Search results for: forest cover-type dataset
163 Unravelling Green Entrepreneurial: Insights From a Hybrid Systematic Review
Authors: Shivani, Seema Sharma, Shveta Singh, Akriti Chandra
Abstract:
Business activities contribute to various environmental issues such as deforestation, waste generation, and pollution. Therefore, integration of environmental concerns within manufacturing operations is vital for the long-term survival of businesses. In this context, green entrepreneurial orientation (GEO) is recognized as a firm-level internal strategy to mitigate ecological damage through initiating green business practices. However, despite the surge in research on GEO in recent years, ambiguity remains on the genesis of GEO and the mechanism through which GEO impacts various organizational outcomes. This prompts an examination of the ongoing scholarly discourse about GEO and its domain knowledge structure within the entrepreneurship literature using bibliometric analysis and the Theories, Contexts, Characteristics, and Methodologies (TCCM) framework. The authors analyzed a dataset comprising 73 scientific documents sourced from the Scopus and Web of Science database from 2005 to 2024 to provide insights into the publication trends, prominent journals, authors, articles, countries' collaboration, and keyword analysis in GEO research. The findings indicate that the number of relevant papers and citations has increased consistently, with authors from China being the main contributors. The articles are mainly published in Business Strategy and the Environment and Sustainability. Dynamic capability view is the dominant framework applied in the GEO domain, with large manufacturing firms and SMEs constituting the majority of the sample. Further, various antecedents of GEO have been identified at an organizational level to which managers can focus their attention. The studies have used various contextual factors to explain when GEO translates into superior organizational outcomes. The Method analysis reveals that PLS-SEM is the commonly used approach for analyzing the primary data collected through surveys. Moreover, the content analysis indicates four emerging research frontiers identified as unidimensional vs. multidimensional perspectives of GEO, typologies of green innovation, environmental management in the hospitality industry, and tech-savvy sustainability in the agriculture sector. This study is one of the earliest to apply quantitative methods to synthesize the extant literature on GEO. This research holds relevance for management practice due to the escalating levels of carbon emissions, energy consumption, and waste discharges observed in recent years, resulting in increased apprehension about climate change.Keywords: green entrepreneurship, sustainability, SLR, TCCM
Procedia PDF Downloads 13162 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 255161 Sustainable Harvesting, Conservation and Analysis of Genetic Diversity in Polygonatum Verticillatum Linn.
Authors: Anchal Rana
Abstract:
Indian Himalayas with their diverse climatic conditions are home to many rare and endangered medicinal flora. One such species is Polygonatum verticillatum Linn., popularly known as King Solomon’s Seal or Solomon’s Seal. Its mention as an incredible medicinal herb comes from 5000 years ago in Indian Materia Medica as a component of Ashtavarga, a poly-herbal formulation comprising of eight herbs illustrated as world’s first ever revitalizing and rejuvenating nutraceutical food, which is now commercialised in the name ‘Chaywanprash’. It is an erect tall (60 to 120 cm) perennial herb with sessile, linear leaves and white pendulous flowers. The species grows well in an altitude range of 1600 to 3600 m amsl, and propagates mostly through rhizomes. The rhizomes are potential source for significant phytochemicals like flavonoids, phenolics, lectins, terpenoids, allantoin, diosgenin, β-Sitosterol and quinine. The presence of such phytochemicals makes the species an asset for antioxidant, cardiotonic, demulcent, diuretic, energizer, emollient, aphrodisiac, appetizer, glactagogue, etc. properties. Having profound concentrations of macro and micronutrients, species has fine prospects of being used as a diet supplement. However, due to unscientific and gregarious uprooting, it has been assigned a status of ‘vulnerable’ and ‘endangered’ in the Conservation Assessment and Management Plan (CAMP) process conducted by Foundation for Revitalisation of Local Health Traditions (FRLHT) during 2010, according to IUCN Red-List Criteria. Further, destructive harvesting, land use disturbances, heavy livestock grazing, climatic changes and habitat fragmentation have substantially contributed towards anomaly of the species. It, therefore, became imperative to conserve the diversity of the species and make judicious use in future research and commercial programme and schemes. A Gene Bank was therefore established at High Altitude Herbal Garden of the Forest Research Institute, Dehradun, India situated at Chakarata (30042’52.99’’N, 77051’36.77’’E, 2205 m amsl) consisting 149 accessions collected from thirty-one geographical locations spread over three Himalayan States of Jammu and Kashmir, Himachal Pradesh, and Uttarakhand. The present investigations purport towards sampling and collection of divergent germplasm followed by planting and cultivation techniques. The ultimate aim is thereby focussed on analysing genetic diversity of the species and capturing promising genotypes for carrying out further genetic improvement programme so to contribute towards sustainable development and healthcare.Keywords: Polygonatum verticillatum Linn., phytochemicals, genetic diversity, conservation, gene bank
Procedia PDF Downloads 173160 Evaluation of Soil Erosion Risk and Prioritization for Implementation of Management Strategies in Morocco
Authors: Lahcen Daoudi, Fatima Zahra Omdi, Abldelali Gourfi
Abstract:
In Morocco, as in most Mediterranean countries, water scarcity is a common situation because of low and unevenly distributed rainfall. The expansions of irrigated lands, as well as the growth of urban and industrial areas and tourist resorts, contribute to an increase of water demand. Therefore in the 1960s Morocco embarked on an ambitious program to increase the number of dams to boost water retention capacity. However, the decrease in the capacity of these reservoirs caused by sedimentation is a major problem; it is estimated at 75 million m3/year. Dams and reservoirs became unusable for their intended purposes due to sedimentation in large rivers that result from soil erosion. Soil erosion presents an important driving force in the process affecting the landscape. It has become one of the most serious environmental problems that raised much interest throughout the world. Monitoring soil erosion risk is an important part of soil conservation practices. The estimation of soil loss risk is the first step for a successful control of water erosion. The aim of this study is to estimate the soil loss risk and its spatial distribution in the different fields of Morocco and to prioritize areas for soil conservation interventions. The approach followed is the Revised Universal Soil Loss Equation (RUSLE) using remote sensing and GIS, which is the most popular empirically based model used globally for erosion prediction and control. This model has been tested in many agricultural watersheds in the world, particularly for large-scale basins due to the simplicity of the model formulation and easy availability of the dataset. The spatial distribution of the annual soil loss was elaborated by the combination of several factors: rainfall erosivity, soil erodability, topography, and land cover. The average annual soil loss estimated in several basins watershed of Morocco varies from 0 to 50t/ha/year. Watersheds characterized by high-erosion-vulnerability are located in the North (Rif Mountains) and more particularly in the Central part of Morocco (High Atlas Mountains). This variation of vulnerability is highly correlated to slope variation which indicates that the topography factor is the main agent of soil erosion within these basin catchments. These results could be helpful for the planning of natural resources management and for implementing sustainable long-term management strategies which are necessary for soil conservation and for increasing over the projected economic life of the dam implemented.Keywords: soil loss, RUSLE, GIS-remote sensing, watershed, Morocco
Procedia PDF Downloads 464159 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 122158 Deep Learning for Image Correction in Sparse-View Computed Tomography
Authors: Shubham Gogri, Lucia Florescu
Abstract:
Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net
Procedia PDF Downloads 164157 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 138156 Characterization of Mycoplasma Pneumoniae Causing Exacerbation of Asthma: A Prototypical Finding from Sri Lanka
Authors: Lakmini Wijesooriya, Vicki Chalker, Jessica Day, Priyantha Perera, N. P. Sunil-Chandra
Abstract:
M. pneumoniae has been identified as an etiology for exacerbation of asthma (EQA), although viruses play a major role in EOA. M. pneumoniae infection is treated empirically with macrolides, and its antibiotic sensitivity is not detected routinely. Characterization of the organism by genotyping and determination of macrolide resistance is important epidemiologically as it guides the empiric antibiotic treatment. To date, there is no such characterization of M. pneumoniae performed in Sri Lanka. The present study describes the characterization of M. pneumoniae detected from a child with EOA following a screening of 100 children with EOA. Of the hundred children with EOA, M. pneumoniae was identified only in one child by Real-Time polymerase chain reaction (PCR) test for identifying the community-acquired respiratory distress syndrome (CARDS) toxin nucleotide sequences. The M. pneumoniae identified from this patient underwent detection of macrolide resistance via conventional PCR, amplifying and sequencing the region of the 23S rDNA gene that contains single nucleotide polymorphisms that confer resistance. Genotyping of the isolate was performed via nested Multilocus Sequence Typing (MLST) in which eight (8) housekeeping genes (ppa, pgm, gyrB, gmk, glyA, atpA, arcC, and adk) were amplified via nested PCR followed by gene sequencing and analysis. As per MLST analysis, the M. pneumoniae was identified as sequence type 14 (ST14), and no mutations that confer resistance were detected. Resistance to macrolides in M. pneumoniae is an increasing problem globally. Establishing surveillance systems is the key to informing local prescriptions. In the absence of local surveillance data, antibiotics are started empirically. If the relevant microbiological samples are not obtained before antibiotic therapy, as in most occasions in children, the course of antibiotic is completed without a microbiological diagnosis. This happens more frequently in therapy for M. pneumoniae which is treated with a macrolide in most patients. Hence, it is important to understand the macrolide sensitivity of M. pneumoniae in the setting. The M. pneumoniae detected in the present study was macrolide sensitive. Further studies are needed to examine a larger dataset in Sri Lanka to determine macrolide resistance levels to inform the use of macrolides in children with EOA. The MLST type varies in different geographical settings, and it also provides a clue to the existence of macrolide resistance. The present study enhances the database of the global distribution of different genotypes of M. pneumoniae as this is the first such characterization performed with the increased number of samples to determine macrolide resistance level in Sri Lanka. M. pneumoniae detected from a child with exacerbation of asthma in Sri Lanka was characterized as ST14 by MLST and no mutations that confer resistance were detected.Keywords: mycoplasma pneumoniae, Sri Lanka, characterization, macrolide resistance
Procedia PDF Downloads 187155 A Narrative Inquiry of Identity Formation of Chinese Fashion Designers
Authors: Lily Ye
Abstract:
The contemporary fashion industry has witnessed the global rise of Chinese fashion designers. China plays more and more important role in this sector globally. One of the key debates in contemporary time is the conception of Chinese fashion. A close look at previous discussions on Chinese fashion reveals that most of them are explored through the lens of cultural knowledge and assumptions, using the dichotomous models of East and West. The results of these studies generate an essentialist and orientalist notion of Chinoiserie and Chinese fashion, which sees individual designers from China as undifferential collective members marked by a unique and fixed set of cultural scripts. This study challenges this essentialist conceptualization and brings fresh insights to the discussion of Chinese fashion identity against the backdrop of globalisation. Different from a culturalist approach to researching Chinese fashion, this paper presents an alternative position to address the research agenda through the mobilisation of Giddens’ (1991) theory of reflexive identity formation, privileging individuals’ agency and reflexivity. This approach to the discussion of identity formation not only challenges the traditional view seeing identity as the distinctive and essential characteristics belonging to any given individual or shared by all members of a particular social category or group but highlights fashion designers’ strategic agency and their role as fashion activist. This study draws evidence from a textual analysis of published stories of a group of established Chinese designers such as Guo Pei, Huishan Zhang, Masha Ma, Uma Wang, and Ma Ke. In line with Giddens’ concept of 'reflexive project of the self', this study uses a narrative methodology. Narratives are verbal accounts or stories relating to experiences of Chinese fashion designers. This approach offers the fashion designers a chance to 'speak' for themselves and show the depths and complexities of their experiences. It also emphasises the nuances of identity formation in fashion designers, whose experiences cannot be captured in neat typologies. Thematic analysis (Braun and Clarke, 2006) is adopted to identify and investigate common themes across the whole dataset. At the centre of the analysis is individuals’ self-articulation of their perceptions, experiences and themselves in relation to culture, fashion and identity. The finding indicates that identity is constructed around anchors such as agency, cultural hybridity, reflexivity and sustainability rather than traditional collective categories such as culture and ethnicity. Thus, the old East-West dichotomy is broken down, and essentialised social categories are challenged by the multiplicity and fragmentation of self and cultural hybridity created within designers’ 'small narratives'.Keywords: Chinoiserie, fashion identity, fashion activism, narrative inquiry
Procedia PDF Downloads 294154 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery
Authors: Marlin Mubarak
Abstract:
Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.
Procedia PDF Downloads 354153 Managing Climate Change: Vulnerability Reduction or Resilience Building
Authors: Md Kamrul Hassan
Abstract:
Adaptation interventions are the common response to manage the vulnerabilities of climate change. The nature of adaptation intervention depends on the degree of vulnerability and the capacity of a society. The coping interventions can take the form of hard adaptation – utilising technologies and capital goods like dykes, embankments, seawalls, and/or soft adaptation – engaging knowledge and information sharing, capacity building, policy and strategy development, and innovation. Hard adaptation is quite capital intensive but provides immediate relief from climate change vulnerabilities. This type of adaptation is not real development, as the investment for the adaptation cannot improve the performance – just maintain the status quo of a social or ecological system, and often lead to maladaptation in the long-term. Maladaptation creates a two-way loss for a society – interventions bring further vulnerability on top of the existing vulnerability and investment for getting rid of the consequence of interventions. Hard adaptation is popular to the vulnerable groups, but it focuses so much on the immediate solution and often ignores the environmental issues and future risks of climate change. On the other hand, soft adaptation is education oriented where vulnerable groups learn how to live with climate change impacts. Soft adaptation interventions build the capacity of vulnerable groups through training, innovation, and support, which might enhance the resilience of a system. In consideration of long-term sustainability, soft adaptation can contribute more to resilience than hard adaptation. Taking a developing society as the study context, this study aims to investigate and understand the effectiveness of the adaptation interventions of the coastal community of Sundarbans mangrove forest in Bangladesh. Applying semi-structured interviews with a range of Sundarbans stakeholders including community residents, tourism demand-supply side stakeholders, and conservation and management agencies (e.g., Government, NGOs and international agencies) and document analysis, this paper reports several key insights regarding climate change adaptation. Firstly, while adaptation interventions may offer a short-term to medium-term solution to climate change vulnerabilities, interventions need to be revised for long-term sustainability. Secondly, soft adaptation offers advantages in terms of resilience in a rapidly changing environment, as it is flexible and dynamic. Thirdly, there is a challenge to communicate to educate vulnerable groups to understand more about the future effects of hard adaptation interventions (and the potential for maladaptation). Fourthly, hard adaptation can be used if the interventions do not degrade the environmental balance and if the investment of interventions does not exceed the economic benefit of the interventions. Overall, the goal of an adaptation intervention should be to enhance the resilience of a social or ecological system so that the system can with stand present vulnerabilities and future risks. In order to be sustainable, adaptation interventions should be designed in such way that those can address vulnerabilities and risks of climate change in a long-term timeframe.Keywords: adaptation, climate change, maladaptation, resilience, Sundarbans, sustainability, vulnerability
Procedia PDF Downloads 194152 A Quantitative Analysis of Rural to Urban Migration in Morocco
Authors: Donald Wright
Abstract:
The ultimate goal of this study is to reinvigorate the philosophical underpinnings the study of urbanization with scientific data with the goal of circumventing what seems an inevitable future clash between rural and urban populations. To that end urban infrastructure must be sustainable economically, politically and ecologically over the course of several generations as cities continue to grow with the incorporation of climate refugees. Our research will provide data concerning the projected increase in population over the coming two decades in Morocco, and the population will shift from rural areas to urban centers during that period of time. As a result, urban infrastructure will need to be adapted, developed or built to fit the demand of future internal migrations from rural to urban centers in Morocco. This paper will also examine how past experiences of internally displaced people give insight into the challenges faced by future migrants and, beyond the gathering of data, how people react to internal migration. This study employs four different sets of research tools. First, a large part of this study is archival, which involves compiling the relevant literature on the topic and its complex history. This step also includes gathering data bout migrations in Morocco from public data sources. Once the datasets are collected, the next part of the project involves populating the attribute fields and preprocessing the data to make it understandable and usable by machine learning algorithms. In tandem with the mathematical interpretation of data and projected migrations, this study benefits from a theoretical understanding of the critical apparatus existing around urban development of the 20th and 21st centuries that give us insight into past infrastructure development and the rationale behind it. Once the data is ready to be analyzed, different machine learning algorithms will be experimented (k-clustering, support vector regression, random forest analysis) and the results compared for visualization of the data. The final computational part of this study involves analyzing the data and determining what we can learn from it. This paper helps us to understand future trends of population movements within and between regions of North Africa, which will have an impact on various sectors such as urban development, food distribution and water purification, not to mention the creation of public policy in the countries of this region. One of the strengths of this project is the multi-pronged and cross-disciplinary methodology to the research question, which enables an interchange of knowledge and experiences to facilitate innovative solutions to this complex problem. Multiple and diverse intersecting viewpoints allow an exchange of methodological models that provide fresh and informed interpretations of otherwise objective data.Keywords: climate change, machine learning, migration, Morocco, urban development
Procedia PDF Downloads 155151 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID
Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis
Abstract:
Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.Keywords: artificial intelligence, COVID, neural network, machine learning
Procedia PDF Downloads 94150 Investigation into the Socio-ecological Impact of Migration of Fulani Herders in Anambra State of Nigeria Through a Climate Justice Lens
Authors: Anselm Ego Onyimonyi, Maduako Johnpaul O.
Abstract:
The study was designed to investigate into the socio-ecological impact of migration of Fulani herders in Anambra state of Nigeria, through a climate justice lens. Nigeria is one of the world’s most densely populated countries with a population of over 284 million people, half of which are considered to be in abject poverty. There is no doubt that livestock production provides sustainable contributions to food security and poverty reduction to Nigeria economy, but not without some environmental implications like any other economic activities. Nigeria is recognized as being vulnerable to climate change. Climate change and global warming if left unchecked will cause adverse effects on livelihoods in Nigeria, such as livestock production, crop production, fisheries, forestry and post-harvest activities, because the rainfall regimes and patterns will be altered, floods which devastate farmlands would occur, increase in temperature and humidity which increases pest and disease would occur and other natural disasters like desertification, drought, floods, ocean and storm surges, which not only damage Nigerians’ livelihood but also cause harm to life and property, would occur. This and other climatic issue as it affects Fulani herdsmen was what this study investigated. In carrying out this research, a survey research design was adopted. A simple sampling technique was used. One local government area (LGA) was selected purposively from each of the four agricultural zone in the state based on its predominance of Fulani herders. For appropriate sampling, 25 respondents from each of the four Agricultural zones in the state were randomly selected making up the 100 respondent being sampled. Primary data were generated by using a set of structured 5-likert scale questionnaire. Data generated were analyzed using SPSS and the result presented using descriptive statistics. From the data analyzed, the study indentified; Unpredicted rainfall (mean = 3.56), Forest fire (mean = 4.63), Drying Water Source (mean = 3.99), Dwindling Grazing (mean 4.43), Desertification (mean = 4.44), Fertile land scarcity (mean = 3.42) as major factor predisposing Fulani herders to migrate southward while rejecting Natural inclination to migrate (mean = 2.38) and migration to cause trouble as a factor. On the reason why Fulani herders are trying to establish a permanent camp in Anambra state; Moderate temperature (mean= 3.60), Avoiding overgrazing (4.42), Search for fodder and water (mean = 4.81) and (mean = 4.70) respectively, Need for market (4.28), Favorable environment (mean = 3.99) and Access to fertile land (3.96) were identified. It was concluded that changing climatic variables necessitated the migration of herders from Northern Nigeria to areas in the South were the variables are most favorable to the herders and their animals.Keywords: socio-ecological, migration, fulani, climate, justice, lens
Procedia PDF Downloads 47149 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling
Authors: Vibha Devi, Shabina Khanam
Abstract:
Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation
Procedia PDF Downloads 141148 Detailed Ichnofacies and Sedimentological Analysis of the Cambrian Succession (Tal Group) of the Nigalidhar Syncline, Lesser Himalaya, India and the Interpretation of Its Palaeoenvironment
Authors: C. A. Sharma, Birendra P. Singh
Abstract:
Ichnofacies analysis is considered the best paleontological tool for interpreting ancient depositional environments. Nineteen (19) ichnogenera (namely: Bergaueria, Catenichnus, Cochlichnus, Cruziana, Diplichnites, Dimorphichnus, Diplocraterion, Gordia, Guanshanichnus, Lockeia, Merostomichnites, Monomorphichnus, Palaeophycus, Phycodes, Planolites, Psammichnites, Rusophycus, Skolithos and Treptichnus) are recocered from the Tal Group (Cambrian) of the Nigalidhar Syncline. The stratigraphic occurrences of these ichnogenera represent alternating proximal Cruziana and Skolithos ichnofacies along the contact of Sankholi and Koti-Dhaman formations of the Tal Group. Five ichnogenera namely Catenichnus, Guanshanichnus, Lockeia, Merostomichnites and Psammichnites are recorded for the first time from the Nigalidhar Syncline. Cruziana ichnofacies is found in the upper part of the Sankholi Formation to the lower part of the Koti Dhaman Formation in the NigaliDhar Syncline. The preservational characters here indicate a subtidal environmental condition with poorly sorted, unconsolidated substrate. Depositional condition ranging from moderate to high energy levels below the fair weather base but above the storm wave base under nearshore to foreshore setting in a wave dominated shallow water environment is also indicated. The proximal Cruziana-ichnofacies is interrupted by the Skolithos ichnofacies in the Tal Group of the Nigalidhar Syncline which indicate fluctuating high energy condition which was unfavorable for the opportunistic organism which were dominant during the proximal Cruziana ichnofacies. The excursion of Skolithos ichnofacies (as a pipe rock in the upper part of Sankholi Formation) into the proximal Cruziana ichnofacies in the Tal Group indicate that increased energy and allied parameters attributed to the high rate of sedimentation near the proximal part of the basin. The level bearing the Skolithos ichnofacies in the Nigalidhar Syncline at the juncture of Sankholi and Koti-Dhaman formations can be correlated to the level marked as unconformity in between the Deo-Ka-Tibba and the Dhaulagiri formations by the conglomeratic horizon in the Mussoorie Syncline, Lesser Himalaya, India. Thus, the Tal Group of the Nigalidhar syncline at this stratigraphic level represent slightly deeper water condition than the Mussoorie Syncline, where in the later the aerial exposure dominated which leads to the deposition of conglomeratic horizon and subsequent formation of unconformity. The overall ichnological and sedimentological dataset allow us to infer that the Cambrian successions of Nigalidhar Syncline were deposited in a wave-dominated proximal part of the basin under the foreshore to close to upper shoreface regimes of the shallow marine setting.Keywords: Cambrian, Ichnofacies, Lesser Himalaya, Nigalidhar, Tal Group
Procedia PDF Downloads 259147 Sustainability of the Built Environment of Ranchi District
Authors: Vaidehi Raipat
Abstract:
A city is an expression of coexistence between its users and built environment. The way in which its spaces are animated signify the quality of this coexistence. Urban sustainability is the ability of a city to respond efficiently towards its people, culture, environment, visual image, history, visions and identity. The quality of built environment determines the quality of our lifestyles, but poor ability of the built environment to adapt and sustain itself through the changes leads to degradation of cities. Ranchi was created in November 2000, as the capital of the newly formed state Jharkhand, located on eastern side of India. Before this Ranchi was known as summer capital of Bihar and was a little larger than a town in terms of development. But since then it has been vigorously expanding in size, infrastructure as well as population. This sudden expansion has created a stress on existing built environment. The large forest covers, agricultural land, diverse culture and pleasant climatic conditions have degraded and decreased to a large extent. Narrow roads and old buildings are unable to bear the load of the changing requirements, fast improving technology and growing population. The built environment has hence been rendered unsustainable and unadaptable through fastidious changes of present era. Some of the common hazards that can be easily spotted in the built environment are half-finished built forms, pedestrians and vehicles moving on the same part of the road. Unpaved areas on street edges. Over-sized, bright and randomly placed hoardings. Negligible trees or green spaces. The old buildings have been poorly maintained and the new ones are being constructed over them. Roads are too narrow to cater to the increasing traffic, both pedestrian and vehicular. The streets have a large variety of activities taking place on them, but haphazardly. Trees are being cut down for road widening and new constructions. There is no space for greenery in the commercial as well as old residential areas. The old infrastructure is deteriorating because of poor maintenance and the economic limitations. Pseudo understanding of functionality as well as aesthetics drive the new infrastructure. It is hence necessary to evaluate the extent of sustainability of existing built environment of the city and create or regenerate the existing built environment into a more sustainable and adaptable one. For this purpose, research titled “Sustainability of the Built Environment of Ranchi District” has been carried out. In this research the condition of the built environment of Ranchi are explored so as to figure out the problems and shortcomings existing in the city and provide for design strategies that can make the existing built-environment sustainable. The built environment of Ranchi that include its outdoor spaces like streets, parks, other open areas, its built forms as well as its users, has been analyzed in terms of various urban design parameters. Based on which strategies have been suggested to make the city environmentally, socially, culturally and economically sustainable.Keywords: adaptable, built-environment, sustainability, urban
Procedia PDF Downloads 237146 Unequal Traveling: How School District System and School District Housing Characteristics Shape the Duration of Families Commuting
Authors: Geyang Xia
Abstract:
In many countries, governments have responded to the growing demand for educational resources through school district systems, and there is substantial evidence that school district systems have been effective in promoting inter-district and inter-school equity in educational resources. However, the scarcity of quality educational resources has brought about varying levels of education among different school districts, making it a common choice for many parents to buy a house in the school district where a quality school is located, and they are even willing to bear huge commuting costs for this purpose. Moreover, this is evidenced by the fact that parents of families in school districts with quality education resources have longer average commute lengths and longer average commute distances than parents in average school districts. This "unequal traveling" under the influence of the school district system is more common in school districts at the primary level of education. This further reinforces the differential hierarchy of educational resources and raises issues of inequitable educational public services, education-led residential segregation, and gentrification of school district housing. Against this background, this paper takes Nanjing, a famous educational city in China, as a case study and selects the school districts where the top 10 public elementary schools are located. The study first identifies the spatio-temporal behavioral trajectory dataset of these high-quality school district households by using spatial vector data, decrypted cell phone signaling data, and census data. Then, by constructing a "house-school-work (HSW)" commuting pattern of the population in the school district where the high-quality educational resources are located, and based on the classification of the HSW commuting pattern of the population, school districts with long employment hours were identified. Ultimately, the mechanisms and patterns inherent in this unequal commuting are analyzed in terms of six aspects, including the centrality of school district location, functional diversity, and accessibility. The results reveal that the "unequal commuting" of Nanjing's high-quality school districts under the influence of the school district system occurs mainly in the peripheral areas of the city, and the schools matched with these high-quality school districts are mostly branches of prestigious schools in the built-up areas of the city's core. At the same time, the centrality of school district location and the diversity of functions are the most important influencing factors of unequal commuting in high-quality school districts. Based on the research results, this paper proposes strategies to optimize the spatial layout of high-quality educational resources and corresponding transportation policy measures.Keywords: school-district system, high quality school district, commuting pattern, unequal traveling
Procedia PDF Downloads 99145 Rediscovering English for Academic Purposes in the Context of the UN’s Sustainable Developmental Goals
Authors: Sally Abu Sabaa, Lindsey Gutt
Abstract:
In an attempt to use education as a way of raising a socially responsible and engaged global citizen, the YU-Bridge program, the largest and fastest pathway program of its kind in North America, has embarked on the journey of integrating general themes from the UN’s sustainable developmental goals (SDGs) in its English for Academic Purposes (EAP) curriculum. The purpose of this initiative was to redefine the general philosophy of education in the middle of a pandemic and align with York University’s University Academic Plan that was released in summer 2020 framed around the SDGs. The YUB program attracts international students from all over the world but mainly from China, and its goal is to enable students to achieve the minimum language requirement to join their undergraduate courses at York University. However, along with measuring outcomes, objectives, and the students’ GPA, instructors and academics are always seeking innovation of the YUB curriculum to adapt to the ever growing challenges of academics in the university context, in order to focus more on subject matter that students will be exposed to in their undergraduate studies. However, with the sudden change that has happened globally with the advance of the COVID-19 pandemic, and other natural disasters like the increase in forest fires and floods, rethinking the philosophy and goal of education was a must. Accordingly, the SDGs became the solid pillars upon which we, academics and administrators of the program, could build a new curriculum and shift our perspective from simply ESL education to education with moral and ethical goals. The preliminary implementation of this initiative was supported by an institutional-wide consultation with EAP instructors who have diverse experiences, disciplines, and interests. Along with brainstorming sessions and mini-pilot projects preceding the integration of the SDGs in the YUB-EAP curriculum, those meetings led to creating a general outline of a curriculum and an assessment framework that has the SDGs at its core with the medium of ESL used for language instruction. Accordingly, a community of knowledge exchange was spontaneously created and facilitated by instructors. This has led to knowledge, resources, and teaching pedagogies being shared and examined further. In addition, experiences and reactions of students are being shared, leading to constructive discussions about opportunities and challenges with the integration of the SDGs. The discussions have branched out to discussions about cultural and political barriers along with a thirst for knowledge and engagement, which has resulted in increased engagement not only on the part of the students but the instructors as well. Later in the program, two surveys will be conducted: one for the students and one for the instructors to measure the level of engagement of each in this initiative as well as to elicit suggestions for further development. This paper will describe this fundamental step into using ESL methodology as a mode of disseminating essential ethical and socially correct knowledge for all learners in the 21st Century, the students’ reactions, and the teachers’ involvement and reflections.Keywords: EAP, curriculum, education, global citizen
Procedia PDF Downloads 184144 Teaching Timber: The Role of the Architectural Student and Studio Course within an Interdisciplinary Research Project
Authors: Catherine Sunter, Marius Nygaard, Lars Hamran, Børre Skodvin, Ute Groba
Abstract:
Globally, the construction and operation of buildings contribute up to 30% of annual green house gas emissions. In addition, the building sector is responsible for approximately a third of global waste. In this context, the utilization of renewable resources in buildings, especially materials that store carbon, will play a significant role in the growing city. These are two reasons for introducing wood as a building material with a growing relevance. A third is the potential economic value in countries with a forest industry that is not currently used to capacity. In 2013, a four-year interdisciplinary research project titled “Wood Be Better” was created, with the principle goal to produce and publicise knowledge that would facilitate increased use of wood in buildings in urban areas. The research team consisted of architects, engineers, wood technologists and mycologists, both from research institutions and industrial organisations. Five structured work packages were included in the initial research proposal. Work package 2 was titled “Design-based research” and proposed using architecture master courses as laboratories for systematic architectural exploration. The aim was twofold: to provide students with an interdisciplinary team of experts from consultancies and producers, as well as teachers and researchers, that could offer the latest information on wood technologies; whilst at the same time having the studio course test the effects of the use of wood on the functional, technical and tectonic quality within different architectural projects on an urban scale, providing results that could be fed back into the research material. The aim of this article is to examine the successes and failures of this pedagogical approach in an architecture school, as well as the opportunities for greater integration between academic research projects, industry experts and studio courses in the future. This will be done through a set of qualitative interviews with researchers, teaching staff and students of the studio courses held each semester since spring 2013. These will investigate the value of the various experts of the course; the different themes of each course; the response to the urban scale, architectural form and construction detail; the effect of working with the goals of a research project; and the value of the studio projects to the research. In addition, six sample projects will be presented as case studies. These will show how the projects related to the research and could be collected and further analysed, innovative solutions that were developed during the course, different architectural expressions that were enabled by timber, and how projects were used as an interdisciplinary testing ground for integrated architectural and engineering solutions between the participating institutions. The conclusion will reflect on the original intentions of the studio courses, the opportunities and challenges faced by students, researchers and teachers, the educational implications, and on the transparent and inclusive discourse between the architectural researcher, the architecture student and the interdisciplinary experts.Keywords: architecture, interdisciplinary, research, studio, students, wood
Procedia PDF Downloads 312143 Principal Well-Being at Hong Kong: A Quantitative Investigation
Authors: Junjun Chen, Yingxiu Li
Abstract:
The occupational well-being of school principals has played a vital role in the pursuit of individual and school wellness and success. However, principals’ well-being worldwide is under increasing threat because of the challenging and complex nature of their work and growing demands for school standardisation and accountability. Pressure is particularly acute in the post-pandemicfuture as principals attempt to deal with the impact of the pandemic on top of more regular demands. This is particularly true in Hong Kong, as school principals are increasingly wedged between unparalleled political, social, and academic responsibilities. Recognizing the semantic breadth of well-being, scholars have not determined a single, mutually agreeable definition but agreed that the concept of well-being has multiple dimensions across various disciplines. The multidimensional approach promises more precise assessments of the relationships between well-being and other concepts than the ‘affect-only’ approach or other single domains for capturing the essence of principal well-being. The multiple-dimension well-being concept is adopted in this project to understand principal well-being in this study. This study aimed to understand the situation of principal well-being and its influential drivers with a sample of 670 principals from Hong Kong and Mainland China. An online survey was sent to the participants after the breakout of COVID-19 by the researchers. All participants were well informed about the purposes and procedure of the project and the confidentiality of the data prior to filling in the questionnaire. Confirmatory factor analysis and structural equation modelling performed with Mplus were employed to deal with the dataset. The data analysis procedure involved the following three steps. First, the descriptive statistics (e.g., mean and standard deviation) were calculated. Second, confirmatory factor analysis (CFA) was used to trim principal well-being measurement performed with maximum likelihood estimation. Third, structural equation modelling (SEM) was employed to test the influential factors of principal well-being. The results of this study indicated that the overall of principal well-being were above the average mean score. The highest ranking in this study given by the principals was to their psychological and social well-being (M = 5.21). This was followed by spiritual (M = 5.14; SD = .77), cognitive (M = 5.14; SD = .77), emotional (M = 4.96; SD = .79), and physical well-being (M = 3.15; SD = .73). Participants ranked their physical well-being the lowest. Moreover, professional autonomy, supervisor and collegial support, school physical conditions, professional networking, and social media have showed a significant impact on principal well-being. The findings of this study will potentially enhance not only principal well-being, but also the functioning of an individual principal and a school without sacrificing principal well-being for quality education in the process. This will eventually move one step forward for a new future - a wellness society advocated by OECD. Importantly, well-being is an inside job that begins with choosing to have wellness, whilst supports to become a wellness principal are also imperative.Keywords: well-being, school principals, quantitative, influential factors
Procedia PDF Downloads 83142 Understanding Evidence Dispersal Caused by the Effects of Using Unmanned Aerial Vehicles in Active Indoor Crime Scenes
Authors: Elizabeth Parrott, Harry Pointon, Frederic Bezombes, Heather Panter
Abstract:
Unmanned aerial vehicles (UAV’s) are making a profound effect within policing, forensic and fire service procedures worldwide. These intelligent devices have already proven useful in photographing and recording large-scale outdoor and indoor sites using orthomosaic and three-dimensional (3D) modelling techniques, for the purpose of capturing and recording sites during and post-incident. UAV’s are becoming an established tool as they are extending the reach of the photographer and offering new perspectives without the expense and restrictions of deploying full-scale aircraft. 3D reconstruction quality is directly linked to the resolution of captured images; therefore, close proximity flights are required for more detailed models. As technology advances deployment of UAVs in confined spaces is becoming more common. With this in mind, this study investigates the effects of UAV operation within active crimes scenes with regard to the dispersal of particulate evidence. To date, there has been little consideration given to the potential effects of using UAV’s within active crime scenes aside from a legislation point of view. Although potentially the technology can reduce the likelihood of contamination by replacing some of the roles of investigating practitioners. There is the risk of evidence dispersal caused by the effect of the strong airflow beneath the UAV, from the downwash of the propellers. The initial results of this study are therefore presented to determine the height of least effect at which to fly, and the commercial propeller type to choose to generate the smallest amount of disturbance from the dataset tested. In this study, a range of commercially available 4-inch propellers were chosen as a starting point due to the common availability and their small size makes them well suited for operation within confined spaces. To perform the testing, a rig was configured to support a single motor and propeller powered with a standalone mains power supply and controlled via a microcontroller. This was to mimic a complete throttle cycle and control the device to ensure repeatability. By removing the variances of battery packs and complex UAV structures to allow for a more robust setup. Therefore, the only changing factors were the propeller and operating height. The results were calculated via computer vision analysis of the recorded dispersal of the sample particles placed below the arm-mounted propeller. The aim of this initial study is to give practitioners an insight into the technology to use when operating within confined spaces as well as recognizing some of the issues caused by UAV’s within active crime scenes.Keywords: dispersal, evidence, propeller, UAV
Procedia PDF Downloads 163141 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm
Abstract:
Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension
Procedia PDF Downloads 101140 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging
Authors: Jiangbo Li, Wenqian Huang
Abstract:
Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging
Procedia PDF Downloads 304139 Learning to Translate by Learning to Communicate to an Entailment Classifier
Authors: Szymon Rutkowski, Tomasz Korbak
Abstract:
We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning
Procedia PDF Downloads 128138 Training for Safe Tree Felling in the Forest with Symmetrical Collaborative Virtual Reality
Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti
Abstract:
One of the most common pieces of equipment still used today for pruning, felling, and processing trees is the chainsaw in forestry. However, chainsaw use highlights dangers and one of the highest rates of accidents in both professional and non-professional work. Felling is proportionally the most dangerous phase, both in severity and frequency, because of the risk of being hit by the plant the operator wants to cut down. To avoid this, a correct sequence of chainsaw cuts must be taught concerning the different conditions of the tree. Virtual reality (VR) makes it possible to virtually simulate chainsaw use without danger of injury. The limitations of the existing applications are as follow. The existing platforms are not symmetrical collaborative because the trainee is only in virtual reality, and the trainer can only see the virtual environment on a laptop or PC, and this results in an inefficient teacher-learner relationship. Therefore, most applications only involve the use of a virtual chainsaw, and the trainee thus cannot feel the real weight and inertia of a real chainsaw. Finally, existing applications simulate only a few cases of tree felling. The objectives of this research were to implement and test a symmetrical collaborative training application based on VR and mixed reality (MR) with the overlap between real and virtual chainsaws in MR. The research and training platform was developed for the Meta quest 2 head-mounted display. The research and training platform application is based on the Unity 3D engine, and Present Platform Interaction SDK (PPI-SDK) developed by Meta. PPI-SDK avoids the use of controllers and enables hand tracking and MR. With the combination of these two technologies, it was possible to overlay a virtual chainsaw with a real chainsaw in MR and synchronize their movements in VR. This ensures that the user feels the weight of the actual chainsaw, tightens the muscles, and performs the appropriate movements during the test allowing the user to learn the correct body posture. The chainsaw works only if the right sequence of cuts is made to felling the tree. Contact detection is done by Unity's physics system, which allows the interaction of objects that simulate real-world behavior. Each cut of the chainsaw is defined by a so-called collider, and the felling of the tree can only occur if the colliders are activated in the right order simulating a safe technique felling. In this way, the user can learn how to use the chainsaw safely. The system is also multiplayer, so the student and the instructor can experience VR together in a symmetrical and collaborative way. The platform simulates the following tree-felling situations with safe techniques: cutting the tree tilted forward, cutting the medium-sized tree tilted backward, cutting the large tree tilted backward, sectioning the trunk on the ground, and cutting branches. The application is being evaluated on a sample of university students through a special questionnaire. The results are expected to test both the increase in learning compared to a theoretical lecture and the immersive and telepresence of the platform.Keywords: chainsaw, collaborative symmetric virtual reality, mixed reality, operator training
Procedia PDF Downloads 107137 Adding a Degree of Freedom to Opinion Dynamics Models
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 119136 Diversity of Rhopalocera in Different Vegetation Types of PC Hills, Philippines
Authors: Sean E. Gregory P. Igano, Ranz Brendan D. Gabor, Baron Arthur M. Cabalona, Numeriano Amer E. Gutierrez
Abstract:
Distribution patterns and abundance of butterflies respond in the long term to variations in habitat quality. Studying butterfly populations would give evidence on how vegetation types influence their diversity. In this research, the Rhopalocera diversity of PC Hills was assessed to provide information on diversity trends in varying vegetation types. PC Hills, located in Palo, Leyte, Philippines, is a relatively undisturbed area having forests and rivers. Despite being situated nearby inhabited villages; the area is observed to have a possible rich butterfly population. To assess the Rhopalocera species richness and diversity, transect sampling technique was applied to monitor and document butterflies. Transects were placed in locations that can be mapped, described and relocated easily. Three transects measuring three hundred meters each with a 5-meter diameter were established based on the different vegetation types present. The three main vegetation types identified were the agroecosystem (transect 1), dipterocarp forest (transect 2), and riparian (transect 3). Sample collections were done only from 9:00 A.M to 3:00 P.M. under warm and bright weather, with no more than moderate winds and when it was not raining. When weather conditions did not permit collection, it was moved to another day. A GPS receiver was used to record the location of the selected sample sites and the coordinates of where each sample was collected. Morphological analysis was done for the first phase of the study to identify the voucher specimen to the lowest taxonomic level possible using books about butterfly identification guides and species lists as references. For the second phase, DNA barcoding will be used to further identify the voucher specimen into the species taxonomic level. After eight (8) sampling sessions, seven hundred forty-two (742) individuals were seen, and twenty-two (22) Rhopalocera genera were identified through morphological identification. Nymphalidae family of genus Ypthima and the Pieridae family of genera Eurema and Leptosia were the most dominant species observed. Twenty (20) of the thirty-one (31) voucher specimen were already identified to their species taxonomic level using DNA Barcoding. Shannon-Weiner index showed that the highest diversity level was observed in the third transect (H’ = 2.947), followed by the second transect (H’ = 2.6317) and the lowest being in the first transect (H’ = 1.767). This indicates that butterflies are likely to inhabit dipterocarp and riparian vegetation types than agroecosystem, which influences their species composition and diversity. Moreover, the appearance of a river in the riparian vegetation supported its diversity value since butterflies have the tendency to fly into areas near rivers. Species identification of other voucher specimen will be done in order to compute the overall species richness in PC Hills. Further butterfly sampling sessions of PC Hills is recommended for a more reliable diversity trend and to discover more butterfly species. Expanding the research by assessing the Rhopalocera diversity in other locations should be considered along with studying factors that affect butterfly species composition other than vegetation types.Keywords: distribution patterns, DNA barcoding, morphological analysis, Rhopalocera
Procedia PDF Downloads 155135 Social Value of Travel Time Savings in Sub-Saharan Africa
Authors: Richard Sogah
Abstract:
The significance of transport infrastructure investments for economic growth and development has been central to the World Bank’s strategy for poverty reduction. Among the conventional surface transport infrastructures, road infrastructure is significant in facilitating the movement of human capital goods and services. When transport projects (i.e., roads, super-highways) are implemented, they come along with some negative social values (costs), such as increased noise and air pollution for local residents living near these facilities, displaced individuals, etc. However, these projects also facilitate better utilization of existing capital stock and generate other observable benefits that can be easily quantified. For example, the improvement or construction of roads creates employment, stimulates revenue generation (toll), reduces vehicle operating costs and accidents, increases accessibility, trade expansion, safety improvement, etc. Aside from these benefits, travel time savings (TTSs) which are the major economic benefits of urban and inter-urban transport projects and therefore integral in the economic assessment of transport projects, are often overlooked and omitted when estimating the benefits of transport projects, especially in developing countries. The absence of current and reliable domestic travel data and the inability of replicated models from the developed world to capture the actual value of travel time savings due to the large unemployment, underemployment, and other labor-induced distortions has contributed to the failure to assign value to travel time savings when estimating the benefits of transport schemes in developing countries. This omission of the value of travel time savings from the benefits of transport projects in developing countries poses problems for investors and stakeholders to either accept or dismiss projects based on schemes that favor reduced vehicular operating costs and other parameters rather than those that ease congestion, increase average speed, facilitate walking and handloading, and thus save travel time. Given the complex reality in the estimation of the value of travel time savings and the presence of widespread informal labour activities in Sub-Saharan Africa, we construct a “nationally ranked distribution of time values” and estimate the value of travel time savings based on the area beneath the distribution. Compared with other approaches, our method captures both formal sector workers and individuals/people who work outside the formal sector and hence changes in their time allocation occur in the informal economy and household production activities. The dataset for the estimations is sourced from the World Bank, the International Labour Organization, etc.Keywords: road infrastructure, transport projects, travel time savings, congestion, Sub-Sahara Africa
Procedia PDF Downloads 110134 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 269