Search results for: bipartite networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2826

Search results for: bipartite networks

936 Transnational Educators in Japan, Russia, and America: Historical Trends in Global Education in the 1990’s and Early 2000’s

Authors: Peter J. Glinos

Abstract:

The Alternative Education Resource Organization (AERO), one of the largest international hubs for alternative educators led by Jerry Mintz, has had a major impact on the global alternative education movement. The organization’s publications, like the AERO-Gramme Newsletter and its successor, the Education Revolution Magazine, allowed members across the globe to discuss issues, share support, and submit writings on policies and reforms. Stored on AERO's online digital archive, this work uses these publications from 1989 to 2011 to investigate the network's entanglements with America, Canada, Russia, Ukraine, Israel, Palestine, Japan, India, and Guatemala. Inspired by Reinhart Koselleck, this historical analysis will trace AERO’s entanglements within the United States, Japan, and Russia, contextualizing each of these multiple temporalities within the history of each nation’s education system, the developments within AERO, and the global geo-political climate at the time of AERO’s expansion. To help remedy the lack of attention paid by global historians to the role state organizations play supporting global networks, as noted in What is Global History? by Sebastian Conrad, this work will focus on the relationship between AERO and state actors.

Keywords: global history, history of education, neoliberalism, transnational history, alternative education

Procedia PDF Downloads 29
935 Enhancing Internet of Things Security: A Blockchain-Based Approach for Preventing Spoofing Attacks

Authors: Salha Abdullah Ali Al-Shamrani, Maha Muhammad Dhaher Aljuhani, Eman Ali Ahmed Aldhaheri

Abstract:

With the proliferation of Internet of Things (IoT) devices in various industries, there has been a concurrent rise in security vulnerabilities, particularly spoofing attacks. This study explores the potential of blockchain technology in enhancing the security of IoT systems and mitigating these attacks. Blockchain's decentralized and immutable ledger offers significant promise for improving data integrity, transaction transparency, and tamper-proofing. This research develops and implements a blockchain-based IoT architecture and a reference network to simulate real-world scenarios and evaluate a blockchain-integrated intrusion detection system. Performance measures including time delay, security, and resource utilization are used to assess the system's effectiveness, comparing it to conventional IoT networks without blockchain. The results provide valuable insights into the practicality and efficacy of employing blockchain as a security mechanism, shedding light on the trade-offs between speed and security in blockchain deployment for IoT. The study concludes that despite minor increases in time consumption, the security benefits of incorporating blockchain technology into IoT systems outweigh potential drawbacks, demonstrating a significant potential for blockchain in bolstering IoT security.

Keywords: internet of things, spoofing, IoT, access control, blockchain, raspberry pi

Procedia PDF Downloads 75
934 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 98
933 Air-Blast Ultrafast Disconnectors and Solid-State Medium Voltage DC Breaker: A Modified Version to Lower Losses and Higher Speed

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

MVDC markets for green power generations, Navy, subsea oil and gas electrification, and transportation electrification are extending rapidly. The lack of fast and powerful DC circuit breakers (CB) is the most significant barrier to realizing the medium voltage DC (MVDC) networks. A concept of hybrid circuit breakers (HCBs) benefiting from ultrafast disconnectors (UFD) is proposed. A set of mechanical switches substitute the power electronic commutation switches to reduce the losses during normal operation in HCB. The success of current commutation in such breakers relies on the behaviour of elongated, wall constricted arcs during the opening across the contacts inside the UFD. The arc voltage dependencies on the contact speed of UFDs is discussed through multiphysics simulations contact opening speeds of 10, 20 and 40 m/s. The arc voltage at a given current increases exponentially with the contact opening velocity. An empirical equation for the dynamic arc characteristics is presented for the tested UFD, and the experimentally verfied characteristics for voltage-current are utilized for the current commutation simulation prior to apply on a 14 kV experimental setup. Different failures scenarios due to the current commutation are investigated

Keywords: MVDC breakers, DC circuit breaker, fast operating breaker, ultra-fast elongated arc

Procedia PDF Downloads 85
932 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting

Procedia PDF Downloads 385
931 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 482
930 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: low light image enhancement, deep learning, convolutional neural network, image processing

Procedia PDF Downloads 85
929 An as-If Ritual and Its Discontents: Everyday Life of North Korean Migrant Women in South Korea

Authors: Sojung Kim

Abstract:

This paper explores how the Partition of Korea is absorbed into everyday life through North Korean migrant women’s rituals for traditional holidays in Korea. In national holidays called myungjul, Koreans traditionally visit their paternal ancestor’s hometowns to hold jesa, the rites for the ancestors, at the graves and home. Due to the physical gaps in the kinship networks, marked by the kin left behind in North Korea, North Korean migrants gather among themselves in the neighborhood in South Korea as if they make the myungjul ritual of the family gatherings. This impossibility of the proper practice of the rites insinuates the violence of the Partition refracted into the family relations between those in the South and those in the North. Yet, the myungjul gathering creates a kind of collective hometown, beside one’s genealogical hometown, where they can express lamentation and guilt over not being able to visit their parents and ancestors in their hometowns, which they are traditionally required to do. In this as-if ritual, myungjul is re-created for and by the women and for others in the community. Yet, the texture of this ritual is marked by discontent and dissatisfaction. Attending to fostering discontents that seep into the collective events, this paper aims to seek ways to study the violence that permeated in everyday life in partitioned Korea.

Keywords: as-if ritual, everyday life, kinship, migration

Procedia PDF Downloads 147
928 Design of EV Steering Unit Using AI Based on Estimate and Control Model

Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin

Abstract:

Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.

Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system

Procedia PDF Downloads 46
927 Fuzzy Logic Based Ventilation for Controlling Harmful Gases in Livestock Houses

Authors: Nuri Caglayan, H. Kursat Celik

Abstract:

There are many factors that influence the health and productivity of the animals in livestock production fields, including temperature, humidity, carbon dioxide (CO2), ammonia (NH3), hydrogen sulfide (H2S), physical activity and particulate matter. High NH3 concentrations reduce feed consumption and cause daily weight gain. At high concentrations, H2S causes respiratory problems and CO2 displace oxygen, which can cause suffocation or asphyxiation. Good air quality in livestock facilities can have an impact on the health and well-being of animals and humans. Air quality assessment basically depends on strictly given limits without taking into account specific local conditions between harmful gases and other meteorological factors. The stated limitations may be eliminated. using controlling systems based on neural networks and fuzzy logic. This paper describes a fuzzy logic based ventilation algorithm, which can calculate different fan speeds under pre-defined boundary conditions, for removing harmful gases from the production environment. In the paper, a fuzzy logic model has been developed based on a Mamedani’s fuzzy method. The model has been built on MATLAB software. As the result, optimum fan speeds under pre-defined boundary conditions have been presented.

Keywords: air quality, fuzzy logic model, livestock housing, fan speed

Procedia PDF Downloads 374
926 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio

Procedia PDF Downloads 164
925 An Improved Image Steganography Technique Based on Least Significant Bit Insertion

Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo

Abstract:

In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.

Keywords: steganography, image steganography, least significant bits, bit map image

Procedia PDF Downloads 267
924 Sorption of Charged Organic Dyes from Anionic Hydrogels

Authors: Georgios Linardatos, Miltiadis Zamparas, Vlasoula Bekiari, Georgios Bokias, Georgios Hotos

Abstract:

Hydrogels are three-dimensional, hydrophilic, polymeric networks composed of homopolymers or copolymers and are insoluble in water due to the presence of chemical or physical cross-links. When hydrogels come in contact with aqueous solutions, they can effectively sorb and retain the dissolved substances, depending on the nature of the monomeric units comprising the hydrogel. For this reason, hydrogels have been proposed in several studies as water purification agents. At the present work anionic hydrogels bearing negatively charged –COO- groups were prepared and investigated. These gels are based on sodium acrylate (ANa), either homopolymerized (poly(sodiumacrylate), PANa) or copolymerized (P(DMAM-co-ANa)) with N,N Dimethylacrylamide (DMAM). The hydrogels were used to extract some model organic dyes from water. It is found that cationic dyes are strongly sorbed and retained by the hydrogels, while sorption of anionic dyes was negligible. In all cases it was found that both maximum sorption capacity and equilibrium binding constant varied from one dye to the other depending on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. Finally, the nonionic hydrogel of the homopolymer poly(N,N-dimethylacrylamide), PDMAM, was also used for reasons of comparison.

Keywords: anionic organic hydrogels, sorption, organic dyes, water purification agents

Procedia PDF Downloads 260
923 Computational Fluid Dynamics Simulation to Study the Effect of Ambient Temperature on the Ventilation in a Metro Tunnel

Authors: Yousef Almutairi, Yajue Wu

Abstract:

Various large-scale trends have characterized the current century thus far, including increasing shifts towards urbanization and greater movement. It is predicted that there will be 9.3 billion people on Earth in 2050 and that over two-thirds of this population will be city dwellers. Moreover, in larger cities worldwide, mass transportation systems, including underground systems, have grown to account for the majority of travel in those settings. Underground networks are vulnerable to fires, however, endangering travellers’ safety, with various examples of fire outbreaks in this setting. This study aims to increase knowledge of the impacts of extreme climatic conditions on fires, including the role of the high ambient temperatures experienced in Middle Eastern countries and specifically in Saudi Arabia. This is an element that is not always included when assessments of fire safety are made (considering visibility, temperatures, and flows of smoke). This paper focuses on a tunnel within Riyadh’s underground system as a case study and includes simulations based on computational fluid dynamics using ANSYS Fluent, which investigates the impact of various ventilation systems while identifying smoke density, speed, pressure and temperatures within this tunnel.

Keywords: fire, subway tunnel, CFD, mechanical ventilation, smoke, temperature, harsh weather

Procedia PDF Downloads 133
922 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling

Authors: Amin Nezarat, Naeime Seifadini

Abstract:

Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.

Keywords: predicting, deep learning, neural network, urban trip

Procedia PDF Downloads 139
921 The Impact of Information and Communication Technology on the Re-Engineering Process of Small and Medium Enterprises

Authors: Hiba Mezaache

Abstract:

The current study aimed to know the impact of using information and communication technology on the process of re-engineering small and medium enterprises, as the world witnessed the speed development of the latter in its field of work and the diversity of its objectives and programs, that also made its process important for the growth and development of the institution and also gaining the flexibility to face the changes that may occur in the environment of work, so in order to know the impact of information and communication technology on the success of this process, we prepared an electronic questionnaire that included (70) items, and we also used the SPSS statistical calendar to analyze the data obtained. In the end of our study, our conclusion was that there was a positive correlation between the four dimensions of information and communication technology, i.e., hardware and equipment, software, communication networks, databases, and the re-engineering process, in addition to the fact that the studied institutions attach great importance to formal communication, for its positive advantages that it achieves in reducing time and effort and costs in performing the business. We could also say that communication technology contributes to the process of formulating objectives related to the re-engineering strategy. Finally, we recommend the necessity of empowering workers to use information technology and communication more in enterprises, and to integrate them more into the activity of the enterprise by involving them in the decision-making process, and also to keep pace with the development in the field of software, hardware, and technological equipment.

Keywords: information and communication technology, re-engineering, small and medium enterprises, the impact

Procedia PDF Downloads 180
920 Multisource (RF and Solar) Energy Harvesting for Internet of Things (IoT)

Authors: Emmanuel Ekwueme, Anwar Ali

Abstract:

As the Internet of Things (IoT) continues to expand, the demand for battery-free devices is increasing, which is crucial for the efficiency of 5G networks and eco-friendly industrial systems. The solution is a device that operates indefinitely, requires no maintenance, and has no negative impact on the ambient environment. One promising approach to achieve this is energy harvesting, which involves capturing energy from the ambient environment and transferring it to power devices. This method can revolutionize industries. Such as manufacturing, agriculture, and healthcare by enabling real-time data collection and analysis, reducing maintenance costs, improving efficiency, and contributing to a future with lower carbon emissions. This research explores various energy harvesting techniques, focusing on radio frequencies (RF) and multiple energy sources. It examines RF-based and solar methods for powering battery-free sensors, low-power circuits, and IoT devices. The study investigates a hybrid RF-solar harvesting circuit designed for remote sensing devices. The proposed system includes distinct RF and solar energy harvester circuits, with the RF harvester operating at 2.45GHz and the solar harvester utilizing a maximum power point tracking (MPPT) algorithm to maximize efficiency.

Keywords: radio frequency, energy harvesting, Internet of Things (IoT), multisource, solar energy

Procedia PDF Downloads 17
919 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing

Authors: Seyong Oh, Jin-Hong Park

Abstract:

Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.

Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing

Procedia PDF Downloads 175
918 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity

Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang

Abstract:

The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.

Keywords: text information retrieval, natural language processing, new word discovery, information extraction

Procedia PDF Downloads 100
917 e-Learning Security: A Distributed Incident Response Generator

Authors: Bel G Raggad

Abstract:

An e-Learning setting is a distributed computing environment where information resources can be connected to any public network. Public networks are very unsecure which can compromise the reliability of an e-Learning environment. This study is only concerned with the intrusion detection aspect of e-Learning security and how incident responses are planned. The literature reported great advances in intrusion detection system (ids) but neglected to study an important ids weakness: suspected events are detected but an intrusion is not determined because it is not defined in ids databases. We propose an incident response generator (DIRG) that produces incident responses when the working ids system suspects an event that does not correspond to a known intrusion. Data involved in intrusion detection when ample uncertainty is present is often not suitable to formal statistical models including Bayesian. We instead adopt Dempster and Shafer theory to process intrusion data for the unknown event. The DIRG engine transforms data into a belief structure using incident scenarios deduced by the security administrator. Belief values associated with various incident scenarios are then derived and evaluated to choose the most appropriate scenario for which an automatic incident response is generated. This article provides a numerical example demonstrating the working of the DIRG system.

Keywords: decision support system, distributed computing, e-Learning security, incident response, intrusion detection, security risk, statefull inspection

Procedia PDF Downloads 438
916 Occupational Diseases in the Automotive Industry in Czechia

Authors: J. Jarolímek, P. Urban, P. Pavlínek, D. Dzúrová

Abstract:

The industry constitutes a dominant economic sector in Czechia. The automotive industry represents the most important industrial sector in terms of gross value added and the number of employees. The objective of this study was to analyse the occurrence of occupational diseases (OD) in the automotive industry in Czechia during the 2001-2014 period. Whereas the occurrence of OD in other sectors has generally been decreasing, it has been increasing in the automotive industry, including growing spatial discrepancies. Data on OD cases were retrieved from the National Registry of Occupational Diseases. Further, we conducted a survey in automotive companies with a focus on occupational health services and positions of the companies in global production networks (GPNs). An analysis of OD distribution in the automotive industry was performed (age, gender, company size and its role in GPNs, regional distribution of studied companies, and regional unemployment rate), and was accompanied by an assessment of the quality and range of occupational health services. The employees older than 40 years had nearly 2.5 times higher probability of OD occurrence compared with employees younger than 40 years (OR 2.41; 95% CI: 2.05-2.85). The OD occurrence probability was 3 times higher for women than for men (OR 3.01; 95 % CI: 2.55-3.55). The OD incidence rate was increasing with the size of the company. An association between the OD incidence and the unemployment rate was not confirmed.

Keywords: occupational diseases, automotive industry, health geography, unemployment

Procedia PDF Downloads 251
915 Research on Road Openness in the Old Urban Residential District Based on Space Syntax: A Case Study on Kunming within the First Loop Road

Authors: Haoyang Liang, Dandong Ge

Abstract:

With the rapid development of Chinese cities, traffic congestion has become more and more serious. At the same time, there are many closed old residential area in Chinese cities, which seriously affect the connectivity of urban roads and reduce the density of urban road networks. After reopening the restricted old residential area, the internal roads in the original residential area were transformed into urban roads, which was of great help to alleviate traffic congestion. This paper uses the spatial syntactic theory to analyze the urban road network and compares the roads with the integration and connectivity degree to evaluate whether the opening of the roads in the residential areas can improve the urban traffic. Based on the road network system within the first loop road in Kunming, the Space Syntax evaluation model is established for status analysis. And comparative analysis method will be used to compare the change of the model before and after the road openness of the old urban residential district within the first-ring road in Kunming. Then it will pick out the areas which indicate a significant difference for the small dimensions model analysis. According to the analyzed results and traffic situation, the evaluation of road openness in the old urban residential district will be proposed to improve the urban residential districts.

Keywords: Space Syntax, Kunming, urban renovation, traffic jam

Procedia PDF Downloads 163
914 Financing from Customers for SMEs and Managing Financial Risks: The Role of Customer Relationships

Authors: Yongsheng Guo, Mengyu Lu

Abstract:

This study investigates how Chinese SMEs manage financial risks in financing from customers from the perspectives of ethics and national culture. A grounded theory approach is adopted to identify the causal conditions, actions/interactions, and consequences. 32 interviews were conducted, and systematic coding methods were used to identify themes and categories. This study found that Chinese ethical principles, including integrity, friendship, and reciprocity, and cultural traits, including collectivism, acquaintance society, and long-term orientation, provide conditions for financing from customers. The SMEs establish trust-based relationships with customers through personal communications and social networks and reduce financial risk through diversification, frequent operations, and enterprise reputations. Both customers and SMEs can get benefits like financial resources and customer experiences. This study creates a theoretical framework that connects the causal conditions, processes, and outcomes, providing a deeper understanding of financing from customers. A resource and process capability theory of SMEs and a customer capital and customer value model are proposed to connect accounting and finance concepts. Suggestions are proposed for the authorities as more guidance and regulations are needed for this informal finance.

Keywords: CRM, culture, ethics, SME, risk management

Procedia PDF Downloads 45
913 Allostatic Load as a Predictor of Adolescents’ Executive Function: A Longitudinal Network Analysis

Authors: Sipu Guo, Silin Huang

Abstract:

Background: Most studies investigate the link between executive function and allostatic load (AL) among adults aged 18 years and older. Studies differed regarding the specific biological indicators studied and executive functions accounted for. Specific executive functions may be differentially related to allostatic load. We investigated the comorbidities of executive functions and allostatic load via network analysis. Methods: We included 603 adolescents (49.84% girls; Mean age = 12.38, SD age = 1.79) from junior high school in rural China. Eight biological markers at T1 and four executive function tasks at T2 were used to evaluate networks. Network analysis was used to determine the network structure, core symptoms, and bridge symptoms in the AL-executive function network among rural adolescents. Results: The executive functions were related to 6 AL biological markers, not to cortisol and epinephrine. The most influential symptoms were inhibition control, cognitive flexibility, processing speed, and systolic blood pressure (SBP). SBP, dehydroepiandrosterone, and processing speed were the bridges through which AL was related to executive functions. dehydroepiandrosterone strongly predicted processing speed. The SBP was the biggest influencer in the entire network. Conclusions: We found evidence for differential relations between markers and executive functions. SBP was a driver in the network; dehydroepiandrosterone showed strong relations with executive function.

Keywords: allostatic load, executive function, network analysis, rural adolescent

Procedia PDF Downloads 52
912 Transportation Mode Classification Using GPS Coordinates and Recurrent Neural Networks

Authors: Taylor Kolody, Farkhund Iqbal, Rabia Batool, Benjamin Fung, Mohammed Hussaeni, Saiqa Aleem

Abstract:

The rising threat of climate change has led to an increase in public awareness and care about our collective and individual environmental impact. A key component of this impact is our use of cars and other polluting forms of transportation, but it is often difficult for an individual to know how severe this impact is. While there are applications that offer this feedback, they require manual entry of what transportation mode was used for a given trip, which can be burdensome. In order to alleviate this shortcoming, a data from the 2016 TRIPlab datasets has been used to train a variety of machine learning models to automatically recognize the mode of transportation. The accuracy of 89.6% is achieved using single deep neural network model with Gated Recurrent Unit (GRU) architecture applied directly to trip data points over 4 primary classes, namely walking, public transit, car, and bike. These results are comparable in accuracy to results achieved by others using ensemble methods and require far less computation when classifying new trips. The lack of trip context data, e.g., bus routes, bike paths, etc., and the need for only a single set of weights make this an appropriate methodology for applications hoping to reach a broad demographic and have responsive feedback.

Keywords: classification, gated recurrent unit, recurrent neural network, transportation

Procedia PDF Downloads 138
911 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network

Authors: Masoud Safarishaal

Abstract:

Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.

Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network

Procedia PDF Downloads 125
910 Globalization and Women's Social Identity in Iran: A Case Study of Educated Women in the 'World City' of Yazd

Authors: Mohammad Tefagh

Abstract:

The process of globalization has transformed many social and cultural phenomena and has entered the world into a new era and arena. This phenomenon has introduced new methods, ideas, and identity interactions to human beings and has caused great changes in individual and social identity. Women have also been affected by globalization. Globalization has made the presence of women more and more effective and has caused identity changes and changes in the dimensions of identity in them. The purpose of this study is to investigate the impact of globalization of culture on changes in the social identity of educated women in the global city of Yazd. This study will discuss identity change and identity reconstruction due to globalization. The method of this study is qualitative, and the research data is obtained through in-depth interviews with 15 Yazdi-educated women at the Ph.D. level. The method of data analysis is thematic analysis. Findings of the research show that educated Yazdi women have changed their identity due to new communication processes and globalization, including faster, easier, and cheaper communication with other women in the world near and far. Women's social identity has also changed in the face of elements of globalization in various dimensions such as national, gender, religious, and group identities. The analysis of the interviews revealed the confronting elements such as using new cultural goods and communication technologies, membership in social networks, and increasing awareness of environmental change.

Keywords: globalization, social identity, educated women, Yazd

Procedia PDF Downloads 333
909 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm

Authors: Moti Zwilling, Srečko Natek

Abstract:

This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.

Keywords: dating sites, social networks, machine learning, decision trees, data mining

Procedia PDF Downloads 295
908 Perceptions of Cybersecurity in Government Organizations: Case Study of Bhutan

Authors: Pema Choejey, David Murray, Chun Che Fung

Abstract:

Bhutan is becoming increasingly dependent on Information and Communications Technologies (ICTs), especially the Internet for performing the daily activities of governments, businesses, and individuals. Consequently, information systems and networks are becoming more exposed and vulnerable to cybersecurity threats. This paper highlights the findings of the survey study carried out to understand the perceptions of cybersecurity implementation among government organizations in Bhutan. About 280 ICT personnel were surveyed about the effectiveness of cybersecurity implementation in their organizations. A questionnaire based on a 5 point Likert scale was used to assess the perceptions of respondents. The questions were asked on cybersecurity practices such as cybersecurity policies, awareness and training, and risk management. The survey results show that less than 50% of respondents believe that the cybersecurity implementation is effective: cybersecurity policy (40%), risk management (23%), training and awareness (28%), system development life cycle (34%); incident management (26%), and communications and operational management (40%). The findings suggest that many of the cybersecurity practices are inadequately implemented and therefore, there exist a gap in achieving a required cybersecurity posture. This study recommends government organizations to establish a comprehensive cybersecurity program with emphasis on cybersecurity policy, risk management, and awareness and training. In addition, the research study has practical implications to both government and private organizations for implementing and managing cybersecurity.

Keywords: awareness and training, cybersecurity policy, risk management, security risks

Procedia PDF Downloads 347
907 Internet of Things Edge Device Power Modelling and Optimization Simulator

Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh

Abstract:

Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.

Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting

Procedia PDF Downloads 133