Search results for: marketing intelligence
651 Language Effects on the Prestige and Product Image of Advertised Smartphone in Consumer Purchases in Indonesia
Authors: Vidyarini Dwita, Rebecca Fanany
Abstract:
This study will discuss the growth of the market for smartphone technology in Indonesia. This country, with the world’s fourth largest population, has a reputation as the social media capital of the world, and this reputation is largely justified. The penetration of social media is high in Indonesia which has one of the largest global markets. Most Indonesian users of Facebook, Twitter and other social media platforms access the sites from their mobile phones. Indonesia is expected to continue to be a major market for digital mobile devices, such as smartphone and tablets that can access the internet. The aim of this study to describe the way responses of Indonesian consumers to smartphone advertising using English and Indonesian will impact on their perceptions of the prestige and product image of the advertised items and thus influence consumer intention to purchase the item. Advertising for smartphones and similar products is intense and dynamic and often draws on the social attitudes of Indonesians with respect to linguistic and cultural content and especially appeals to their desire to be part of global mainstream culture. The study uses a qualitative method based on in-depth interviews with 30 participants. Content analysis is employed to analyse the responses of Indonesian consumers to smartphone advertising that uses English and Indonesian text. Its findings indicate that consumers’ impressions of English and Indonesian slogans influence their attitudes toward smartphones, suggesting that linguistic context plays a role in influencing consumer purchases.Keywords: consumer purchases, marketing communication, product image, smartphone advertising, sociolinguistic
Procedia PDF Downloads 224650 Unlocking E-commerce: Analyzing User Behavior and Segmenting Customers for Strategic Insights
Authors: Aditya Patil, Arun Patil, Vaishali Patil, Sudhir Chitnis, Anjum Patel
Abstract:
Rapid growth has given e-commerce platforms a lot of client behavior and spending data. To maximize their strategy, businesses must understand how customers utilize online shopping platforms and what influences their purchases. Our research focuses on e-commerce user behavior and purchasing trends. This extensive study examines spending and user behavior. Regression and grouping disclose relevant data from the dataset. We can understand user spending trends via multilevel regression. We can analyze how pricing, user demographics, and product categories affect customer purchase decisions with this technique. Clustering groups consumers by spending. Important information was found. Purchase habits vary by user group. Our analysis illuminates the complex world of e-commerce consumer behavior and purchase trends. Understanding user behavior helps create effective e-commerce marketing strategies. This market can benefit from K-means clustering. This study focuses on tailoring strategies to user groups and improving product and price effectiveness. Customer buying behaviors across categories were shown via K-means clusters. Average spending is highest in Cluster 4 and lowest in Cluster 3. Clothing is less popular than gadgets and appliances around the holidays. Cluster spending distribution is examined using average variables. Our research enhances e-commerce analytics. Companies can improve customer service and decision-making with this data.Keywords: e-commerce, regression, clustering, k-means
Procedia PDF Downloads 18649 Agrarian Distress and out Migration of Youths: Study of a Wet Land Village in Hirakud Command Area, Odisha
Authors: Kishor K. Podh
Abstract:
Agriculture in India treated as the backbone of its economy. It has been accommodated to more than 60 percent of its population as their economic base, directly or indirectly for their livelihood. Besides its significant role, the sharp declines in public investment and development in agriculture have witnessed. After independence Hirakud Command Area (HCA) popularly known as the Rice Bowl of State, due to its fabulous production and provides food to a larger part of the state. After the great green revolution and then liberalization agrarian families become overburden with the loan. They started working as wage laborer in other’s field and non-farm sectors to overcome from the uninvited indebtedness. Although production increases at present, still the youths of this area migrating outsides for job Tamil Nadu, Andhra Pradesh, Maharashtra, Gujarat, etc. Because agriculture no longer remains a profitable occupation; increasing input costs, the uncertainty of crops, improper pricing, poor marketing, etc. compels the youths to choose the alternative occupations. They work in industries (under contractors), construction workers and other menial jobs due to lack of skills and degrees. Kharmunda a village within HCA selected as per the convenience and 100 youth migrants were interviewed purposively selected who were present during data collection. The study analyses the types of migration; its similarity/differentiations, its determining factors, in tow geographical areas of Western Odisha, i.e., single crop and double crops in relation to agricultural situations.Keywords: agrarian distress, double crops, Hirakud Command Area, indebtedness, out migration, Western Odisha
Procedia PDF Downloads 334648 Redesigning Malaysia Batik Sarong by Applying Quality Function Deployment
Authors: M. Kamal, Y. Wang, R. Kennon
Abstract:
Quality Function Deployment is a useful tool in product development with the application of voice of customer. In this paper, it aims to be applied as a product development tool in redesigning fashion and textile product. The purpose of these studies is to apply the effective use of Voice of Customer in redesigning cultural fashion product. The data collection from Voice of Customer or consumers’ feedback might help the producer to improve the quality of merchandise ahead. Voice of Customer could give a specific detailing for quality which needs to be redesigned according to customers’ requirements. Meanwhile, the next objective is to differentiate design specifications and characteristics using House of Quality. In product designing phase, it is very important to distinguish each specification and characteristic which translated from Voice of Customer to House of Quality matrix. This matrix would help designers to development according to qualities that customer wants for the better and successful product in the market. It is hope this research would indicate the customers’ requirements and production team idea might be measured and translated to a systematic data. The specific technical data could be planned ahead with specific design details as well. This could be a sustainable approach for a traditional product which could control the material that they use and sustain the quality as the past production. As a conclusion, this study would benefit the Small Medium Enterprises design team or the designers to style an item from customers view with organised projection of the product. The finding also could assist designers or batik producers’ to recognise specific details Batik sarong from consumers as well as in in advertising and marketing strategy plan.Keywords: house of quality, Malaysia batik sarong, quality function deployment, voice of customer
Procedia PDF Downloads 592647 Counter-Terrorism Policies in the Wider Black Sea Region: Evaluating the Robustness of Constantza Port under Potential Terror Attacks
Authors: A. V. Popa, C. Barna, V. Mihalache
Abstract:
Being the largest port at the Black Sea and functioning as a civil and military nodal point between Europe and Asia, Constantza Port has become a potential target on the terrorist international agenda. The authors use qualitative research based on both face-to-face and online semi-structured interviews with relevant stakeholders (top decision-makers in the Romanian Naval Authority, Romanian Maritime Training Centre, National Company "Maritime Ports Administration" and military staff) in order to detect potential vulnerabilities which might be exploited by terrorists in the case of Constantza Port. Likewise, this will enable bringing together the experts’ opinions on potential mitigation measures. Subsequently, this paper formulates various counter-terrorism policies to enhance the robustness of Constantza Port under potential terror attacks and connects them with the attributions in the field of critical infrastructure protection conferred by the law to the lead national authority for preventing and countering terrorism, namely the Romanian Intelligence Service. Extending the national counterterrorism efforts to an international level, the authors propose the establishment – among the experts of the NATO member states of the Wider Black Sea Region – of a platform for the exchange of know-how and best practices in the field of critical infrastructure protection.Keywords: Constantza Port, counter-terrorism policies, critical infrastructure protection, security, Wider Black Sea Region
Procedia PDF Downloads 295646 Anomaly Detection in Financial Markets Using Tucker Decomposition
Authors: Salma Krafessi
Abstract:
The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models
Procedia PDF Downloads 69645 Causes and Consequences of Unauthorized Use of Books: Readers, Authors, and Publishers' Perspective
Authors: Arūnas Gudinavičius, Vincas Grigas
Abstract:
Purpose: The current study aims to identify and explore causes and consequences of unauthorized use of books from readers’, publishers’, and authors’ points of view. The case of Lithuania also assessed, especially historical background (banned alphabet, book smuggling, theft as the social norm in Soviet times) of the country. Design/methodology/approach: Aiming for more understanding why readers, authors and publishers are using or not using technology for unauthorized access of books, technology acceptance model approach was used, a total of 30 respondents (publishers, authors and readers) were interviewed in semi-structured face-to-face interviews and thematic analysis of collected qualitative data was conducted. Interviews were coded in English with coding software for further analysis. Findings: Findings indicate that the main cause for the unauthorized use of books is a lack of legal e-book titles and acquisition options. This mainly points at publishers, however, instead of using unauthorized sources as opportunities for author promotion or marketing, they rather concentrate on the causes of unauthorized use of books which they are not in control of, including access to unauthorized sources, habits, and economic causes. Some publishers believe that the lack of legal e-book titles is the consequence of unauthorized use of book rather than its cause. Originality: This research contributed to the body of knowledge by investigating unauthorized use of books from readers’, publishers’, and authors’ points of view which renders to have a better understanding of the causes and consequences of such behavior, as well as differences between these roles. We suggest that these causes lead to the intention to use and actual use of technology which is easier to use and which gives more perceived advantages – technology for unauthorized downloading and reading of books vs legal e-book acquisition options.Keywords: digital piracy, unauthorized access, publishing industry, book reader, intellectual property rights
Procedia PDF Downloads 171644 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO
Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky
Abstract:
The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.Keywords: aeronautics, big data, data processing, machine learning, S1000D
Procedia PDF Downloads 156643 Analysis of Key Factors Influencing Muslim Women’s Buying Intentions of Clothes: A Study of UK’s Ethnic Minorities and Modest Fashion Industry
Authors: Nargis Ali
Abstract:
Since the modest fashion market is growing in the UK, there is still little understanding and more concerns found among researchers and marketers about Muslim consumers. Therefore, the present study is designed to explore critical factors influencing Muslim women’s intention to purchase clothing and to identify the differences in the purchase intention of ethnic minority groups in the UK. The conceptual framework is designed using the theory of planned behavior and social identity theory. In order to satisfy the research objectives, a structured online questionnaire was published on Facebook from 20 November to 21 March. As a result, 1087 usable questionnaires were received and used to assess the proposed model fit through structural equation modeling. Results revealed that social media does influence the purchase intention of Muslim women. Muslim women search for stylish clothes that provide comfort during summer while they prefer soft and subdued colors. Furthermore, religious knowledge and religious practice, and fashion uniqueness strongly influence their purchase intention, while hybrid identity is negatively related to the purchase intention of Muslim women. This research contributes to the literature linked to Muslim consumers at a time when the UK's large retailers were seeking to attract Muslim consumers through modestly designed outfits. Besides, it will be helpful to formulate or revise product and marketing strategies according to UK’s Muslim women’s tastes and needs.Keywords: fashion uniqueness, hybrid identity, religiosity, social media, social identity theory, structural equation modeling, theory of planned behavior
Procedia PDF Downloads 226642 Sustainable Agriculture of Tribal Farmers: An Analysis in Koraput and Malkangiri Districts of Odisha, India
Authors: Amrita Mishra, Tushar Kanti Das
Abstract:
Agriculture is the backbone of the economy of Odisha. Sustainability of agriculture holds the key for the development of Odisha. The Sustainable Development Goals are a framework of 17 goals and 169 targets across social, economical and environmental areas of sustainable development. Among all the seventeen goals the second goal is focusing on the promotion of Sustainable Agriculture. In this research our main aim is also to contribute an understanding of effectiveness of sustainable agriculture as a tool for rural development in the selected tribal district (i.e. Koraput and Malkangiri) of Odisha. These two districts are comes under KBK districts of Odisha which are identified as most backward districts of Odisha. The objectives of our study are to investigate the effect of sustainable agriculture on the lives of tribal farmers, to study whether the farmers are empowered by their participation in sustainable agriculture initiatives to move towards their own vision of development and to study the investment and profit ratio in sustainable agriculture. This research will help in filling the major gaps in sociological studies of sustainable agriculture. This information will helpful for farmers, development organisations, donors and policy makers in formulating the development of effective initiatives and policies to support the development of sustainable agriculture. In this study, we have taken 210 respondents and used various statistical techniques like chi-square test, one-way ANOVA and percentage analysis. This research shows that sustainable agriculture is an effective development strategy that benefits the tribal farmers to move towards their own vision of Good Fortune. The poor farmers who struggle to feed their families and maintain viable livelihoods on shrinking land for them sustainable agriculture are really benefited. The farmers are using homemade pesticides, manure and also getting the seeds from different development organisations and Government. So the investment in Sustainable Agriculture is very less. All farmers said their lives are now better than before. The creation of farmers groups for training and marketing for the produces was shown to be very important for empowerment.Keywords: sustainable, agriculture, tribal farmers, development, empowerment
Procedia PDF Downloads 174641 Mediating Health in Rural Ghana: An Exploratory Study of AI-Driven Health Communications Channels and Media Reportage in Accra
Authors: Amos Ekow Coffie
Abstract:
This exploratory study investigates the impact of AI-driven health communications and media reportage on health outcomes in rural Ghana, focusing on rural communities within Accra. Despite the potential of AI-driven health communications in improving health outcomes, its adoption in rural Ghana is hindered by infrastructure challenges, digital literacy, and cultural factors. Media reportage plays a crucial role in shaping health perceptions and behaviors, but its impact is limited by inadequate health reporting, lack of specialized health journalists, and limited access to health information. This study aims to explore the integration of AI-driven health communications into media practices in rural Ghana, addressing the following research questions: How do AI-driven health communications impact health outcomes in rural Ghana? What role does media reportage play in shaping health perceptions and behaviors in Accra? How can AI-driven health communications and media reportage be optimized to improve health outcomes in rural Ghana? Using a mixed-methods approach, this study will combine surveys, interviews, and content analysis to investigate the impact of AI-driven Health Communication and media reportage on health outcomes in rural areas in Ghana. AI-driven health communications is the use of artificial intelligence (AI) technologies to design, deliver, and evaluate health messages, interventions, and campaigns. The study's findings will contribute to the development of effective health communication strategies, addressing the significant health disparities in rural areas in Ghana.Keywords: AI Driven Health Communication, Media Reporting, Rural Areas, Communication Channels
Procedia PDF Downloads 25640 Results of Longitudinal Assessments of Very Low Birth Weight and Extremely Low Birth Weight Infants
Authors: Anett Nagy, Anna Maria Beke, Rozsa Graf, Magda Kalmar
Abstract:
Premature birth involves developmental risks – the earlier the baby is born and the lower its birth weight, the higher the risks. The developmental outcomes for immature, low birth weight infants are hard to predict. Our aim is to identify the factors influencing infant and preschool-age development in very low birth weight (VLBW) and extremely low birth weight (ELBW) preterms. Sixty-one subjects participated in our longitudinal study, which consisted of thirty VLBW and thirty-one ELBW children. The psychomotor development of the infants was assessed using the Brunet-Lezine Developmental Scale at the corrected ages of one and two years; then at three years of age, they were tested with the WPPSI-IV IQ test. Birth weight, gestational age, perinatal complications, gender, and maternal education, were added to the data analysis as independent variables. According to our assessments, our subjects as a group scored in the average range in each subscale of the Brunet-Lezine Developmental Scale. The scores were the lowest in language at both measurement points. The children’s performances improved between one and two years of age, particularly in the domain of coordination. At three years of age the mean IQ test results, although still in the average range, were near the low end of it in each index. The ELBW preterms performed significantly poorer in Perceptual Reasoning Index. The developmental level at two years better predicted the IQ than that at one year. None of the measures distinguished the genders.Keywords: preterm, extremely low birth-weight, perinatal complication, psychomotor development, intelligence, follow-up
Procedia PDF Downloads 244639 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image
Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa
Abstract:
A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever
Procedia PDF Downloads 120638 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations
Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay
Abstract:
Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.Keywords: machining, milling operation, tool condition monitoring, tool wear prediction
Procedia PDF Downloads 303637 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study
Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker
Abstract:
In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.Keywords: admissions, algorithms, cloud computing, differentiation, fog computing, levelling, machine learning
Procedia PDF Downloads 142636 Business and Psychological Principles Integrated into Automated Capital Investment Systems through Mathematical Algorithms
Authors: Cristian Pauna
Abstract:
With few steps away from the 2020, investments in financial markets is a common activity nowadays. In the electronic trading environment, the automated investment software has become a major part in the business intelligence system of any modern financial company. The investment decisions are assisted and/or made automatically by computers using mathematical algorithms today. The complexity of these algorithms requires computer assistance in the investment process. This paper will present several investment strategies that can be automated with algorithmic trading for Deutscher Aktienindex DAX30. It was found that, based on several price action mathematical models used for high-frequency trading some investment strategies can be optimized and improved for automated investments with good results. This paper will present the way to automate these investment decisions. Automated signals will be built using all of these strategies. Three major types of investment strategies were found in this study. The types are separated by the target length and by the exit strategy used. The exit decisions will be also automated and the paper will present the specificity for each investment type. A comparative study will be also included in this paper in order to reveal the differences between strategies. Based on these results, the profit and the capital exposure will be compared and analyzed in order to qualify the investment methodologies presented and to compare them with any other investment system. As conclusion, some major investment strategies will be revealed and compared in order to be considered for inclusion in any automated investment system.Keywords: Algorithmic trading, automated investment systems, limit conditions, trading principles, trading strategies
Procedia PDF Downloads 194635 Review of Theories and Applications of Genetic Programing in Sediment Yield Modeling
Authors: Adesoji Tunbosun Jaiyeola, Josiah Adeyemo
Abstract:
Sediment yield can be considered to be the total sediment load that leaves a drainage basin. The knowledge of the quantity of sediments present in a river at a particular time can lead to better flood capacity in reservoirs and consequently help to control over-bane flooding. Furthermore, as sediment accumulates in the reservoir, it gradually loses its ability to store water for the purposes for which it was built. The development of hydrological models to forecast the quantity of sediment present in a reservoir helps planners and managers of water resources systems, to understand the system better in terms of its problems and alternative ways to address them. The application of artificial intelligence models and technique to such real-life situations have proven to be an effective approach of solving complex problems. This paper makes an extensive review of literature relevant to the theories and applications of evolutionary algorithms, and most especially genetic programming. The successful applications of genetic programming as a soft computing technique were reviewed in sediment modelling and other branches of knowledge. Some fundamental issues such as benchmark, generalization ability, bloat and over-fitting and other open issues relating to the working principles of GP, which needs to be addressed by the GP community were also highlighted. This review aim to give GP theoreticians, researchers and the general community of GP enough research direction, valuable guide and also keep all stakeholders abreast of the issues which need attention during the next decade for the advancement of GP.Keywords: benchmark, bloat, generalization, genetic programming, over-fitting, sediment yield
Procedia PDF Downloads 446634 The Role of Privatization on the Formulation of Productive Supply Chain: The Case of Ethiopian Firms
Authors: Merhawit Fisseha Gebremariam, Yohannes Yebabe Tesfay
Abstract:
This study focuses on the formulation of a sustainable, effective, and efficient supply chain strategy framework that will enable Ethiopian privatized firms. The study examined the role of privatization in productive sourcing, production, and delivery to Ethiopian firm’s performances. To analyze our hypothesis, the authors applied the concepts of Key Performance Indicator (KPI), strategic outsourcing, purchasing portfolio analysis, and Porter's marketing analysis. The authors selected ten privatized companies and compared their financial, market expansion, and sustainability performances. The Chi-Square Test showed that at the 5% level of significance, privatization and outsourcing activities can assist the business performances of Ethiopian firms in terms of product promotion and new market expansion. At the 5% level of significance, the independent t-test result showed that firms that were privatized by Ethiopian investors showed stronger financial performance than those that were privatized by foreign investors. Furthermore, it is better if Ethiopian firms apply both cost leadership and differentiated strategy to enhance thriving in their business area. Ethiopian firms need to implement the supply chain operations reference (SCOR) model for an exclusive framework that supports communication links the supply chain partners, and enhances productivity. The government of Ethiopia should be aware that the privatization of firms by Ethiopian investors will strengthen the economy. Otherwise, the privatization process will be risky for the country, and therefore, the government of Ethiopia should stop doing those activities.Keywords: correlation analysis, market strategies, KPIs, privatization, risk and Ethiopia
Procedia PDF Downloads 68633 The Influence of Service Quality on Customer Satisfaction and Customer Loyalty at a Telecommunication Company in Malaysia
Authors: Noor Azlina Mohamed Yunus, Baharom Abd Rahman, Abdul Kadir Othman, Narehan Hassan, Rohana Mat Som, Ibhrahim Zakaria
Abstract:
Customer satisfaction and customer loyalty are the most important outcomes of marketing in which both elements serve various stages of consumer buying behavior. Excellent service quality has become a major corporate goal as more companies gradually struggle for quality for their products and services. Therefore, the main purpose of this study is to investigate the influence of service quality on customer satisfaction and customer loyalty at one telecommunication company in Malaysia which is Telekom Malaysia. The scope of this research is to evaluate satisfaction on the products or services at TMpoint Bukit Raja, Malaysia. The data are gathered through the distribution of questionnaires to a total of 306 respondents who visited and used the products or services. By using correlation and multiple regression analyses, the result revealed that there was a positive and significant relationship between service quality and customer satisfaction. The most influential factor on customer satisfaction was empathy followed by reliability, assurance and tangibles. However, there was no significant influence between responsiveness and customer satisfaction. The result also showed there was a positive and significant relationship between service quality and customer loyalty. The most influential factor on customer loyalty was assurance followed by reliability and tangibles. TMpoint Bukit Raja is recommended to device excellent strategies to satisfy customers’ needs and to adopt action-oriented approach by focusing on what the customers wanted. It is also recommended that similar study can be carried out in other industries using different methodologies such as longitudinal method, enlarge the sample size and use a qualitative approach.Keywords: customer satisfaction, customer loyalty, service quality, telecommunication company
Procedia PDF Downloads 453632 Composite Approach to Extremism and Terrorism Web Content Classification
Authors: Kolade Olawande Owoeye, George Weir
Abstract:
Terrorism and extremism activities on the internet are becoming the most significant threats to national security because of their potential dangers. In response to this challenge, law enforcement and security authorities are actively implementing comprehensive measures by countering the use of the internet for terrorism. To achieve the measures, there is need for intelligence gathering via the internet. This includes real-time monitoring of potential websites that are used for recruitment and information dissemination among other operations by extremist groups. However, with billions of active webpages, real-time monitoring of all webpages become almost impossible. To narrow down the search domain, there is a need for efficient webpage classification techniques. This research proposed a new approach tagged: SentiPosit-based method. SentiPosit-based method combines features of the Posit-based method and the Sentistrenght-based method for classification of terrorism and extremism webpages. The experiment was carried out on 7500 webpages obtained through TENE-webcrawler by International Cyber Crime Research Centre (ICCRC). The webpages were manually grouped into three classes which include the ‘pro-extremist’, ‘anti-extremist’ and ‘neutral’ with 2500 webpages in each category. A supervised learning algorithm is then applied on the classified dataset in order to build the model. Results obtained was compared with existing classification method using the prediction accuracy and runtime. It was observed that our proposed hybrid approach produced a better classification accuracy compared to existing approaches within a reasonable runtime.Keywords: sentiposit, classification, extremism, terrorism
Procedia PDF Downloads 278631 Little Retrieval Augmented Generation for Named Entity Recognition: Toward Lightweight, Generative, Named Entity Recognition Through Prompt Engineering, and Multi-Level Retrieval Augmented Generation
Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira
Abstract:
We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models Mistral-v0.3, Llama-3, and Phi-3, for Generative Named Entity Recognition (GNER). Our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We consider recent developments at the cross roads of prompt engineering and Retrieval Augmented Generation (RAG), such as EmotionPrompt. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification
Procedia PDF Downloads 46630 Light-Weight Network for Real-Time Pose Estimation
Authors: Jianghao Hu, Hongyu Wang
Abstract:
The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone
Procedia PDF Downloads 154629 Assessing the Celebrity Effects on Change in Brand Association and Consumer’s Attitude in a Celebrity-Collaborated Fashion Brand in Hong Kong
Authors: Chu Wai Ching, Kan Chi Wai
Abstract:
Fashion industry is fast moving with intense competitions; it is hard for fashion retailers to stand out among their peers. In order to promote and enhance uniqueness, fashion retailers have collaborated with different brands or celebrity in their marketing campaign recently. As brand-celebrity collaboration is a growing phenomenon in the Hong Kong fashion industry, this research aims to investigate the effect of celebrity on altering consumer’s brand association and the overall attitude towards the co-branded products. One of the popular celebrity-collaborated fashion brands was chosen for this study and a survey was conducted among university students in Hong Kong which yielded 222 responses. By using factor analysis, linear regression and bootstrap test for the mediation, the results show that three celebrity attributes namely “expertise”, “trustworthiness” and “attractiveness” affect the evaluation of the co-branded products. In addition, the change in the association of the brand and co-branded product attributes mediates the relationship between the characteristics of the celebrity and the overall attitude of the co-branded product. The result shows “expertise” of the celebrity has a perfect mediation, while “trustworthiness” and “attractiveness” of the celebrity have partial mediation. This implies that expertise of the celebrity is capable in altering the association towards both the brand and core product attributes and bringing a positive attitude towards the co-brand. The trustworthiness and the attractiveness of the celebrity are able to alter the consumer association towards the brand, but do not guarantee a complete positive attitude towards the co-branded product. This means that change in brand attributes is not a definite mediator as direct relationship may happen or there may be other factors that can affect the relationship between the celebrity’s persuasiveness and the overall attitude towards the co-branded collection.Keywords: brand attribute, brand-celebrity collaborations, co-branding, fashion industry
Procedia PDF Downloads 330628 Ireland to US Food Tourism the Diaspora and the Locale
Authors: Catriona Hilliard
Abstract:
Food identity is synonymous with many national tourism destinations and perceptions in tourist source markets – stereotypes could include snails in France; beer in Britain and Germany; paella in Spain - and is an accepted element of national identity that can be incorporated into tourism experiences. Irish transatlantic food connections are culturally strong with diaspora subsequent generations in the US displaying an online interest in traditional Irish food, even with a twist. Back ‘home’, the value of the local indigenous experience was a specific element of the way The Gathering 2013 was promoted to the Irish diaspora, developing community interest and input to tourism. Over the past 20 years, Ireland has realized the value of its food industry to tourism. This has included the establishment of food development programmes for the hospitality industry; food festivals as a possible element of the tourist experience; and a programmes of food ambassadors to market Irish produce and to encourage service providers to understand; utilize and incorporate this into their offerings. Irish produce is being now actively marketed as part of the proposed tourism experience, to particular segment markets including transatlantic visitors. In addition, individual providers are becoming aware of the value of the market, and how to gain from it. Also, networks of food providers have developed collaborative structures of promoting their experiences to audiences, displaying a cluster approach of tourism development towards that sector. A power point presentation will look at how Irish produce contributes to tourism marketing and promotion of Ireland to America; how that may have assisted sustainable development of communities here; and hopes to elicit some discussion relating to longer term identification of Irish food, as part of tourism, for the potential benefit of the ‘locale’.Keywords: Irish, USA, food, tourism
Procedia PDF Downloads 389627 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks
Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas
Abstract:
This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems
Procedia PDF Downloads 134626 Artificial Intelligence in the Design of a Retaining Structure
Authors: Kelvin Lo
Abstract:
Nowadays, numerical modelling in geotechnical engineering is very common but sophisticated. Many advanced input settings and considerable computational efforts are required to optimize the design to reduce the construction cost. To optimize a design, it usually requires huge numerical models. If the optimization is conducted manually, there is a potentially dangerous consequence from human errors, and the time spent on the input and data extraction from output is significant. This paper presents an automation process introduced to numerical modelling (Plaxis 2D) of a trench excavation supported by a secant-pile retaining structure for a top-down tunnel project. Python code is adopted to control the process, and numerical modelling is conducted automatically in every 20m chainage along the 200m tunnel, with maximum retained height occurring in the middle chainage. Python code continuously changes the geological stratum and excavation depth under groundwater flow conditions in each 20m section. It automatically conducts trial and error to determine the required pile length and the use of props to achieve the required factor of safety and target displacement. Once the bending moment of the pile exceeds its capacity, it will increase in size. When the pile embedment reaches the default maximum length, it will turn on the prop system. Results showed that it saves time, increases efficiency, lowers design costs, and replaces human labor to minimize error.Keywords: automation, numerical modelling, Python, retaining structures
Procedia PDF Downloads 51625 Perspectives and Challenges Functional Bread with Yeast Extract to Improve Human Diet
Authors: Jelena Filipović, Milenko Košutić, Vladimir Filipović
Abstract:
In the last decades, the urban population has been characterized by sedentary lifestyles, low physical activity, and "fast food". These changes in diet and physical nonactivity have been associated with an increase in chronic diseases. Bread is one of the most popular wheat products consumed worldwide. Spelt wheat has shown potential in various food applications, including bread, pasta, breakfast cereal, and other products of altered nutritional characteristics compared to conventional wheat products. It has very high protein content and even 30 to 60% higher concentration of mineral elements Fe, Zn, Cu, Mg and P compared to Triticum Aestivum. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and it is an old cultivar. So it can be used for organic and health-safe food. Changes in the formulation of bread with the aim of improving its nutritional and functional properties usually lead to changes in the dough's properties, which are related to the quality of the finished product. The aim of this paper is to research the impact of adding yeast extract to bread on sensory characteristics and consumer acceptance of a new product as a key factor for the successful marketing of a distinct product. The sensory analysis of bread with 5% yeast extract is as follows: the technological quality is very good (3.8), and the color of the product is excellent (4.85). Based on data, consumers' survey declared that they liked the taste of bread with 5% yeast extract (74%), consumers marked the product as likable (70%), and 75% of the total number of respondents would buy this new product. This paper is promoting a type of bread with 5% yeast extract (Z score 0.80) to improve diet and a product intended for consumers conscious about their health and diet.Keywords: bread, yeast extract, sensory analysis, consumer survey, score analysis
Procedia PDF Downloads 60624 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction
Procedia PDF Downloads 184623 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 225622 Evaluating News in Press about Konya in Context of City Image
Authors: Nur Gorkemli, Basak Solmaz
Abstract:
With globalization, competition between cities increased and therefore cities started to give more importance to be a more differentiated one among thousands of their competitors. In order to become a more livable place and appeal more tourists, more investors, more students and more people cities give importance to marketing and branding activities. City image is very important concept for building a city brand. Cinemas, books, news or information about cities create 'city image' in peoples’ minds. Every city has their own peculiarities and changing their neutral or negative image to a positive way will bring advantages to them in national and even in international arena. Konya, which is a city in central Anatolia, has been an important city since very early times in human kind. It has the ruins of one of the first settlements existed approximately 9.000 years ago. Moreover, it was the capital of Selcuk Empire before Ottoman period and also a very important city during Ottoman Empire. With this historical richness, the city has important structures and works of art from those periods. Moreover, the city is also very well-known in the world with one of the greatest philosopher, poet, theologian, and Sufi mystic Mevlana Jelaleddin Rumi, who lived most of his life in Konya. Every year nearly two million people from various cities and countries visit Mevlana Museum. With all these potentials, Turkish Ministry of Culture and Tourism chose Konya to be a branded city in its 2023 action plan. For branding activities, understanding city image has a crucial role. Moreover, news about cities has a great potential on building a 'city image' in minds. This study is aimed at interpreting Konya’s image by categorizing Konya’s news existed in three national newspapers, which has the highest circulation in Turkey. Content analysis method will be used in this study.Keywords: city branding, city image, newspaper analysis, Konya
Procedia PDF Downloads 337