptance jointly predicted HRQoL significantly (R2=0.33, F(9,75)=4.05) and accounted for 33% variance in the total observed variance on HRQoL, while Illness acceptance (β=0.43), anxiety (β=-0.54), and perceived social support (β=0.16) had significant independent contributions to the observed variance on HRQoL. Illness acceptance, knowledge, perceived social support and psychological distress such as anxiety, depression and perceived stigma are important predictors of HRQoL. Therefore, it was recommended that urgent psychological intervention targeted at improving the quality of life of these persons be undertaken.

Keywords: benign prostatic hyperplasia, Health-related quality of life, prostate disorders, psychosocial factors

Procedia PDF Downloads 219
8100 Optimising Apparel Digital Production in Industrial Clusters

Authors: Minji Seo

Abstract:

Fashion stakeholders are becoming increasingly aware of technological innovation in manufacturing. In 2020, the COVID-19 pandemic caused transformations in working patterns, such as working remotely rather thancommuting. To enable smooth remote working, 3D fashion design software is being adoptedas the latest trend in design and production. The majority of fashion designers, however, are still resistantto this change. Previous studies on 3D fashion design software solely highlighted the beneficial and detrimental factors of adopting design innovations. They lacked research on the relationship between resistance factors and the adoption of innovation. These studies also fell short of exploringthe perspectives of users of these innovations. This paper aims to investigate the key drivers and barriers of employing 3D fashion design software as wellas to explore the challenges faced by designers.It also toucheson the governmental support for digital manufacturing in Seoul, South Korea, and London, the United Kingdom. By conceptualising local support, this study aims to provide a new path for industrial clusters to optimise digital apparel manufacturing. The study uses a mixture of quantitative and qualitative approaches. Initially, it reflects a survey of 350 samples, fashion designers, on innovation resistance factors of 3D fashion design software and the effectiveness of local support. In-depth interviews with 30 participants provide a better understanding of designers’ aspects of the benefits and obstacles of employing 3D fashion design software. The key findings of this research are the main barriers to employing 3D fashion design software in fashion production. The cultural characteristics and interviews resultsare used to interpret the survey results. The findings of quantitative data examine the main resistance factors to adopting design innovations. The dominant obstacles are: the cost of software and its complexity; lack of customers’ interest in innovation; lack of qualified personnel, and lack of knowledge. The main difference between Seoul and London is the attitudes towards government support. Compared to the UK’s fashion designers, South Korean designers emphasise that government support is highly relevant to employing 3D fashion design software. The top-down and bottom-up policy implementation approach distinguishes the perception of government support. Compared to top-down policy approaches in South Korea, British fashion designers based on employing bottom-up approaches are reluctant to receive government support. The findings of this research will contribute to generating solutions for local government and the optimisation of use of 3D fashion design software in fashion industrial clusters.

Keywords: digital apparel production, industrial clusters, innovation resistance, 3D fashion design software, manufacturing, innovation, technology, digital manufacturing, innovative fashion design process

Procedia PDF Downloads 102
8099 Impact of Urbanization Growth on Disease Spread and Outbreak Response: Exploring Strategies for Enhancing Resilience

Authors: Raquel Vianna Duarte Cardoso, Eduarda Lobato Faria, José Jorge Boueri

Abstract:

Rapid urbanization has transformed the global landscape, presenting significant challenges to public health. This article delves into the impact of urbanization on the spread of infectious diseases in cities and identifies crucial strategies to enhance urban community resilience. Massive urbanization over recent decades has created conducive environments for the rapid spread of diseases due to population density, mobility, and unequal living conditions. Urbanization has been observed to increase exposure to pathogens and foster conditions conducive to disease outbreaks, including seasonal flu, vector-borne diseases, and respiratory infections. In order to tackle these issues, a range of cross-disciplinary approaches are suggested. These encompass the enhancement of urban healthcare infrastructure, emphasizing the need for robust investments in hospitals, clinics, and healthcare systems to keep pace with the burgeoning healthcare requirements in urban environments. Moreover, the establishment of disease monitoring and surveillance mechanisms is indispensable, as it allows for the timely detection of outbreaks, enabling swift responses. Additionally, community engagement and education play a pivotal role in advocating for personal hygiene, vaccination, and preventive measures, thus playing a pivotal role in diminishing disease transmission. Lastly, the promotion of sustainable urban planning, which includes the creation of cities with green spaces, access to clean water, and proper sanitation, can significantly mitigate the risks associated with waterborne and vector-borne diseases. The article is based on a review of scientific literature, and it offers a comprehensive insight into the complexities of the relationship between urbanization and health. It places a strong emphasis on the urgent need for integrated approaches to improve urban resilience in the face of health challenges.

Keywords: infectious diseases dissemination, public health, urbanization impacts, urban resilience

Procedia PDF Downloads 77
8098 Design of Large Parallel Underground Openings in Himalayas: A Case Study of Desilting Chambers for Punatsangchhu-I, Bhutan

Authors: Kanupreiya, Rajani Sharma

Abstract:

Construction of a single underground structure is itself a challenging task, and it becomes more critical in tectonically active young mountains such as the Himalayas which are highly anisotropic. The Himalayan geology mostly comprises of incompetent and sheared rock mass in addition to fold/faults, rock burst, and water ingress. Underground tunnels form the most essential and important structure in run-of-river hydroelectric projects. Punatsangchhu I hydroelectric project (PHEP-I), Bhutan (1200 MW) is a run-of-river scheme which has four parallel underground desilting chambers. The Punatsangchhu River carries a large quantity of silt load during monsoon season. Desilting chambers were provided to remove the silt particles of size greater than and equal to 0.2 mm with 90% efficiency, thereby minimizing the rate of damage to turbines. These chambers are 330 m long, 18 m wide at the center and 23.87 m high, with a 5.87 m hopper portion. The geology of desilting chambers was known from an exploratory drift which exposed low dipping foliation joint and six joint sets. The RMR and Q value in this reach varied from 40 to 60 and 1 to 6 respectively. This paper describes different rock engineering principles undertaken for safe excavation and rock support of the moderately jointed, blocky and thinly foliated biotite gneiss. For the design of rock support system of desilting chambers, empirical and numerical analysis was adopted. Finite element analysis was carried out for cavern design and finalization of pillar width using Phase2. Phase2 is a powerful tool for simulation of stage-wise excavation with simultaneous provision of support system. As the geology of the region had 7 sets of joints, in addition to FEM based approach, safety factors for potentially unstable wedges were checked using UnWedge. The final support recommendations were based on continuous face mapping, numerical modelling, empirical calculations, and practical experiences.

Keywords: dam siltation, Himalayan geology, hydropower, rock support, numerical modelling

Procedia PDF Downloads 92
8097 Computational Model of Human Cardiopulmonary System

Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek

Abstract:

The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.

Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine

Procedia PDF Downloads 180
8096 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces

Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang

Abstract:

Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.

Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide

Procedia PDF Downloads 435
8095 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems

Authors: Emanuel Koseos

Abstract:

Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.

Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools

Procedia PDF Downloads 173
8094 Establishing Student Support Strategies for Virtual Learning in Learning Management System Based on Grounded Theory

Authors: Farhad Shafiepour Motlagh, Narges Salehi

Abstract:

Purpose: The purpose of this study was to support student strategies for virtual learning in the learning management system. Methodology: The research method was based on grounded theory. The statistical population included all the articles of the ten years 2022-2010, and the sampling method was purposeful to the extent of theoretical saturation (n=31 ). Data collection was done by referring to the authoritative scientific databases of Emerald, Springer, Elsevier, Google Scholar, Sage Publication, and Science Direct. For data analysis, open coding, axial coding, and selective coding were used. Results: The results showed that causal conditions include cognitive empowerment (comprehension, analysis, composition), emotional empowerment (learning motivation, involvement in the learning system, enthusiasm for learning), psychomotor empowerment (learning to master, internalizing learning skills, creativity in learning). Conclusion: Supporting students requires their empowerment in three dimensions: cognitive, emotional empowerment, and psychomotor empowerment. In such a way that by introducing them to enter the learning management system, the capacities of the system, the toolkit of learning in the system, improve the motivation to learn in them, and in such a case, by learning more in the learning management system, they will reach mastery learning.

Keywords: student support, virtual education, learning management system, electronic

Procedia PDF Downloads 307
8093 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 95
8092 Highlighting Strategies Implemented by Migrant Parents to Support Their Child's Educational and Academic Success in the Host Society

Authors: Josee Charette

Abstract:

The academic and educational success of migrant students is a current issue in education, especially in western societies such in the province of Quebec, in Canada. For people who immigrate with school-age children, the success of the family’s migratory project is often measured by the benefits drawn by children from the educational institutions of their host society. In order to support the academic achievement of their children, migrant parents try to develop practices that derive from their representations of school and related challenges inspired by the socio-cultural context of their country of origin. These findings lead us to the following question: How does strategies implemented by migrant parents to manage the representational distance between school of their country of origin and school of their host society support or not the academic and educational success of their child? In the context of a qualitative exploratory approach, we have made interviews in the French , English and Spanish languages with 32 newly immigrated parents and 10 of their children. Parents were invited to complete a network of free associations about «School in Quebec» as a premise for the interview. The objective of this paper is to present strategies implemented by migrant parents to manage the distance between their representations of schools in their country of origin and in the host society, and to explore the influence of this management on their child’s academic and educational trajectories. Data analysis led us to develop various types of strategies, such as continuity, adaptation, resources mobilization, compensation and "return to basics" strategies. These strategies seem to be part of a continuum from oppositional-conflict scenario, in which parental strategies act as a risk factor, to conciliator-integrator scenario, in which parental strategies act as a protective factor for migrant students’ academic and educational success. In conclusion, we believe that our research helps in highlighting strategies implemented by migrant parents to support their child’s academic and educational success in the host society and also helps in providing a more efficient support to migrant parents and contributes to develop a wider portrait of migrant students’ academic achievement.

Keywords: academic and educational achievement of immigrant students, family’s migratory project, immigrants parental strategies, representational distance between school of origin and school of host society

Procedia PDF Downloads 445
8091 Comprehensive Review of Ultralightweight Security Protocols

Authors: Prashansa Singh, Manjot Kaur, Rohit Bajaj

Abstract:

The proliferation of wireless sensor networks and Internet of Things (IoT) devices in the quickly changing digital landscape has highlighted the urgent need for strong security solutions that can handle these systems’ limited resources. A key solution to this problem is the emergence of ultralightweight security protocols, which provide strong security features while respecting the strict computational, energy, and memory constraints imposed on these kinds of devices. This in-depth analysis explores the field of ultralightweight security protocols, offering a thorough examination of their evolution, salient features, and the particular security issues they resolve. We carefully examine and contrast different protocols, pointing out their advantages and disadvantages as well as the compromises between resource limitations and security resilience. We also study these protocols’ application domains, including the Internet of Things, RFID systems, and wireless sensor networks, to name a few. In addition, the review highlights recent developments and advancements in the field, pointing out new trends and possible avenues for future research. This paper aims to be a useful resource for researchers, practitioners, and developers, guiding the design and implementation of safe, effective, and scalable systems in the Internet of Things era by providing a comprehensive overview of ultralightweight security protocols.

Keywords: wireless sensor network, machine-to-machine, MQTT broker, server, ultralightweight, TCP/IP

Procedia PDF Downloads 82
8090 Current-Based Multiple Faults Detection in Electrical Motors

Authors: Moftah BinHasan

Abstract:

Induction motors (IM) are vital components in industrial processes whose failure may yield to an unexpected interruption at the industrial plant, with highly incurred consequences in costs, product quality, and safety. Among different detection approaches proposed in the literature, that based on stator current monitoring termed as Motor Current Signature Analysis (MCSA) is the most preferred. MCSA is advantageous due to its non-invasive properties. The popularity of motor current signature analysis comes from being that the current consists of motor harmonics, around the supply frequency, which show some properties related to different situations of healthy and faulty conditions. One of the techniques used with machine line current resorts to spectrum analysis. Besides discussing the fundamentals of MCSA and its applications in the condition monitoring arena, this paper shows a summary of the most frequent faults and their consequence signatures on the stator current spectrum of an induction motor. In addition, this article presents different case studies of induction motor fault diagnosis. These faults were seeded in the machine which was run for more than an hour for each test before the results were recorded for the faulty situations. These results are then compared with those for the healthy cases that were recorded earlier.

Keywords: induction motor, condition monitoring, fault diagnosis, MCSA, rotor, stator, bearing, eccentricity

Procedia PDF Downloads 459
8089 Predictors of the Self-Reported Likelihood of Seeking Social Worker Help among People with Physical Disabilities

Authors: Maya Kagan, Michal Itzick, Patricia Tal-Katz

Abstract:

Social workers hold a variety of roles and practices, and one of these involves the care, treatment, and rehabilitation of disabled people. The current study assesses the association between demographic factors, attitudes towards social workers, the stigma attached to seeking social worker help, perceived social support, and psychological distress - and the self-reported likelihood of seeking social worker help, among people with physical disabilities (PWPD) in Israel. Data collection utilized structured questionnaires, administered to a sample of 435 PWPD. Statistical analyses were done using SPSS software. The findings suggest that women, older respondents, people with more positive attitudes towards social workers, with higher levels of psychological distress and of social support, and with a lower level of stigma, reported a greater likelihood of seeking social worker help. The study's conclusion is that there are certain avoidance factors among PWPD that might discourage them from seeking professional social worker help. Therefore, it is important that social workers identify these factors and develop interventions aimed at encouraging PWPD to seek professional social worker help in case of need, and also develop practices adjusted to PWPD's unique needs.

Keywords: attitudes towards social workers, people with physical disabilities, perceived social support, psychological distress, seeking help, stigma

Procedia PDF Downloads 337
8088 Easy Method of Synthesis and Functionalzation of Zno Nanoparticules With 3 Aminopropylthrimethoxysilane (APTES)

Authors: Haythem Barrak, Gaetan Laroche, Adel M’nif, Ahmed Hichem Hamzaoui

Abstract:

The use of semiconductor oxides, as chemical or biological, requires their functionalization with appropriate dependent molecules of the substance to be detected. generally, the support materials used are TiO2 and SiO2. In the present work, we used zinc oxide (ZnO) known for its interesting physical properties. The synthesis of nano scale ZnO was performed by co-precipitation at low temperature (60 ° C).To our knowledge, the obtaining of this material at this temperature was carried out for the first time. This shows the low cost of this operation. On the other hand, the surface functionalization of ZnO was performed with (3-aminopropyl) triethoxysilane (APTES) by using a specific method using ethanol for the first time. In addition, the duration of this stage is very low compared to literature. The samples obtained were analyzed by XRD, TEM, DLS, FTIR, and TGA shows that XPS that the operation of grafting of APTES on our support was carried out with success.

Keywords: functionalization, nanoparticle, ZnO, APTES, caractérisation

Procedia PDF Downloads 361
8087 A Model to Assess Sustainability Using Multi-Criteria Analysis and Geographic Information Systems: A Case Study

Authors: Antonio Boggia, Luisa Paolotti, Gianluca Massei, Lucia Rocchi, Elaine Pace, Maria Attard

Abstract:

The aim of this paper is to present a methodology and a computer model for sustainability assessment based on the integration of Multi-criteria Decision Analysis (MCDA) with a Geographic Information System (GIS). It presents the result of a study for the implementation of a model for measuring sustainability to address the policy actions for the improvement of sustainability at territory level. The aim is to rank areas in order to understand the specific technical and/or financial support that is required to develop sustainable growth. Assessing sustainable development is a multidimensional problem: economic, social and environmental aspects have to be taken into account at the same time. The tool for a multidimensional representation is a proper set of indicators. The set of indicators must be integrated into a model, that is an assessment methodology, to be used for measuring sustainability. The model, developed by the Environmental Laboratory of the University of Perugia, is called GeoUmbriaSUIT. It is a calculation procedure developed as a plugin working in the open-source GIS software QuantumGIS. The multi-criteria method used within GeoUmbriaSUIT is the algorithm TOPSIS (Technique for Order Preference by Similarity to Ideal Design), which defines a ranking based on the distance from the worst point and the closeness to an ideal point, for each of the criteria used. For the sustainability assessment procedure, GeoUmbriaSUIT uses a geographic vector file where the graphic data represent the study area and the single evaluation units within it (the alternatives, e.g. the regions of a country, or the municipalities of a region), while the alphanumeric data (attribute table), describe the environmental, economic and social aspects related to the evaluation units by means of a set of indicators (criteria). The use of the algorithm available in the plugin allows to treat individually the indicators representing the three dimensions of sustainability, and to compute three different indices: environmental index, economic index and social index. The graphic output of the model allows for an integrated assessment of the three dimensions, avoiding aggregation. The presence of separate indices and graphic output make GeoUmbriaSUIT a readable and transparent tool, since it doesn’t produce an aggregate index of sustainability as final result of the calculations, which is often cryptic and difficult to interpret. In addition, it is possible to develop a “back analysis”, able to explain the positions obtained by the alternatives in the ranking, based on the criteria used. The case study presented is an assessment of the level of sustainability in the six regions of Malta, an island state in the middle of the Mediterranean Sea and the southernmost member of the European Union. The results show that the integration of MCDA-GIS is an adequate approach for sustainability assessment. In particular, the implemented model is able to provide easy to understand results. This is a very important condition for a sound decision support tool, since most of the time decision makers are not experts and need understandable output. In addition, the evaluation path is traceable and transparent.

Keywords: GIS, multi-criteria analysis, sustainability assessment, sustainable development

Procedia PDF Downloads 289
8086 Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness

Authors: Sy-Wei Lo, Chi-Heng Yu

Abstract:

A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/µm of typical bearing to 349.85 N/µm at bearing elevation 9.5 µm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N.

Keywords: aerostatic, bearing, polymer, static stiffness

Procedia PDF Downloads 370
8085 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System

Authors: Mehmet Savsar, Majid Aldaihani

Abstract:

Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.

Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability

Procedia PDF Downloads 516
8084 Brief Review of the Self-Tightening, Left-Handed Thread

Authors: Robert S. Giachetti, Emanuele Grossi

Abstract:

Loosening of bolted joints in rotating machines can adversely affect their performance, cause mechanical damage, and lead to injuries. In this paper, two potential loosening phenomena in rotating applications are discussed. First, ‘precession,’ is governed by thread/nut contact forces, while the second is based on inertial effects of the fastened assembly. These mechanisms are reviewed within the context of historical usage of left-handed fasteners in rotating machines which appears absent in the literature and common machine design texts. Historically, to prevent loosening of wheel nuts, vehicle manufacturers have used right-handed and left-handed threads on different sides of the vehicle, but most modern vehicles have abandoned this custom and only use right-handed, tapered lug nuts on all sides of the vehicle. Other classical machines such as the bicycle continue to use different handed threads on each side while other machines such as, bench grinders, circular saws and brush cutters still use left-handed threads to fasten rotating components. Despite the continued use of left-handed fasteners, the rationale and analysis of left-handed threads to mitigate self-loosening of fasteners in rotating applications is not commonly, if at all, discussed in the literature or design textbooks. Without scientific literature to support these design selections, these implementations may be the result of experimental findings or aged institutional knowledge. Based on a review of rotating applications, historical documents and mechanical design references, a formal study of the paradoxical nature of left-handed threads in various applications is merited.

Keywords: rotating machinery, self-loosening fasteners, wheel fastening, vibration loosening

Procedia PDF Downloads 136
8083 Tetrad field and torsion vectors in Schwarzschild solution

Authors: M.A.Bakry1, *, Aryn T. Shafeek1, +

Abstract:

In this article, absolute Parallelism geometry is used to study the torsional gravitational field. And discovered the tetrad fields, torsion vector, and torsion scalar of Schwarzschild space. The new solution of the torsional gravitational field is a generalization of Schwarzschild in the context of general relativity. The results are applied to the planetary orbits.

Keywords: absolute parallelism geometry, tetrad fields, torsion vectors, torsion scalar

Procedia PDF Downloads 142
8082 Co-produced Databank of Tailored Messages to Support Enagagement to Digitial Health Interventions

Authors: Menna Brown, Tania Domun

Abstract:

Digital health interventions are effective across a wide array of health conditions spanning physical health, lifestyle behaviour change, and mental health and wellbeing; furthermore, they are rapidly increasing in volume within both the academic literature and society as commercial apps continue to proliferate the digital health market. However, adherence and engagement to digital health interventions remains problematic. Technology-based personalised and tailored reminder strategies can support engagement to digital health interventions. Interventions which support individuals’ mental health and wellbeing are of critical importance in the wake if the COVID-19 pandemic. Student and young person’s mental health has been negatively affected and digital resources continue to offer cost effective means to address wellbeing at a population level. Develop a databank of digital co-produced tailored messages to support engagement to a range of digital health interventions including those focused on mental health and wellbeing, and lifestyle behaviour change. Qualitative research design. Participants discussed their views of health and wellbeing, engagement and adherence to digital health interventions focused around a 12-week wellbeing intervention via a series of focus group discussions. They worked together to co-create content following a participatory design approach. Three focus group discussions were facilitated with (n=15) undergraduate students at one Welsh university to provide an empirically derived, co-produced, databank of (n=145) tailored messages. Messages were explored and categorised thematically, and the following ten themes emerged: Autonomy, Recognition, Guidance, Community, Acceptance, Responsibility, Encouragement, Compassion, Impact and Ease. The findings provide empirically derived, co-produced tailored messages. These have been made available for use, via ‘ACTivate your wellbeing’ a digital, automated, 12-week health and wellbeing intervention programme, based on acceptance and commitment therapy (ACT). The purpose of which is to support future research to evaluate the impact of thematically categorised tailored messages on engagement and adherence to digital health interventions.

Keywords: digital health, engagement, wellbeing, participatory design, positive psychology, co-production

Procedia PDF Downloads 121
8081 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm

Authors: Moti Zwilling, Srečko Natek

Abstract:

This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.

Keywords: dating sites, social networks, machine learning, decision trees, data mining

Procedia PDF Downloads 293
8080 Smart Textiles Integration for Monitoring Real-time Air Pollution

Authors: Akshay Dirisala

Abstract:

Humans had developed a highly organized and efficient civilization to live in by improving the basic needs of humans like housing, transportation, and utilities. These developments have made a huge impact on major environmental factors. Air pollution is one prominent environmental factor that needs to be addressed to maintain a sustainable and healthier lifestyle. Textiles have always been at the forefront of helping humans shield from environmental conditions. With the growth in the field of electronic textiles, we now have the capability of monitoring the atmosphere in real time to understand and analyze the environment that a particular person is mostly spending their time at. Integrating textiles with the particulate matter sensors that measure air quality and pollutants that have a direct impact on human health will help to understand what type of air we are breathing. This research idea aims to develop a textile product and a process of collecting the pollutants through particulate matter sensors, which are equipped inside a smart textile product and store the data to develop a machine learning model to analyze the health conditions of the person wearing the garment and periodically notifying them not only will help to be cautious of airborne diseases but will help to regulate the diseases and could also help to take care of skin conditions.

Keywords: air pollution, e-textiles, particulate matter sensors, environment, machine learning models

Procedia PDF Downloads 114
8079 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 57
8078 A Selection Approach: Discriminative Model for Nominal Attributes-Based Distance Measures

Authors: Fang Gong

Abstract:

Distance measures are an indispensable part of many instance-based learning (IBL) and machine learning (ML) algorithms. The value difference metrics (VDM) and inverted specific-class distance measure (ISCDM) are among the top-performing distance measures that address nominal attributes. VDM performs well in some domains owing to its simplicity and poorly in others that exist missing value and non-class attribute noise. ISCDM, however, typically works better than VDM on such domains. To maximize their advantages and avoid disadvantages, in this paper, a selection approach: a discriminative model for nominal attributes-based distance measures is proposed. More concretely, VDM and ISCDM are built independently on a training dataset at the training stage, and the most credible one is recorded for each training instance. At the test stage, its nearest neighbor for each test instance is primarily found by any of VDM and ISCDM and then chooses the most reliable model of its nearest neighbor to predict its class label. It is simply denoted as a discriminative distance measure (DDM). Experiments are conducted on the 34 University of California at Irvine (UCI) machine learning repository datasets, and it shows DDM retains the interpretability and simplicity of VDM and ISCDM but significantly outperforms the original VDM and ISCDM and other state-of-the-art competitors in terms of accuracy.

Keywords: distance measure, discriminative model, nominal attributes, nearest neighbor

Procedia PDF Downloads 114
8077 Information Disclosure And Financial Sentiment Index Using a Machine Learning Approach

Authors: Alev Atak

Abstract:

In this paper, we aim to create a financial sentiment index by investigating the company’s voluntary information disclosures. We retrieve structured content from BIST 100 companies’ financial reports for the period 1998-2018 and extract relevant financial information for sentiment analysis through Natural Language Processing. We measure strategy-related disclosures and their cross-sectional variation and classify report content into generic sections using synonym lists divided into four main categories according to their liquidity risk profile, risk positions, intra-annual information, and exposure to risk. We use Word Error Rate and Cosin Similarity for comparing and measuring text similarity and derivation in sets of texts. In addition to performing text extraction, we will provide a range of text analysis options, such as the readability metrics, word counts using pre-determined lists (e.g., forward-looking, uncertainty, tone, etc.), and comparison with reference corpus (word, parts of speech and semantic level). Therefore, we create an adequate analytical tool and a financial dictionary to depict the importance of granular financial disclosure for investors to identify correctly the risk-taking behavior and hence make the aggregated effects traceable.

Keywords: financial sentiment, machine learning, information disclosure, risk

Procedia PDF Downloads 94
8076 The Interaction and Relations Between Civil and Military Logistics

Authors: Cumhur Cansever, Selcuk Er

Abstract:

There is an increasing cooperation and interaction between the military logistic systems and civil organizations operating in today's market. While the scope and functions of civilian logistics have different characteristics, military logistics tries to import some applications that are conducted by private sectors successfully. Also, at this point, the determination of the optimal point of integration and interaction between civilian and military logistics has emerged as a key issue. In this study, the mutual effects between military and civilian logistics and their most common integration areas, (Supply Chain Management (SCM), Integrated Logistics Support (ILS) and Outsourcing) will be examined with risk analysis and determination of basic skills evaluation methods for determining the optimum point in the integration.

Keywords: core competency, integrated logistics support, outsourcing, supply chain management

Procedia PDF Downloads 527
8075 Instructional Coaches' Perceptions of Professional Development: An Exploration of the School-Based Support Program

Authors: Youmen Chaaban, Abdallah Abu-Tineh

Abstract:

This article examines the development of a professional development (PD) model for educator growth and learning that is embedded into the school context. The School based Support Program (SBSP), designed for the Qatari context, targets the practices, knowledge, and skills of both school leadership and teachers in an attempt to improve students’ learning outcomes. Key aspects of the model include the development of learning communities among teachers, strong leadership that supports school improvement activities, and the use of research-based PD to improve teacher practices and student achievement. This paper further presents the results of a qualitative study examining the perceptions of nineteen instructional coaches about the strengths of the PD program, the challenges they face in their day-to-day implementation of the program, and their suggestions for the betterment of the program’s implementation and outcomes. Data were collected from the instructional coaches through open-ended surveys followed by focus group interviews. The instructional coaches reported several strengths, which were compatible with the literature on effective PD. However, the challenges they faced were deeply rooted within the structure of the program, in addition to external factors operating at the school and Ministry of Education levels. Thus, a general consensus on the way the program should ultimately develop was reached.

Keywords: situated professional development, school reform, instructional coach, school based support program

Procedia PDF Downloads 355
8074 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems

Procedia PDF Downloads 88