Search results for: planetary boundary layer
1729 A Case Study on Tension Drop of Cable-band Bolts in Suspension Bridge
Authors: Sihyun Park, Hyunwoo Kim, Wooyoung Jung, Dongwoo You
Abstract:
Regular maintenance works are very important on the axial forces of the cable-band bolts in suspension bridges. The band bolts show stress reduction for several reasons, including cable wire creep, the bolt relaxation, load fluctuation and cable rearrangements, etc., with time. In this study, with respect to the stress reduction that occurs over time, we carried out the theoretical review of the main cause based on the field measurements. As a result, the main cause of reduction in the cable-band bolt axial force was confirmed by the plastic deformation of the zinc plating layer used in the main cable wire, and thus, the theoretical process was established for the practical use in the field.Keywords: cable-band Bolts, field test, maintenance, stress reduction
Procedia PDF Downloads 3351728 Distribution, Source Apportionment and Assessment of Pollution Level of Trace Metals in Water and Sediment of a Riverine Wetland of the Brahmaputra Valley
Authors: Kali Prasad Sarma, Sanghita Dutta
Abstract:
Deepor Beel (DB), the lone Ramsar site and an important wetland of the Brahmaputra valley in the state of Assam. The local people from fourteen peripheral villages traditionally utilize the wetland for harvesting vegetables, flowers, aquatic seeds, medicinal plants, fish, molluscs, fodder for domestic cattle etc. Therefore, it is of great importance to understand the concentration and distribution of trace metals in water-sediment system of the beel in order to protect its ecological environment. DB lies between26°05′26′′N to 26°09′26′′N latitudes and 90°36′39′′E to 91°41′25′′E longitudes. Water samples from the surface layer of water up to 40cm deep and sediment samples from the top 5cm layer of surface sediments were collected. The trace metals in waters and sediments were analysed using ICP-OES. The organic Carbon was analysed using the TOC analyser. The different mineral present in the sediments were confirmed by X-ray diffraction method (XRD). SEM images were recorded for the samples using SEM, attached with energy dispersive X-ray unit, with an accelerating voltage of 20 kv. All the statistical analyses were performed using SPSS20.0 for windows. In the present research, distribution, source apportionment, temporal and spatial variability, extent of pollution and the ecological risk of eight toxic trace metals in sediments and water of DB were investigated. The average concentrations of chromium(Cr) (both the seasons), copper(Cu) and lead(Pb) (pre-monsoon) and zinc(Zn) and cadmium(Cd) (post-monsoon) in sediments were higher than the consensus based threshold concentration(TEC). The persistent exposure of toxic trace metals in sediments pose a potential threat, especially to sediment dwelling organisms. The degree of pollution in DB sediments for Pb, Cobalt (Co) Zn, Cd, Cr, Cu and arsenic (As) was assessed using Enrichment Factor (EF), Geo-accumulation index (Igeo) and Pollution Load Index (PLI). The results indicated that contamination of surface sediments in DB is dominated by Pb and Cd and to a lesser extent by Co, Fe, Cu, Cr, As and Zn. A significant positive correlation among the pairs of element Co/Fe, Zn/As in water, and Cr/Zn, Fe/As in sediments indicates similar source of origin of these metals. The effects of interaction among trace metals between water and sediments shows significant variations (F =94.02, P < 0.001), suggesting maximum mobility of trace metals in DB sediments and water. The source apportionment of the heavy metals was carried out using Principal Component Analysis (PCA). SEM-EDS detects the presence of Cd, Cu, Cr, Zn, Pb, As and Fe in the sediment sample. The average concentration of Cd, Zn, Pb and As in the bed sediments of DB are found to be higher than the crustal abundance. The EF values indicate that Cd and Pb are significantly enriched. From source apportionment studies of the eight metals using PCA revealed that Cd was anthropogenic in origin; Pb, As, Cr, and Zn had mixed sources; whereas Co, Cu and Fe were natural in origin.Keywords: Deepor Beel, enrichment factor, principal component analysis, trace metals
Procedia PDF Downloads 2921727 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy
Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang
Abstract:
In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties
Procedia PDF Downloads 1601726 Dissimilar Cu/Al Friction Stir Welding: Sensitivity of the Tool Offset
Authors: Tran Hung Tra, Hao Dinh Duong, Masakazu Okazaki
Abstract:
Copper 1100 and aluminum 1050 plates with a thickness of 5.0 mm are butt-joint using friction stir welding. The tool offset is linearly varied along the welding path. Two welding regimes, using the same linear tool offset but in opposite directions, are applied for fabricating two Cu/Al plates. The material flow is dominated by both tool offset and offset history. The intermetallic compounds layer and interface morphology in each welded plate are formed in a different manner. As a result, the bonding strength and fracture behavior between two welded plates are significantly distinct. The role of interface morphology on fracture behavior is analyzed by the finite element method.Keywords: Cu/Al dissimilar welding, offset history, interface morphology, intermetallic compounds, strength and fracture
Procedia PDF Downloads 791725 A Study of Non Linear Partial Differential Equation with Random Initial Condition
Authors: Ayaz Ahmad
Abstract:
In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations.Keywords: drift term, finite time blow up, inverse problem, soliton solution
Procedia PDF Downloads 2181724 The Friction and Wear Behavior of 0.35 VfTiC-Ti3SiC2 Composite
Authors: M. Hadji, A. Haddad, Y. Hadji
Abstract:
The effects of boronizing treatment on the friction coefficient and wear behavior of 0.35 Vf TiC- Ti3 SiC2 composite were investigated. In order to modify the surface properties of Ti3SiC2, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti3SiC2. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti3SiC2 from 6 GPa to 13 GPa. In the pin-on-disc test, i twas found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti3SiC2/Al2O3 tribocouple under 7 N load for the non treated and the boronized samples, respectively. The wear resistance of Ti3SiC2 under Al2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti3SiC2.Keywords: MAX phase, boronizing, hardness, wear
Procedia PDF Downloads 3531723 Structural Geology along the Jhakri-Wangtu Road (Jutogh Section) Himachal Pradesh, NW Higher Himalaya, India
Authors: Rajkumar Ghosh
Abstract:
The paper presents a comprehensive study of the structural analysis of the Chaura Thrust in Himachal Pradesh, India. The research focuses on several key aspects, including the activation timing of the Main Central Thrust (MCT) and the South Tibetan Detachment System (STDS), the identification and characterization of mylonitised zones through microscopic examination, and the understanding of box fold characteristics and their implications in the regional geology of the Himachal Himalaya. The primary objective of the study is to provide field documentation of the Chaura Thrust, which was previously considered a blind thrust with limited field evidence. Additionally, the research aims to characterize box folds and their signatures within the broader geological context of the Himachal Himalaya, document the temperature range associated with grain boundary migration (GBM), and explore the overprinting structures related to multiple sets of Higher Himalayan Out-of-Sequence Thrusts (OOSTs). The research methodology employed geological field observations and microscopic studies. Samples were collected along the Jhakri-Chaura transect at regular intervals of approximately 1 km to conduct strain analysis. Microstructural studies at the grain scale along the Jhakri-Wangtu transect were used to document the GBM-associated temperature range. The study reveals that the MCT activated in two parts, as did the STDS, and provides insights into the activation ages of the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). Under microscopic examination, the study identifies two mylonitised zones characterized by S-C fabric, and it documents dynamic and bulging recrystallization, as well as sub-grain formation. Various types of crenulated schistosity are observed in photomicrographs, including a rare occurrence where crenulation cleavage and sigmoid Muscovite are found juxtaposed. The study also notes the presence of S/SE-verging meso- and micro-scale box folds around Chaura, which may indicate structural upliftment. Kink folds near Chaura are visible, while asymmetric shear sense indicators in augen mylonite are predominantly observed under microscopic examination. Moreover, the research highlights the documentation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh, which activated the MCT and occurred within a zone south of the Main Central Thrust Upper (MCTU). The presence of multiple sets of OOSTs suggests a zigzag pattern of strain accumulation in the area. The study emphasizes the significance of understanding the overprinting structures associated with OOSTs. Overall, this study contributes to the understanding of the structural analysis of the Chaura Thrust and its implications in the regional geology of the Himachal Himalaya. The research underscores the importance of microscopic studies in identifying mylonitised zones and various types of crenulated schistosity. Additionally, the study documents the GBM-associated temperature range and provides insights into the activation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh. The findings of the study were obtained through geological field observations, microscopic studies, and strain analysis, offering valuable insights into the activation timing, mylonitization characteristics, and overprinting structures related to the Chaura Thrust and the broader tectonic framework of the region.Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust
Procedia PDF Downloads 1051722 The Simplicity of the Future: Plain Methods of Setting up a Company under the Freedom of Enterprise
Authors: Renata Hrecska
Abstract:
This research aims to present today's corporate law reforms in the micro, small and medium-sized enterprise sector. The UN Commission on International Trade Law (UNCITRAL) currently deals with emerging issues in the sector in its Working Group I that has specifically focused on possible company law simplifications, including the creation of a fully unique company, the UNCITRAL Limited Liability Organization. However, beyond the work at the UN, the different states has also been focusing on simplification efforts and demands in the sphere of commercial law. We can observe that e.g. Slovakia, Serbia, Poland, Croatia, Hungary, Romania and France are undergoing legal reforms aimed at restructuring the sector through simplification of registration or operation. An important objective of the research is to examine where the boundary is for the legal entity to be more transparent and accountable, while the legislator wants to bring the possibility of establishing a company closer to the citizen. The research material presents the advantages and disadvantages of different initiatives with comparative legal instruments and draws conclusions on the possible future vision. The researcher herself attended some of the meetings of the relevant UNCITRAL working group as a national delegated expert, giving her a personal insight into the UNLLO discourse.Keywords: commercial law, company formation, MSME, UNCITRAL
Procedia PDF Downloads 1201721 Improving Cyclability and Capacity of Lithium Oxygen Batteries via Low Rate Pre-Activation
Authors: Zhihong Luo, Guangbin Zhu, Lulu Guo, Zhujun Lyu, Kun Luo
Abstract:
Cycling life has become the threshold for the prospective application of Li-O₂ batteries, and the protection of Li anode has recently regarded as the key factor to the performance. Herein, a simple low rate pre-activation (20 cycles at 0.5 Ag⁻¹ and a capacity of 200 mAh g⁻¹) was employed to effectively improve the performance and cyclability of Li-O₂ batteries. The charge/discharge cycles at 1 A g⁻¹ with a capacity of 1000 mAh g⁻¹ were maintained for up to 290 times versus 55 times for the cell without pre-activation. The ultimate battery capacity and high rate discharge property were also largely enhanced. Morphology, XRD and XPS analyses reveal that the performance improvement is in close association with the formation of the smooth and compact surface layer formed on the Li anode after low rate pre-activation, which apparently alleviated the corrosion of Li anode and the passivation of cathode during battery cycling, and the corresponding mechanism was also discussed.Keywords: lithium oxygen battery, pre-activation, cyclability, capacity
Procedia PDF Downloads 1611720 Biocompatibility and Sensing Ability of Highly Luminescent Synthesized Core-Shell Quantum Dots
Authors: Mohan Singh Mehata, R. K. Ratnesh
Abstract:
CdSe, CdSe/ZnS, and CdSe/CdS core-shell quantum dots (QDs) of 3-4 nm were developed by using chemical route and following successive ion layer adsorption and reaction (SILAR) methods. The prepared QDs have been examined by using X-ray diffraction, high-resolution electron microscopy and optical spectroscopy. The photoluminescence (PL) quantum yield (QY) of core-shell QDs increases with respect to the core, indicating that the radiative rate increases by the formation of shell around core, as evident by the measurement of PL lifetime. Further, the PL of bovine serum albumin is quenched strongly by the presence of core-shall QDs and follow the Stern-Volmer (S-V) relation, whereas the lifetime does not follow the S-V relation, demonstrating that the observed quenching is predominantly static in nature. Among all the QDs, the CdSe/ZnS QDs shows the least cytotoxicity hence most biocompatibility.Keywords: biocompatibility, core-shell quantum dots, photoluminescence and lifetime, sensing ability
Procedia PDF Downloads 2411719 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD
Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai
Abstract:
This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control
Procedia PDF Downloads 3691718 Modification of Four Layer through the Thickness Woven Structure for Improved Impact Resistance
Authors: Muhammad Liaqat, Hafiz Abdul Samad, Syed Talha Ali Hamdani, Yasir Nawab
Abstract:
In the current research, the four layers, orthogonal through the thickness, 2D woven, 3D fabric structure was modified to improve the impact resistance of 3D fabric reinforced composites. This was achieved by imparting the auxeticity into four layers through the thickness woven structure. A comparison was made between the standard and modified four layers through the thickness woven structure in terms of auxeticity, penetration and impact resistance. It was found that the modified structure showed auxeticity in both warp and weft direction. It was also found that the penetration resistance of modified sample was less as compared to the standard structure, but impact resistance was improved up to 6.7% of modified four layers through the thickness woven structure.Keywords: 2D woven, 3D fabrics, auxetic, impact resistance, orthogonal through the thickness
Procedia PDF Downloads 3381717 Value from Environmental and Cultural Perspectives or Two Sides of the Same Coin
Authors: Vilem Paril, Dominika Tothova
Abstract:
This paper discusses the value theory in cultural heritage and the value theory in environmental economics. Two economic views of the value theory are compared within the field of cultural heritage maintenance and within the field of the environment. The main aims are to find common features in these two differently structured theories under the layer of differently defined terms as well as really differing features of these two approaches, to clear the confusion which stems from different terminology as in fact these terms capture the same aspects of reality and to show possible inspiration these two perspectives can offer one another. Another aim is to present these two value systems in one value framework. First, important moments of the value theory from the economic perspective are presented, leading to the marginal revolution of (not only) the Austrian School. Then the theory of value within cultural heritage and environmental economics are explored. Finally, individual approaches are compared and their potential mutual inspiration searched for.Keywords: cultural heritage, environmental economics, existence value, value theory
Procedia PDF Downloads 3231716 The Effect of the Precursor Powder Size on the Electrical and Sensor Characteristics of Fully Stabilized Zirconia-Based Solid Electrolytes
Authors: Olga Yu Kurapova, Alexander V. Shorokhov, Vladimir G. Konakov
Abstract:
Nowadays, due to their exceptional anion conductivity at high temperatures cubic zirconia solid solutions, stabilized by rare-earth and alkaline-earth metal oxides, are widely used as a solid electrolyte (SE) materials in different electrochemical devices such as gas sensors, oxygen pumps, solid oxide fuel cells (SOFC), etc. Nowadays the intensive studies are carried out in a field of novel fully stabilized zirconia based SE development. The use of precursor powders for SE manufacturing allows predetermining the microstructure, electrical and sensor characteristics of zirconia based ceramics used as SE. Thus the goal of the present work was the investigation of the effect of precursor powder size on the electrical and sensor characteristics of fully stabilized zirconia-based solid electrolytes with compositions of 0,08Y2O3∙0,92ZrO2 (YSZ), 0,06Ce2O3∙ 0,06Y2O3∙0,88ZrO2 and 0,09Ce2O3∙0,06Y2O3-0,85ZrO2. The synthesis of precursors powders with different mean particle size was performed by sol-gel synthesis in the form of reversed co-precipitation from aqueous solutions. The cakes were washed until the neutral pH and pan-dried at 110 °С. Also, YSZ ceramics was obtained by conventional solid state synthesis including milling into a planetary mill. Then the powder was cold pressed into the pellets with a diameter of 7.2 and ~4 mm thickness at P ~16 kg/cm2 and then hydrostatically pressed. The pellets were annealed at 1600 °С for 2 hours. The phase composition of as-synthesized SE was investigated by X-Ray photoelectron spectroscopy ESCA (spectrometer ESCA-5400, PHI) X-ray diffraction analysis - XRD (Shimadzu XRD-6000). Following galvanic cell О2 (РО2(1)), Pt | SE | Pt, (РО2(2) = 0.21 atm) was used for SE sensor properties investigation. The value of РО2(1) was set by mixing of O2 and N2 in the defined proportions with the accuracy of 5%. The temperature was measured by Pt/Pt-10% Rh thermocouple, The cell electromotive force (EMF) measurement was carried out with ± 0.1 mV accuracy. During the operation at the constant temperature, reproducibility was better than 5 mV. Asymmetric potential measured for all SE appeared to be negligible. It was shown that the resistivity of YSZ ceramics decreases in about two times upon the mean agglomerates decrease from 200-250 to 40 nm. It is likely due to the both surface and bulk resistivity decrease in grains. So the overall decrease of grain size in ceramic SE results in the significant decrease of the total ceramics resistivity allowing sensor operation at lower temperatures. For the SE manufactured the estimation of oxygen ion transfer number tion was carried out in the range 600-800 °С. YSZ ceramics manufactured from powders with the mean particle size 40-140 nm, shows the highest values i.e. 0.97-0.98. SE manufactured from precursors with the mean particle size 40-140 nm shows higher sensor characteristic i.e. temperature and oxygen concentration EMF dependencies, EMF (ENernst - Ereal), tion, response time, then ceramics, manufactured by conventional solid state synthesis.Keywords: oxygen sensors, precursor powders, sol-gel synthesis, stabilized zirconia ceramics
Procedia PDF Downloads 2871715 An Ab Initio Study of Delafossite Transparent Conductive Oxides Cu(In, Ga)O2 and Absorbers Films Cu(In, Ga)S2 in Solar-Cell
Authors: Mokdad Sakhri, Youcef Bouhadda
Abstract:
Thin film chalcopyrite technology is thus nowadays a solid candidate for photovoltaic cells. The currently used window layer for the solar cell Cu(In,Ga)S2 is our interest point in this work. For this purpose, we have performed a first-principles study of structural, electronic and optical properties for both delafossite transparent conductive oxides Cu (In, Ga)O2 and absorbers films Cu(In,Ga)S2. The calculations have been carried out within the local density functional (LDA) and generalized gradient approximations (GGA) combined with the hubbard potential using norm-conserving pseudopotentials and a plane-wave basis with ABINIT code. We have found the energy gap is :1.6, 2.53, 3.6, 3.8 eV for CuInS2, CuGaS2, CuInO2 and CuGaO2 respectively. The results are in good agreement with experimental results.Keywords: ABINIT code, DFT, electronic and optical properties, solar-cell absorbers, delafossite transparent conductive oxides
Procedia PDF Downloads 5711714 Carbonyl Iron Particles Modified with Pyrrole-Based Polymer and Electric and Magnetic Performance of Their Composites
Authors: Miroslav Mrlik, Marketa Ilcikova, Martin Cvek, Josef Osicka, Michal Sedlacik, Vladimir Pavlinek, Jaroslav Mosnacek
Abstract:
Magnetorheological elastomers (MREs) are a unique type of materials consisting of two components, magnetic filler, and elastomeric matrix. Their properties can be tailored upon application of an external magnetic field strength. In this case, the change of the viscoelastic properties (viscoelastic moduli, complex viscosity) are influenced by two crucial factors. The first one is magnetic performance of the particles and the second one is off-state stiffness of the elastomeric matrix. The former factor strongly depends on the intended applications; however general rule is that higher magnetic performance of the particles provides higher MR performance of the MRE. Since magnetic particles possess low stability properties against temperature and acidic environment, several methods how to improve these drawbacks have been developed. In the most cases, the preparation of the core-shell structures was employed as a suitable method for preservation of the magnetic particles against thermal and chemical oxidations. However, if the shell material is not single-layer substance, but polymer material, the magnetic performance is significantly suppressed, due to the in situ polymerization technique, when it is very difficult to control the polymerization rate and the polymer shell is too thick. The second factor is the off-state stiffness of the elastomeric matrix. Since the MR effectivity is calculated as the relative value of the elastic modulus upon magnetic field application divided by elastic modulus in the absence of the external field, also the tuneability of the cross-linking reaction is highly desired. Therefore, this study is focused on the controllable modification of magnetic particles using a novel monomeric system based on 2-(1H-pyrrol-1-yl)ethyl methacrylate. In this case, the short polymer chains of different chain lengths and low polydispersity index will be prepared, and thus tailorable stability properties can be achieved. Since the relatively thin polymer chains will be grafted on the surface of magnetic particles, their magnetic performance will be affected only slightly. Furthermore, also the cross-linking density will be affected, due to the presence of the short polymer chains. From the application point of view, such MREs can be utilized for, magneto-resistors, piezoresistors or pressure sensors especially, when the conducting shell on the magnetic particles will be created. Therefore, the selection of the pyrrole-based monomer is very crucial and controllably thin layer of conducting polymer can be prepared. Finally, such composite particle consisting of magnetic core and conducting shell dispersed in elastomeric matrix can find also the utilization in shielding application of electromagnetic waves.Keywords: atom transfer radical polymerization, core-shell, particle modification, electromagnetic waves shielding
Procedia PDF Downloads 2141713 Factors Mitigating against the Use of Alternative to Antibiotics (Phytobiotics) In Poultry Production among Farming Households in Nigeria
Authors: Akinola Helen Olufunke, Soetan Olatunbosun Jonathan, Adeleye Oludamola
Abstract:
Introduction: Antibiotic resistance has grown significantly, which is a major cause for concern. There have not been many significant developments in antibiotics over the past few decades, and practically all of the ones that are currently in use are losing effectiveness against pathogenic germs. Researchers are starting to focus more on the physiologically active compounds found in plants, particularly phytobiotics in poultry production. Consumption of chicken products is among the greatest in the country, but numerous nations, including Nigeria, use excessive amounts of necessary antibiotics in poultry farming, endangering the safety of such goods (through antimicrobial residues). Drug resistance has become a widespread issue as a result of the risky use of antibiotics in the chicken production industry. In order to replace antibiotics, biotic or natural products like phytobiotics (also known as botanicals or phytogenics) have drawn a lot of interest. Phytobiotics or their components are thought to be a relatively recent category of natural herbs that have acquired acceptance and favor among chicken farmers. The addition of several phytobiotic additions to poultry feed has demonstrated its capacity to improve both the broiler and layer populations' productivity. Design: Experimental research design and cross-sectional study was carried out at every 300 purposively selected farming household in the six-geopolitical zone in Nigeria. Data Analysis: A semi-structured questionnaire was administered to each farmer, and quantitative data were analyzed using Statistical Package for Social Science (SPSS) while the Chi-square test was used to analyze factors mitigating the use of Phytobiotics. Result: The result shows that the benefits associated with the use of phytobiotics are contributed to growth promotion in chickens and enhancement of productive performance of broiler and layer, which could be attributed to their antioxidant activity. The result further revealed that factors mitigating the use of phytobiotics were lack of knowledge in the use of phytobiotics, overdose or underdose usage, and seasonal availability of the phytobiotics. Others are the educational level of the farmers, intrinsic motivation, income poultry farming experience, price of phytobiotics based additives feeds, and intensity of extension agents in visiting them. Conclusion: The difficulties associated with using phytobiotics in chicken farms limit their willingness to boost productivity. The study found that most farmers were ignorant, which prevented them from handling this notion and turning their poultry into a viable enterprise while also allowing them to be creative. They believed that packing phytobiotics-based additive feed was expensive, and lastly, the seasonal availability of some phytobiotics. Recommendation: Further research in phytobiotics use in Nigeria should be carried out in order to establish its efficiency, safety, and awareness.Keywords: mitigating, antibiotics, phytobiotics, poultry farming
Procedia PDF Downloads 1771712 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes
Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon
Abstract:
Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.Keywords: all-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide
Procedia PDF Downloads 2321711 Design of Regular Communication Area for Infrared Electronic-Toll-Collection Systems
Authors: Wern-Yarng Shieh, Chao Qian, Bingnan Pei
Abstract:
A design of communication area for infrared electronic-toll-collection systems to provide an extended communication interval in the vehicle traveling direction and regular boundary between contiguous traffic lanes is proposed. By utilizing two typical low-cost commercial infrared LEDs with different half-intensity angles Φ1/2 = 22° and 10°, the radiation pattern of the emitter is designed to properly adjust the spatial distribution of the signal power. The aforementioned purpose can be achieved with an LED array in a three-piece structure with appropriate mounting angles. With this emitter, the influence of the mounting parameters, including the mounting height and mounting angles of the on-board unit and road-side unit, on the system performance in terms of the received signal strength and communication area are investigated. The results reveal that, for our emitter proposed in this paper, the ideal "long-and-narrow" characteristic of the communication area is very little affected by these mounting parameters. An optimum mounting configuration is also suggested.Keywords: dedicated short-range communication (DSRC), electronic toll collection (ETC), infrared communication, intelligent transportation system (ITS), multilane free flow
Procedia PDF Downloads 3401710 Glass and Polypropylene Combinations for Thermoplastic Preforms
Authors: Hireni Mankodi
Abstract:
The textile preforms for thermoplastic composite play a key role in providing the mechanical properties and gives the idea about preparing combination of yarn from Glass, Basalt, Carbon as reinforcement and PP, PET, Nylon as thermoplastic matrix at yarn stage for preforms to improve the quality and performance of laminates. The main objectives of this work are to develop the hybrid yarn using different yarn manufacturing process and prepare different performs using hybrid yarns. It has been observed that the glass/pp combination give homogeneous distribution in yarn. The proportion varied to optimize the glass/pp composition. The different preform has been prepared with combination of hybrid yarn, PP, glass combination. Further studies will investigate the effect of glass content in fabric, effect of weave, warps and filling density, number of layer plays significant role in deciding mechanical properties of thermoplastic laminates.Keywords: thermoplastic, preform, laminates, hybrid yarn, glass
Procedia PDF Downloads 5841709 The Effects of Boronizing Treatment on the Friction and Wear Behavior of 0.35 VfTiC- Ti3SiC2 Composite
Authors: M. Hadji, A. Haddad, Y. Hadji
Abstract:
The effects of boronizing treatment on the friction coefficient and wear behavior of 0.35 Vf TiC- Ti3 SiC2 composite were investigated. In order to modity the surface properties of Ti3SiC2, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti3SiC2. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti3SiC2 from 6 GPa to 13 GPa. In the pin-on-disc test, i twas found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti3SiC2/Al2O3 tribocouple under 7N load for the non treated and the boronized samples, respectively. The wear resistance of Ti3SiC2 underAl2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti3SiC2.Keywords: MAX phase, wearing, friction, boronizing
Procedia PDF Downloads 4611708 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization
Authors: Daham Owaid Matrood, Naqaa Hussein Raheem
Abstract:
Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization
Procedia PDF Downloads 4581707 Rock Property Calculation for Determine Hydrocarbon Zone Based on Petrophysical Principal and Sequence Stratigraphic Correlation in Blok M
Authors: Muhammad Tarmidzi, Reza M. G. Gani, Andri Luthfi
Abstract:
The purpose of this study is to identify rock zone containing hydrocarbons with calculating rock property includes volume shale, total porosity, effective porosity and water saturation. Identification method rock property based on GR log, resistivity log, neutron log and density rock. Zoning is based on sequence stratigraphic markers that are sequence boundary (SB), transgressive surface (TS) and flooding surface (FS) which correlating ten well log in blok “M”. The results of sequence stratigraphic correlation consist of eight zone that are two LST zone, three TST zone and three HST zone. The result of rock property calculation in each zone is showing two LST zone containing hydrocarbons. LST-1 zone has average volume shale (Vsh) 25%, average total porosity (PHIT) 14%, average effective porosity (PHIE) 11% and average water saturation 0,83. LST-2 zone has average volume shale (Vsh) 19%, average total porosity (PHIT) 21%, average effective porosity (PHIE) 17% and average water saturation 0,82.Keywords: hydrocarbons zone, petrophysic, rock property, sequence stratigraphic
Procedia PDF Downloads 3321706 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment
Authors: Ibrahim Ozkan
Abstract:
In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.Keywords: cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading
Procedia PDF Downloads 1481705 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 1441704 Regional Changes under Extreme Meteorological Events
Authors: Renalda El Samra, Elie Bou-Zeid, Hamza Kunhu Bangalath, Georgiy Stenchikov, Mutasem El Fadel
Abstract:
The regional-scale impact of climate change over complex terrain was examined through high-resolution dynamic downscaling conducted using the Weather Research and Forecasting (WRF) model, with initial and boundary conditions from a High-Resolution Atmospheric Model (HiRAM). The analysis was conducted over the eastern Mediterranean, with a focus on the country of Lebanon, which is characterized by a challenging complex topography that magnifies the effect of orographic precipitation. Four year-long WRF simulations, selected based on HiRAM time series, were performed to generate future climate projections of extreme temperature and precipitation over the study area under the conditions of the Representative Concentration Pathway (RCP) 4.5. One past WRF simulation year, 2008, was selected as a baseline to capture dry extremes of the system. The results indicate that the study area might be exposed to a temperature increase between 1.0 and 3ºC in summer mean values by 2050, in comparison to 2008. For extreme years, the decrease in average annual precipitation may exceed 50% at certain locations in comparison to 2008.Keywords: HiRAM, regional climate modeling, WRF, Representative Concentration Pathway (RCP)
Procedia PDF Downloads 4001703 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques
Authors: Tosin Ige
Abstract:
Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique
Procedia PDF Downloads 1781702 Peak Constituent Fluxes from Small Arctic Rivers Generated by Late Summer Episodic Precipitation Events
Authors: Shawn G. Gallaher, Lilli E. Hirth
Abstract:
As permafrost thaws with the continued warming of the Alaskan North Slope, a progressively thicker active thaw layer is evidently releasing previously sequestered nutrients, metals, and particulate matter exposed to fluvial transport. In this study, we estimate material fluxes on the North Slope of Alaska during the 2019-2022 melt seasons. The watershed of the Alaskan North Slope can be categorized into three regions: mountains, tundra, and coastal plain. Precipitation and discharge data were collected from repeat visits to 14 sample sites for biogeochemical surface water samples, 7 point discharge measurements, 3 project deployed meteorology stations, and 2 U. S. Geological Survey (USGS) continuous discharge observation sites. The timing, intensity, and spatial distribution of precipitation determine the material flux composition in the Sagavanirktok and surrounding bodies of water, with geogenic constituents (e.g., dissolved inorganic carbon (DIC)) expected from mountain flushed events and biogenic constituents (e.g., dissolved organic compound (DOC)) expected from transitional tundra precipitation events. Project goals include connecting late summer precipitation events to peak discharge to determine the responses of the watershed to localized atmospheric forcing. Field study measurements showed widespread precipitation in August 2019, generating an increase in total suspended solids, dissolved organic carbon, and iron fluxes from the tundra, shifting the main-stem mountain river biogeochemistry toward tundra source characteristics typically only observed during the spring floods. Intuitively, a large-scale precipitation event (as defined by this study as exceeding 12.5 mm of precipitation on a single observation day) would dilute a body of water; however, in this study, concentrations increased with higher discharge responses on several occasions. These large-scale precipitation events continue to produce peak constituent fluxes as the thaw layer increases in depth and late summer precipitation increases, evidenced by 6 large-scale events in July 2022 alone. This increase in late summer events is in sharp contrast to the 3 or fewer large events in July in each of the last 10 years. Changes in precipitation intensity, timing, and location have introduced late summer peak constituent flux events previously confined to the spring freshet.Keywords: Alaska North Slope, arctic rivers, material flux, precipitation
Procedia PDF Downloads 791701 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties
Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni
Abstract:
Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.Keywords: multiscale model, tropocollagen, fibrils, ligaments commas
Procedia PDF Downloads 1631700 Clothing and Personnel Selection: An Experimental Study to Test the Effects of Dress Style on Hirability Perceptions
Authors: Janneke K. Oostrom, Richard Ronay
Abstract:
The so called “red sneakers effect” refers to people’s inclination to infer status and competence from signals of nonconformity. In the current research, we explore an untested possible boundary condition to the red sneakers effect within the context of personnel selection. In two experimental studies (total N = 156), we examined how (non)conforming dress style interacts with the quality of a job applicant’s resume to determine hirability perceptions. We found that dress style indeed impacts hirability perceptions, but that the exact impact depends on the quality of the applicant’s resume. Results revealed that applicants with a low quality resume were punished for behaving in a nonconforming way, whereas applicants with a high quality resume appeared to have the leeway to dress as they please. Importantly, the observed interaction effect was mediated by perceptions of power. These findings suggest that nonconforming dress acts as a power-signaling mechanism in the context of personnel selection. However, the signaling effects of non-conforming dress style can backfire when accompanied by evidence that such posturing is not matched by cues of actual competence.Keywords: clothing, hirability, nonconformity, personnel selection, power
Procedia PDF Downloads 180