Search results for: machine and plant engineering
7147 Shotcrete Performance Optimisation and Audit Using 3D Laser Scanning
Authors: Carlos Gonzalez, Neil Slatcher, Marcus Properzi, Kan Seah
Abstract:
In many underground mining operations, shotcrete is used for permanent rock support. Shotcrete thickness is a critical measure of the success of this process. 3D Laser Mapping, in conjunction with Jetcrete, has developed a 3D laser scanning system specifically for measuring the thickness of shotcrete. The system is mounted on the shotcrete spraying machine and measures the rock faces before and after spraying. The calculated difference between the two 3D surface models is measured as the thickness of the sprayed concrete. Typical work patterns for the shotcrete process required a rapid and automatic system. The scanning takes place immediately before and after the application of the shotcrete so no convergence takes place in the interval between scans. Automatic alignment of scans without targets was implemented which allows for the possibility of movement of the spraying machine between scans. Case studies are presented where accuracy tests are undertaken and automatic audit reports are calculated. The use of 3D imaging data for the calculation of shotcrete thickness is an important tool for geotechnical engineers and contract managers, and this could become the new state-of-the-art methodology for the mining industry.Keywords: 3D imaging, shotcrete, surface model, tunnel stability
Procedia PDF Downloads 2907146 Application of Support Vector Machines in Forecasting Non-Residential
Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut
Abstract:
This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.Keywords: forecasting, non-residential, construction, support vector machines
Procedia PDF Downloads 4347145 Phytochemical Screening and Evaluation of Antimicrobial and Antioxidant Activity of Anethum graveolens L. (Dill) Plant
Authors: Radhika S. Oke, Rebecca S. Thombre
Abstract:
Medicinal plants and herbs have a great history of their utility as remedy for treatment of variety of ailments. Secondary metabolites present in these plants are responsible for their medicinal activity. In the present investigation, phytochemical screening of aqueous and alcoholic leaf extract of Anethum graveolens L. was performed. Total phenolic content and total antioxidant activity of the extracts was quantitatively estimated by Folin-Ciocalteau method and DPPH (1, 1-Diphenyl-2-picryl hydrazyl) method respectively. Qualitative tests suggested that Alkaloids, tannins and phenolic compounds were present in all the extracts of the plant. Aqueous extracts was found to have more phytochemicals as compared to alcoholic extracts. Extract of Anethum graveolens L. was found to contain good amount phenolics and exhibited antioxidant activity. The extracts also demonstrated potent antimicrobial activity against selected gram positive and negative bacteria. The study revealed the potential application of Anethum graveolens L. (Dill) in medicine and health.Keywords: Anethum graveolens L., antioxidant, antimicrobial activity, medicine and health
Procedia PDF Downloads 5067144 Profiling Risky Code Using Machine Learning
Authors: Zunaira Zaman, David Bohannon
Abstract:
This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties
Procedia PDF Downloads 1077143 Xanthotoxin: A Plant Derived Furanocoumarin with Antipathogenic and Cytotoxic Activities
Authors: Seyed Mehdi Razavi Khosroshahi
Abstract:
In recent years a great deal of efforts has been made to find natural derivative compounds to replace it's with synthetic drugs, herbicides or pesticides for management of human health and agroecosystem programs. This process can lead to a reduction in environmental harmful effects of synthetic chemicals. Xanthotoxin, as a furanocoumarin compound, found in some genera of the Apiaceae family of plants. The current work focuses on some xanthotoxin cytotoxicity and antipathogenic activities. The results indicated that xanthotoxin showed strong cytotoxic effects against LNCaP cell line with the IC₅₀ value of 0.207 mg/ml in a dose-dependent manner. After treatments of the cell line with 0.1 mg/ml of the compound, the viability of the cells was reached to zero. The current study revealed that xanthotoxin displayed strong antifungal activity against human or plant pathogen fungi, Aspergillus fumigatus, Aspegillusn flavus and Fusarum graminearum with minimum inhibitory concentration values of 52-68 µg/ml. The compound exhibited antibacterial effects on some Erwinia and Xanthomonas species of bacteria, as wellKeywords: Xanthomonas, cytotoxic, antipathogen, LNCaP, Aspergillus fumigatus, spegillusn flavus
Procedia PDF Downloads 1437142 Phytoremediation of Textile Wastewater Laden with 1,4-Dioxane Using Eichhornia crassipes: A Sustainable Development Approach
Authors: Hadeer Ibrahiem, Mahmoud Nasr, Masarrat M. M. Migahid, Mohamed A. Ghazy
Abstract:
The release of textile wastewater loaded with 1,4 dioxane into aquatic ecosystems has been associated with various human health risks and adverse environmental impacts. In parallel, phytoremediation has been recently employed to treat highly polluted wastewater because various plant species tend to produce certain enzymes as a defense mechanism against a toxic environment. To our best knowledge, this study is the first to investigate the ability of phytoremediation using Eichhornia crassipes for the removal of various pollutants, including 1,4 dioxane, from textile wastewater. A phytoremediation system composed of Eichhornia crassipes was acclimatized for 10 d, and then operated in four lab-scale hydroponic systems, viz., negative control, positive control, and two different 1,4 dioxane concentration (400 and 500 mg/L). After 11 d of operation, the phytoremediation system achieved removal efficiencies of 67.5±3.4%, 89.4±4.4%, 83.6±3.8% for 1,4 dioxane (at initial concentration 400 mg/L), chemical oxygen demand (COD) (at initial concentration 679 mg/L), and cumulative heavy metals, respectively. The removal of these pollutants was mainly supported by the phyto-sorption and phytodegradation mechanisms. The economic feasibility of this phytoremediation system was validated by estimating the capital and operating costs, requiring 4.6 USD for the treatment of 1 m3 textile wastewater. The study concluded that the phytoremediation process could be used as a practical and economical approach to treat textile wastewater laden with various organic and inorganic pollutants. Due to the observed pollution reduction and human health protection, the study objectives would fulfill the targets of SDG 3 “Good Health and Well-being” and SDG 6 “Clean Water and Sanitation”. Further studies are required to (i) investigate the ability of plant species to withstand higher concentrations of 1,4 dioxane for an extended operation time and (ii) understand the biochemical pathways for the degradation of 1,4 dioxane via the action of plant enzymes and the associated microbial community.Keywords: 1, 4 dioxane concentrations, hydrophytes, Eichhornia crassipes, phytoremediation effectiveness, SDGs, textile industrial effluent
Procedia PDF Downloads 1017141 Production of Vermiwash from Medicinal Plants and Its Potential Use as Fungicide against the Alternaria Alternata (fr.) Keissl. Affecting Cucumber (Cucumis sativus L.) in Guyana
Authors: Abdullah Ansari, Sinika Rambaran, Sirpaul Jaikishun
Abstract:
Vermiwash could be used to enhance plant productivity and resistance to some harmful plant pathogens, as well as provide benefit through the disposal of waste matter. Alternaria rot caused by the fungus Alternaria alternata (Fr.) Keissl., is a common soil-borne pathogen that results in postharvest fruit rot of cucumbers, peppers and other cash crops. The production and distribution of Cucumis sativus L. (cucumber) could be severely affected by Alternaria rot. Fungicides are the traditional treatment however; they are not only expensive but can also cause environmental and health problems. Vermiwash was prepared from various medicinal plants (Ocimum tenuiflorum L. {Tulsi}, Azadirachta indica A. Juss. {neem}, Cymbopogon citratus (DC. ex Nees) Stapf. {lemon grass} and Oryza sativa L. {paddy straw} and applied, in vitro, to A. alternata to investigate their effectiveness as organic alternatives to traditional fungicides. All of the samples of vermiwash inhibited the growth of A. alternata. The inhibitive effects on the fungus appeared most effective when A. indica and O. tenuiflorum were used in the production of the vermiwash. Using the serial dilution method, vermiwash from O. tenuiflorum showed the highest percent of inhibition (93.2%), followed by C. citratus (74.7%), A. indica (68.7%), O. sativa, combination, and combination without worms. Using the sterile disc diffusion method, all of the samples produced zones of inhibition against A. alternata. Vermiwash from A. indica produced a zone of inhibition, averaging 15.3mm, followed by O. tenuiflorum (14.0mm), combination without worms, combination, C. citratus and O. sativa. Nystatin produced a zone of inhibition of 10mm. The results indicate that vermiwash is not simply an organic alternative to more traditional chemical fungicides, but it may in fact be a better and more effective product in treating certain fungal plant infections, particularly A. alternata.Keywords: vermiwash, earthworms, soil, bacteria, alternaria alternata, antifungal, antibacterial
Procedia PDF Downloads 2527140 Chemical Composition of Volatiles Emitted from Ziziphus jujuba Miller Collected during Different Growth Stages
Authors: Rose Vanessa Bandeira Reidel, Bernardo Melai, Pier Luigi Cioni, Luisa Pistelli
Abstract:
Ziziphus jujuba Miller is a common species of the Ziziphus genus (Rhamnaceae family) native to the tropics and subtropics known for its edible fruits, fresh consumed or used in healthy food, as flavoring and sweetener. Many phytochemicals and biological activities are described for this species. In this work, the aroma profiles emitted in vivo by whole fresh organs (leaf, bud flower, flower, green and red fruits) were analyzed separately by mean of solid phase micro-extraction (SPME) coupled with gas chromatography mass spectrometry (GC-MS). The emitted volatiles from different plant parts were analysed using Supelco SPME device coated with polydimethylsiloxane (PDMS, 100µm). Fresh plant material was introduced separately into a glass conical flask and allowed to equilibrate for 20 min. After the equilibration time, the fibre was exposed to the headspace for 15 min at room temperature, the fibre was re-inserted into the needle and transferred to the injector of the CG and CG-MS system, where the fibre was desorbed. All the data were submitted to multivariate statistical analysis, evidencing many differences amongst the selected plant parts and their developmental stages. A total of 144 compounds were identified corresponding to 94.6-99.4% of the whole aroma profile of jujube samples. Sesquiterpene hydrocarbons were the main chemical class of compounds in leaves also present in similar percentage in flowers and bud flowers where (E, E)-α-farnesene was the main constituent in all cited plant parts. This behavior can be due to a protection mechanism against pathogens and herbivores as well as resistance to abiotic factors. The aroma of green fruits was characterized by high amount of perillene while the red fruits release a volatile blend mainly constituted by different monoterpenes. The terpenoid emission of flesh fruits has important function in the interaction with animals including attraction of seed dispersers and it is related to a good quality of fruits. This study provides for the first time the chemical composition of the volatile emission from different Ziziphus jujuba organs. The SPME analyses of the collected samples showed different patterns of emission and can contribute to understand their ecological interactions and fruit production management.Keywords: Rhamnaceae, aroma profile, jujube organs, HS-SPME, GC-MS
Procedia PDF Downloads 2567139 Seedling Emergence and Initial Growth of Different Plants after Trichoderma sp. Inoculation
Authors: Simonida S. Djuric, Timea I. Hajnal Jafari, Dragana R. Stamenov
Abstract:
The use of plant growth promoting fungi (PGPF) has significantly increased in the last decade mostly due to their multi-level properties, and their expected success as biofertilizers in agriculture. Beneficial fungi with broad-host range undergo long-term interactions with a large variety of plants thereby playing a significant role in managed ecosystems and in the adaptation of crops to global climate changes. Trichoderma spp. are promising fungi toward the development of sustainable agriculture. The aim of our experiment was to investigate the effect of seed inoculation of sunflower, maize, soybean, paprika, melon, and watermelon seeds with Trichoderma sp. on early seed germination energy and initial growth of the plant. The seed inoculation with Trichoderma sp. increased the seedling emergence from 7, 85% in melon to 156,70% in watermelon. The inoculation had the best effect on initial growth of maize shoot (+23,80%) and soybean root (+106,30%). The different response of seed and young plants on Trichoderma sp. inoculation implicate the need for future investigations of successful inoculation systems and modes of their integration in sustainable agriculture production systems.Keywords: initial growth, inoculation, seedling, Trichoderma sp.
Procedia PDF Downloads 2407138 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information
Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung
Abstract:
The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.Keywords: color moments, visual thing recognition system, SIFT, color SIFT
Procedia PDF Downloads 4697137 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System
Authors: J. K. Adedeji, M. O. Oyekanmi
Abstract:
This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.Keywords: biometric characters, facial recognition, neural network, OpenCV
Procedia PDF Downloads 2567136 Nephroprotective Effect of Aqueous Extract of Plectranthus amboinicus (Roxb.) Leaves in Adriamycin Induced Acute Renal Failure in Wistar Rats: A Biochemical and Histopathological Assessment
Authors: Ampe Mohottige Sachinthi Sandaruwani Amarasiri, Anoja Priyadarshani Attanayake, Kamani Ayoma Perera Wijewardana Jayatilaka, Lakmini Kumari Boralugoda Mudduwa
Abstract:
The search for alternative pharmacological therapies based on natural extracts for renal failure has become an urgent need, due to paucity of effective pharmacotherapy. The current study was undertaken to evaluate the acute nephroprotective effect of aqueous leaf extract of Plectranthus amboinicus (Roxb.) (Family: Lamiaceae), a medicinal plant used in traditional Ayurvedic medicine for the management of renal diseases in Sri Lanka. The study was performed in adriamycin (ADR) induced nephrotoxic in Wistar rats. Wistar rats were randomly divided into four groups each with six rats. A single dose of ADR (20 mg/kg body wt., ip) was used for the induction of nephrotoxicity in all groups of rats except group one. The treatments were started 24 hours after induction of nephrotoxicity and continued for three days. Group one and two served as healthy and nephrotoxic control rats and were administered equivalent volumes of normal saline (0.9% NaCl) orally. Group three and four nephrotoxic rats were administered the lyophilized powder of the aqueous extract of P. amboinicus (400 mg/ kg body wt.; equivalent human therapeutic dose) and the standard drug, fosinopril sodium (0.09 mg/ kg body wt.) respectively. Urine and blood samples were collected from rats in each group at the end of the period of intervention for the estimation of selected renal parameters. H and E stained sections of the kidney tissues were examined for histopathological changes. Rats treated with the plant extract showed significant improvement in biochemical parameters and histopathological changes compared to ADR induced nephrotoxic group. The elevation of serum concentrations of creatinine and β2-microglobulin were decreased by 38%, and 66% in plant extract treated nephrotoxic rats respectively (p < 0.05). In addition, serum concentrations of total protein and albumin were significantly increased by 25% and 14% in rats treated with P. amboinicus respectively (p < 0.05). The results of β2 –microglobulin and serum total protein demonstrated a significant reduction in the elevated values in rats administered with the plant extract (400 mg/kg) compared to that of fosinopril (0.09 mg/kg). Urinary protein loss in 24hr urine samples was significantly decreased in rats treated with both fosinopril (86%) and P. ambonicus (56%) at the end of the intervention (p < 0.01). Accordingly, an attenuation of morphological destruction was observed in the H and E stained sections of the kidney with the treatments of plant extract and fosinopril. The results of the present study revealed that the aqueous leaf extract of P. amboinicus possesses significant nephroprotective activity at the equivalent therapeutic dose of 400 mg/ kg against adriamycin induced acute nephrotoxicity.Keywords: biochemical assessment, histopathological assessment, nephroprotective activity, Plectranthus amboinicus
Procedia PDF Downloads 1467135 Integration of Building Information Modeling Framework for 4D Constructability Review and Clash Detection Management of a Sewage Treatment Plant
Authors: Malla Vijayeta, Y. Vijaya Kumar, N. Ramakrishna Raju, K. Satyanarayana
Abstract:
Global AEC (architecture, engineering, and construction) industry has been coined as one of the most resistive domains in embracing technology. Although this digital era has been inundated with software tools like CAD, STADD, CANDY, Microsoft Project, Primavera etc. the key stakeholders have been working in siloes and processes remain fragmented. Unlike the yesteryears’ simpler project delivery methods, the current projects are of fast-track, complex, risky, multidisciplinary, stakeholder’s influential, statutorily regulative etc. pose extensive bottlenecks in preventing timely completion of projects. At this juncture, a paradigm shift surfaced in construction industry, and Building Information Modeling, aka BIM, has been a panacea to bolster the multidisciplinary teams’ cooperative and collaborative work leading to productive, sustainable and leaner project outcome. Building information modeling has been integrative, stakeholder engaging and centralized approach in providing a common platform of communication. A common misconception that BIM can be used for building/high rise projects in Indian Construction Industry, while this paper discusses of the implementation of BIM processes/methodologies in water and waste water industry. It elucidates about BIM 4D planning and constructability reviews of a Sewage Treatment Plant in India. Conventional construction planning and logistics management involves a blend of experience coupled with imagination. Even though the excerpts or judgments or lessons learnt gained from veterans might be predictive and helpful, but the uncertainty factor persists. This paper shall delve about the case study of real time implementation of BIM 4D planning protocols for one of the Sewage Treatment Plant of Dravyavati River Rejuvenation Project in India and develops a Time Liner to identify logistics planning and clash detection. With this BIM processes, we shall find that there will be significant reduction of duplication of tasks and reworks. Also another benefit achieved will be better visualization and workarounds during conception stage and enables for early involvement of the stakeholders in the Project Life cycle of Sewage Treatment Plant construction. Moreover, we have also taken an opinion poll of the benefits accrued utilizing BIM processes versus traditional paper based communication like 2D and 3D CAD tools. Thus this paper concludes with BIM framework for Sewage Treatment Plant construction which will achieve optimal construction co-ordination advantages like 4D construction sequencing, interference checking, clash detection checking and resolutions by primary engagement of all key stakeholders thereby identifying potential risks and subsequent creation of risk response strategies. However, certain hiccups like hesitancy in adoption of BIM technology by naïve users and availability of proficient BIM trainers in India poses a phenomenal impediment. Hence the nurture of BIM processes from conception, construction and till commissioning, operation and maintenance along with deconstruction of a project’s life cycle is highly essential for Indian Construction Industry in this digital era.Keywords: integrated BIM workflow, 4D planning with BIM, building information modeling, clash detection and visualization, constructability reviews, project life cycle
Procedia PDF Downloads 1227134 Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater
Authors: N. Balaban, A. Buernstein, F. Gelman, Z. Ronen
Abstract:
Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site.Keywords: biodegradation, brominated flame retardants, groundwater, isotopic fractionation, microbial diversity
Procedia PDF Downloads 2367133 AMF activates PDH 45 and G-proteins Genes to Alleviate Abiotic Stress in Tomato Plants
Authors: Deepak Bhardwaj, Narendra Tuteja
Abstract:
Global climate change is impacting large agrarian societies, especially those in countries located near the equator. Agriculture, and consequently, plant-based food, is the hardest hit in tropical and sub-tropical countries such as India due to an increased incidence of drought as well as an increase in soil salinity. One method that holds promise is AMF-rich biofertilizers which assist in activating proteins which in turn help alleviate abiotic stress in plants. In the present study, we identified two important species of (arbuscular mycorrhizal fungus) AMF belonging to Glomus and Gigaspora from the rhizosphere of the important medicinal plant Justicia adathoda. These two species have been found to be responsible for the abundance of Justicia adathoda in the semi-arid areas of the Jammu valley located in northern India, namely, the Union Territory of Jammu and Kashmir. We isolated the species of Glomus and Gigaspora from the rhizosphere of Justicia adathoda and used them as biofertilizers for the tomato plant. Significant improvements in the growth parameters were observed in the tomato plants inoculated with Glomus sp. and Gigaspora sp. in comparison with the tomato plants that were grown without AMF treatments. Tomato plants grown along with Glomus sp. and Gigaspora sp. have been observed to withstand 200 mM of salinity and 25% PEG stress. AMF also resulted in an increased concentration of proline and antioxidant enzymes in tomato plants. We also examined the expression levels of salinity and drought stress-inducible genes such as pea DNA helicase 45 (PDH 45) and genes of G-protein subunits of the tomato plants inoculated with and without AMF under stress and normal conditions. All the stress-inducible genes showed a significant increase in their gene expression under stress and AMF inoculation, while their levels were found to be normal under AMF inoculation without stress. We propose a model of abiotic stress alleviation in tomato plants with the help of external factors such as AMF and internally with the help of proteins like PDH 45 and G-proteins.Keywords: AMF, abiotic stress, g-proteins, PDH-45
Procedia PDF Downloads 1767132 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 987131 Thermal and Solar Performances of Adsorption Solar Refrigerating Machine
Authors: Nadia Allouache
Abstract:
Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system
Procedia PDF Downloads 727130 A Study on Cleaning Mirror Technology with Reduced Water Consumption in a Solar Thermal Power Plant
Authors: Bayarjargal Enkhtaivan, Gao Wei, Zhang Yanping, He Guo Qiang
Abstract:
In our study, traditional cleaning mirror technology with reduced consumption of water in solar thermal power plants is investigated. In developed countries, a significant increase of growth and innovation in solar thermal power sector is evident since over the last decade. These power plants required higher water consumption, however, there are some complications to construct and operate such power plants under severe drought-inflicted areas like deserts where high water-deficit can be seen but sufficient solar energy is available. Designing new experimental equipments is the most important advantage of this study. These equipments can estimate various types of measurements at the mean time. In this study, Glasses were placed for 10 and 20 days at certain positions to deposit dusts on glass surface by using a common method. Dust deposited on glass surface was washed by experimental equipment and measured dust deposition on each glass. After that, experimental results were analyzed and concluded.Keywords: concentrated solar power (CSP) plant, high-pressure water, test equipment of clean mirror, cleaning technology of glass and mirror
Procedia PDF Downloads 1737129 Correlations among Their Characteristics and Determination of Some Morphological Characteristics of Perennial Ryegrass Genotypes
Authors: Abdullah Özköse, Ahmet Tamkoç
Abstract:
This study aimed to determine some plant characteristics of perennial ryegrass (Lolium perenne L.) genotypes collected from the natural flora of Ankara and correlations between these characteristics. In order to evaluate for breeding purposes according to Turkey's environmental conditions, perennial ryegrass plants collected from natural pasture of Ankara at 2004 were utilized. The collected seeds of plants were sown in pots and seedlings were prepared in greenhouse. Seedlings were transplanted to the experimental field at 50x50 cm intervals in Randomized Complete Blocks Design in 2005. Data were obtained from the observations and measurements of 568 perennial ryegrasses in 2007 and 2008. Perennial ryegrass plants’ in the spring re-growth time, color, density, growth habit, tendency to inflorescences, time of inflorescence, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area, leaf shape, number of spikelets per spike, seed yield per spike, and 1000 grain weight were investigated and correlation analyses were made on the data. Correlation coefficients were estimated between all paired combinations of the traits. The yield components exhibited varying trends of association among themselves. Seed yield per spike showed significant and positive association with number of spikelets per spike, 1000 grain weight, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area and color, but significant and negative association with growth habit and in the spring re-growth time spring.Keywords: correlation, morphological traits, Lolium perenne
Procedia PDF Downloads 4557128 Framework for Detecting External Plagiarism from Monolingual Documents: Use of Shallow NLP and N-Gram Frequency Comparison
Authors: Saugata Bose, Ritambhra Korpal
Abstract:
The internet has increased the copy-paste scenarios amongst students as well as amongst researchers leading to different levels of plagiarized documents. For this reason, much of research is focused on for detecting plagiarism automatically. In this paper, an initiative is discussed where Natural Language Processing (NLP) techniques as well as supervised machine learning algorithms have been combined to detect plagiarized texts. Here, the major emphasis is on to construct a framework which detects external plagiarism from monolingual texts successfully. For successfully detecting the plagiarism, n-gram frequency comparison approach has been implemented to construct the model framework. The framework is based on 120 characteristics which have been extracted during pre-processing the documents using NLP approach. Afterwards, filter metrics has been applied to select most relevant characteristics and then supervised classification learning algorithm has been used to classify the documents in four levels of plagiarism. Confusion matrix was built to estimate the false positives and false negatives. Our plagiarism framework achieved a very high the accuracy score.Keywords: lexical matching, shallow NLP, supervised machine learning algorithm, word n-gram
Procedia PDF Downloads 3587127 Preliminary Assessment of Arsenic Levels in Farmland Soils of Bokkos Local Government Area, Plateau State Nigeria
Authors: W. M. Buba, J. G. Nangbes, J. P. Butven
Abstract:
This research was undertaken to evolve community based awareness on the arsenic contamination from agricultural practices in Communities of Bokkos local government area. Contaminated farmland soil samples were collected from the surface for tailings and at various depths (50, 100, 150 cm intervals) in eight holes drilled in each farm at different locations using hand auger. A total of sixty- four (64) soil samples were collected from eight (8) different communities. A standard titrimetric method was applied for the determination of arsenic. It was found that the average concentration of arsenic in the surface soil (0-150cm) for the entire study areas was 0.0525mg/kg with range 0.0425 -0.0601mg/kg which is well above the recommended the soil to plant concentration guideline range of 2.3 – 4.3 x10-4 mg/kg value. This indicates that the arsenic concentration in the study areas does pose health risk for agricultural practices via potential bioaccumulation in plant food crops. However, some risks measures could follow the arsenic occurrence through direct exposure such as those resulting from the inhalation, oral or dermal intake of arsenic during agricultural practices and in the course of stay on the contaminated soil.Keywords: agrochemicals, arsenic, bokkos, contamination, soil
Procedia PDF Downloads 3497126 Interference among Lambsquarters and Oil Rapeseed Cultivars
Authors: Reza Siyami, Bahram Mirshekari
Abstract:
Seed and oil yield of rapeseed is considerably affected by weeds interference including mustard (Sinapis arvensis L.), lambsquarters (Chenopodium album L.) and redroot pigweed (Amaranthus retroflexus L.) throughout the East Azerbaijan province in Iran. To formulate the relationship between four independent growth variables measured in our experiment with a dependent variable, multiple regression analysis was carried out for the weed leaves number per plant (X1), green cover percentage (X2), LAI (X3) and leaf area per plant (X4) as independent variables and rapeseed oil yield as a dependent variable. The multiple regression equation is shown as follows: Seed essential oil yield (kg/ha) = 0.156 + 0.0325 (X1) + 0.0489 (X2) + 0.0415 (X3) + 0.133 (X4). Furthermore, the stepwise regression analysis was also carried out for the data obtained to test the significance of the independent variables affecting the oil yield as a dependent variable. The resulted stepwise regression equation is shown as follows: Oil yield = 4.42 + 0.0841 (X2) + 0.0801 (X3); R2 = 81.5. The stepwise regression analysis verified that the green cover percentage and LAI of weed had a marked increasing effect on the oil yield of rapeseed.Keywords: green cover percentage, independent variable, interference, regression
Procedia PDF Downloads 4207125 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions
Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams
Abstract:
The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.Keywords: architecture, central pavilions, classicism, machine learning
Procedia PDF Downloads 1407124 Exploring the Use of Augmented Reality for Laboratory Lectures in Distance Learning
Authors: Michele Gattullo, Vito M. Manghisi, Alessandro Evangelista, Enricoandrea Laviola
Abstract:
In this work, we explored the use of Augmented Reality (AR) to support students in laboratory lectures in Distance Learning (DL), designing an application that proved to be ready for use next semester. AR could help students in the understanding of complex concepts as well as increase their motivation in the learning process. However, despite many prototypes in the literature, it is still less used in schools and universities. This is mainly due to the perceived limited advantages to the investment costs, especially regarding changes needed in the teaching modalities. However, with the spread of epidemiological emergency due to SARS-CoV-2, schools and universities were forced to a very rapid redefinition of consolidated processes towards forms of Distance Learning. Despite its many advantages, it suffers from the impossibility to carry out practical activities that are of crucial importance in STEM ("Science, Technology, Engineering e Math") didactics. In this context, AR perceived advantages increased a lot since teachers are more prepared for new teaching modalities, exploiting AR that allows students to carry on practical activities on their own instead of being physically present in laboratories. In this work, we designed an AR application for the support of engineering students in the understanding of assembly drawings of complex machines. Traditionally, this skill is acquired in the first years of the bachelor's degree in industrial engineering, through laboratory activities where the teacher shows the corresponding components (e.g., bearings, screws, shafts) in a real machine and their representation in the assembly drawing. This research aims to explore the effectiveness of AR to allow students to acquire this skill on their own without physically being in the laboratory. In a preliminary phase, we interviewed students to understand the main issues in the learning of this subject. This survey revealed that students had difficulty identifying machine components in an assembly drawing, matching between the 2D representation of a component and its real shape, and understanding the functionality of a component within the machine. We developed a mobile application using Unity3D, aiming to solve the mentioned issues. We designed the application in collaboration with the course professors. Natural feature tracking was used to associate the 2D printed assembly drawing with the corresponding 3D virtual model. The application can be displayed on students’ tablets or smartphones. Users could interact with selecting a component from a part list on the device. Then, 3D representations of components appear on the printed drawing, coupled with 3D virtual labels for their location and identification. Users could also interact with watching a 3D animation to learn how components are assembled. Students evaluated the application through a questionnaire based on the System Usability Scale (SUS). The survey was provided to 15 students selected among those we participated in the preliminary interview. The mean SUS score was 83 (SD 12.9) over a maximum of 100, allowing teachers to use the AR application in their courses. Another important finding is that almost all the students revealed that this application would provide significant power for comprehension on their own.Keywords: augmented reality, distance learning, STEM didactics, technology in education
Procedia PDF Downloads 1287123 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 807122 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 2637121 Preparation of Metallic Nanoparticles with the Use of Reagents of Natural Origin
Authors: Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec
Abstract:
Nowadays, nano-size materials are very popular group of materials among scientists. What is more, these materials find an application in a wide range of various areas. Therefore constantly increasing demand for nanomaterials including metallic nanoparticles such as silver of gold ones is observed. Therefore, new routes of their preparation are sought. Considering potential application of nanoparticles, it is important to select an adequate methodology of their preparation because it determines their size and shape. Among the most commonly applied methods of preparation of nanoparticles chemical and electrochemical techniques are leading. However, currently growing attention is directed into the biological or biochemical aspects of syntheses of metallic nanoparticles. This is associated with a trend of developing of new routes of preparation of given compounds according to the principles of green chemistry. These principles involve e.g. the reduction of the use of toxic compounds in the synthesis as well as the reduction of the energy demand or minimization of the generated waste. As a result, a growing popularity of the use of such components as natural plant extracts, infusions or essential oils is observed. Such natural substances may be used both as a reducing agent of metal ions and as a stabilizing agent of formed nanoparticles therefore they can replace synthetic compounds previously used for the reduction of metal ions or for the stabilization of obtained nanoparticles suspension. Methods that proceed in the presence of previously mentioned natural compounds are environmentally friendly and proceed without the application of any toxic reagents. Methodology: Presented research involves preparation of silver nanoparticles using selected plant extracts, e.g. artichoke extract. Extracts of natural origin were used as reducing and stabilizing agents at the same time. Furthermore, syntheses were carried out in the presence of additional polymeric stabilizing agent. Next, such features of obtained suspensions of nanoparticles as total antioxidant activity as well as content of phenolic compounds have been characterized. First of the mentioned studies involved the reaction with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical. The content of phenolic compounds was determined using Folin-Ciocalteu technique. Furthermore, an essential issue was also the determining of the stability of formed suspensions of nanoparticles. Conclusions: In the research it was demonstrated that metallic nanoparticles may be obtained using plant extracts or infusions as stabilizing or reducing agent. The methodology applied, i.e. a type of plant extract used during the synthesis, had an impact on the content of phenolic compounds as well as on the size and polydispersity of obtained nanoparticles. What is more, it is possible to prepare nano-size particles that will be characterized by properties desirable from the viewpoint of their potential application and such an effect may be achieved with the use of non-toxic reagents of natural origin. Furthermore, proposed methodology stays in line with the principles of green chemistry.Keywords: green chemistry principles, metallic nanoparticles, plant extracts, stabilization of nanoparticles
Procedia PDF Downloads 1257120 Species Selection for Phytoremediation of Barium Polluted Flooded Soils
Authors: Fabio R. Pires, Paulo R. C. C. Ribeiro, Douglas G. Viana, Robson Bonomo, Fernando B. Egreja Filho, Alberto Cargnelutti Filho, Luiz F. Martins, Leila B. S. Cruz, Mauro C. P. Nascimento
Abstract:
The use of barite (BaSO₄) as a weighting agent in drilling fluids for oil and gas activities makes barium a potential contaminant in the case of spills onto flooded soils, where barium sulfate solubility is increased due to low redox conditions. In order to select plants able to remove barium in such scenarios, seven plant species were evaluated on barium phytoextraction capacity: Brachiaria arrecta; Cyperus cf. papyrus; Eleocharis acutangula; Eleocharis interstincta; Nephrolepsis cf. rivularis; Paspalum conspersum and Typha domingensis. Plants were grown in pots with 13 kg of soil each, and exposed to six barium concentrations (established with BaCl₂): 0; 2.5; 5.0; 10.0; 30.0; 65.0 mg kg-1. To simulate flooding conditions, every pot was manteined with a thin irrigation water depth over soil surface (~1.0 cm). Treatments were carried out in triplicate, and pots were distributed randomly inside the greenhouse. Biometric and chemical analyses were performed throughout the experiment, including Ba²⁺ accumulation in shoots and roots. The highest amount of barium was observed in T. domingensis biomass, followed by C. cf. papyrus. However, the latter exported most of the barium to shoot, especially in higher BaCl₂ doses, while the former accumulated barium preferentially in roots. Thus, barium removal with C. cf. papyrus could be achieved by simply harvesting aerial biomass. The amount of barium in C. cf. papyrus was a consequence of high biomass production rather than barium concentration in plant tissues, whereas T. domingensis showed high barium concentration in plant tissues and high biomass production as well. These results make T. domingensis and C. cf. papyrus potential candidates to be applied in phytoremediation schemes to remove barium from flooded soils.Keywords: barium sulfate, cyperus, drilling fluids, phytoextraction, Typha
Procedia PDF Downloads 2727119 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment
Authors: Arindam Chaudhuri
Abstract:
Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.Keywords: FRSVM, Hadoop, MapReduce, PFRSVM
Procedia PDF Downloads 4907118 2016 Taiwan's 'Health and Physical Education Field of 12-Year Basic Education Curriculum Outline (Draft)' Reform and Its Implications
Authors: Hai Zeng, Yisheng Li, Jincheng Huang, Chenghui Huang, Ying Zhang
Abstract:
Children are strong; the country strong, the development of children Basketball is a strategic advantage. Common forms of basketball equipment has been difficult to meet the needs of young children teaching the game of basketball, basketball development for 3-6 years old children in the form of appropriate teaching aids is a breakthrough basketball game teaching children bottlenecks, improve teaching critical path pleasure, but also the development of early childhood basketball a necessary requirement. In this study, literature, questionnaires, focus group interviews, comparative analysis, for domestic and foreign use of 12 kinds of basketball teaching aids (cloud computing MINI basketball, adjustable basketball MINI, MINI basketball court, shooting assist paw print ball, dribble goggles, dribbling machine, machine cartoon shooting, rebounding machine, against the mat, elastic belt, ladder, fitness ball), from fun and improve early childhood shooting technique, dribbling technology, as well as offensive and defensive rebounding against technology conduct research on conversion technology. The results show that by using appropriate forms of teaching children basketball aids, can effectively improve children's fun basketball game, targeted to improve a technology, different types of aids from different perspectives enrich the connotation of children basketball game. Recommended for children of color psychology, cartoon and environmentally friendly material production aids, and increase research efforts basketball aids children, encourage children to sports teachers aids applications.Keywords: health and physical education field of curriculum outline, health fitness, sports and health curriculum reform, Taiwan, twelve years basic education
Procedia PDF Downloads 393