Search results for: Cox regression model
16901 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets
Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can
Abstract:
This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.Keywords: tri-metallic, upsetting, copper, brass, steel, aluminum
Procedia PDF Downloads 34216900 Development of Terrorist Threat Prediction Model in Indonesia by Using Bayesian Network
Authors: Hilya Mudrika Arini, Nur Aini Masruroh, Budi Hartono
Abstract:
There are more than 20 terrorist threats from 2002 to 2012 in Indonesia. Despite of this fact, preventive solution through studies in the field of national security in Indonesia has not been conducted comprehensively. This study aims to provide a preventive solution by developing prediction model of the terrorist threat in Indonesia by using Bayesian network. There are eight stages to build the model, started from literature review, build and verify Bayesian belief network to what-if scenario. In order to build the model, four experts from different perspectives are utilized. This study finds several significant findings. First, news and the readiness of terrorist group are the most influent factor. Second, according to several scenarios of the news portion, it can be concluded that the higher positive news proportion, the higher probability of terrorist threat will occur. Therefore, the preventive solution to reduce the terrorist threat in Indonesia based on the model is by keeping the positive news portion to a maximum of 38%.Keywords: Bayesian network, decision analysis, national security system, text mining
Procedia PDF Downloads 39216899 Electro-Hydrodynamic Analysis of Low-Pressure DC Glow Discharge by Lattice Boltzmann Method
Authors: Ji-Hyok Kim, Il-Gyong Paek, Yong-Jun Kim
Abstract:
We propose a numerical model based on drift-diffusion theory and lattice Boltzmann method (LBM) to analyze the electro-hydrodynamic behavior in low-pressure direct current (DC) glow discharge plasmas. We apply the drift-diffusion theory for 4-species and employ the standard lattice Boltzmann model (SLBM) for the electron, the finite difference-lattice Boltzmann model (FD-LBM) for heavy particles, and the finite difference model (FDM) for the electric potential, respectively. Our results are compared with those of other methods, and emphasize the necessity of a two-dimensional analysis for glow discharge.Keywords: glow discharge, lattice Boltzmann method, numerical analysis, plasma simulation, electro-hydrodynamic
Procedia PDF Downloads 12016898 TELUM Land Use Model: An Investigation of Data Requirements and Calibration Results for Chittenden County MPO, U.S.A.
Authors: Georgia Pozoukidou
Abstract:
TELUM software is a land use model designed specifically to help metropolitan planning organizations (MPOs) prepare their transportation improvement programs and fulfill their numerous planning responsibilities. In this context obtaining, preparing, and validating socioeconomic forecasts are becoming fundamental tasks for an MPO in order to ensure that consistent population and employment data are provided to travel demand models. Chittenden County Metropolitan Planning Organization of Vermont State was used as a case study to test the applicability of TELUM land use model. The technical insights and lessons learned from the land use model application have transferable value for all MPOs faced with land use forecasting development and transportation modelling.Keywords: calibration data requirements, land use models, land use planning, metropolitan planning organizations
Procedia PDF Downloads 29216897 Predictive Analytics of Student Performance Determinants
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.Keywords: student performance, supervised machine learning, classification, cross-validation, prediction
Procedia PDF Downloads 12616896 The Role of Formal and Informal Social Support in Predicting the Involvement of Mothers and Fathers of Young Children with Autism Spectrum Disorder
Authors: Adi Sharabi, Dafna Marom-Golan
Abstract:
Parents’ involvement in the care of their children with Autism Spectrum Disorder (ASD) and its beneficial effect on the children’s developmental and educational outcomes is well documented. At the same time, parents of children with ASD tend to experience greater psychological distress than parents of children with other developmental disabilities or with typical development. Positive social support is an important resource used by parents to reduce their psychological distress. The goal of the current research was to examine the contribution of formal and informal social support in explaining mothers’ and fathers’ involvement with their young children with ASD. The sample consisted of 107 parents who live in Israel (61 mothers and 46 fathers) of children aged between 2 and 7, all diagnosed with ASD and attending special kindergartens or special day care for children with ASD. Parental involvement and social support perception were assessed. Initial analysis focused on the relations between involvement, support, and demographic variables. In addition, analysis of variance (ANOVA) was conducted to test differences between mothers and fathers. Two hierarchical multiple regression analyses were performed to examine the predicted factors in the involvement model while controlling for group (mothers/fathers). Results indicate that mothers reported significantly higher levels of parenting involvement than fathers. Mothers reported higher levels of general involvement and all sub-types of involvement. For example, mothers reported that they were more interested in and have higher levels of attendance in their child’s educational program. They were also more collaborative in their child’s educational therapeutic program, and socialized with other parents of children from their child’s kindergarten than fathers. Mothers’ involvement was found to be related to their informal support (non-formal relatives). Findings also reveal significant differences between mothers and fathers on the formal support subscale measure of specializes services. Fathers, more than mothers, reported more specializes services support such as social workers or professional therapists. Separate hierarchical multiple regression analyses revealed a unique gender difference in the factors that explained parental involvement. Specifically, informal support only had a unique positive contribution in explaining mothers’, but not fathers’ involvement. This study highlights the central role of mothers in maintaining constant contact with the educational system and the professionals who help care for their child with ASD. At the same time, this research emphasizes the crucial role of both mothers and fathers in their child's development and well-being at every development stage, particularly in early development. Further, different kinds of social support seem to relate to the different kinds of parental involvement. It is in the best interest of educators and family therapists who work with families with children with ASD to support the cohesiveness of the family and the collaboration of the parents by understanding and respecting the way each member addresses the responsibilities of parenting a child with ASD, and her or his need for different types of social support.Keywords: parental differences, parental involvement, social support, specialized support services
Procedia PDF Downloads 24716895 Inference for Compound Truncated Poisson Lognormal Model with Application to Maximum Precipitation Data
Authors: M. Z. Raqab, Debasis Kundu, M. A. Meraou
Abstract:
In this paper, we have analyzed maximum precipitation data during a particular period of time obtained from different stations in the Global Historical Climatological Network of the USA. One important point to mention is that some stations are shut down on certain days for some reason or the other. Hence, the maximum values are recorded by excluding those readings. It is assumed that the number of stations that operate follows zero-truncated Poisson random variables, and the daily precipitation follows a lognormal random variable. We call this model a compound truncated Poisson lognormal model. The proposed model has three unknown parameters, and it can take a variety of shapes. The maximum likelihood estimators can be obtained quite conveniently using Expectation-Maximization (EM) algorithm. Approximate maximum likelihood estimators are also derived. The associated confidence intervals also can be obtained from the observed Fisher information matrix. Simulation results have been performed to check the performance of the EM algorithm, and it is observed that the EM algorithm works quite well in this case. When we analyze the precipitation data set using the proposed model, it is observed that the proposed model provides a better fit than some of the existing models.Keywords: compound Poisson lognormal distribution, EM algorithm, maximum likelihood estimation, approximate maximum likelihood estimation, Fisher information, skew distribution
Procedia PDF Downloads 10816894 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs
Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye
Abstract:
This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label
Procedia PDF Downloads 12916893 Measuring Energy Efficiency Performance of Mena Countries
Authors: Azam Mohammadbagheri, Bahram Fathi
Abstract:
DEA has become a very popular method of performance measure, but it still suffers from some shortcomings. One of these shortcomings is the issue of having multiple optimal solutions to weights for efficient DMUs. The cross efficiency evaluation as an extension of DEA is proposed to avoid this problem. Lam (2010) is also proposed a mixed-integer linear programming formulation based on linear discriminate analysis and super efficiency method (MILP model) to avoid having multiple optimal solutions to weights. In this study, we modified MILP model to determine more suitable weight sets and also evaluate the energy efficiency of MENA countries as an application of the proposed model.Keywords: data envelopment analysis, discriminate analysis, cross efficiency, MILP model
Procedia PDF Downloads 68716892 Factors of Social Network Platform Usage and Privacy Risk: A Unified Theory of Acceptance and Use of Technology2 Model
Abstract:
The trust and use of social network platforms by users are instrumental factors that contribute to the platform’s sustainable development. Studying the influential factors of the use of social network platforms is beneficial for developing and maintaining a large user base. This study constructed an extended unified theory of acceptance and use of technology (UTAUT2) moderating model with perceived privacy risks to analyze the factors affecting the trust and use of social network platforms. 444 participants completed our 35 surveys, and we verified the survey results by structural equation model. Empirical results reveal the influencing factors that affect the trust and use of social network platforms, and the extended UTAUT2 model with perceived privacy risks increases the applicability of UTAUT2 in social network scenarios. Social networking platforms can increase their use rate by increasing the economics, functionality, entertainment, and privacy security of the platform.Keywords: perceived privacy risk, social network, trust, use, UTAUT2 model
Procedia PDF Downloads 9916891 Circadian Disruption in Polycystic Ovary Syndrome Model Rats
Authors: Fangfang Wang, Fan Qu
Abstract:
Polycystic ovary syndrome (PCOS), the most common endocrinopathy among women of reproductive age, is characterized by ovarian dysfunction, hyperandrogenism and reduced fecundity. The aim of this study is to investigate whether the circadian disruption is involved in pathogenesis of PCOS in androgen-induced animal model. We established a rat model of PCOS using single subcutaneous injection with testosterone propionate on the ninth day after birth, and confirmed their PCOS-like phenotypes with vaginal smears, ovarian hematoxylin and eosin (HE) staining and serum androgen measurement. The control group rats received the vehicle only. Gene expression was detected by real-time quantitative PCR. (1) Compared with control group, PCOS model rats of 10-week group showed persistently keratinized vaginal cells, while all the control rats showed at least two consecutive estrous cycles. (2) Ovarian HE staining and histological examination showed that PCOS model rats of 10-week group presented many cystic follicles with decreased numbers of granulosa cells and corpora lutea in their ovaries, while the control rats had follicles with normal layers of granulosa cells at various stages of development and several generations of corpora lutea. (3) In the 10-week group, serum free androgen index was notably higher in PCOS model rats than controls. (4) Disturbed mRNA expression patterns of core clock genes were found in ovaries of PCOS model rats of 10-week group. Abnormal expression of key genes associated with circadian rhythm in ovary may be one of the mechanisms for ovarian dysfunction in PCOS model rats induced by androgen.Keywords: polycystic ovary syndrome, androgen, animal model, circadian disruption
Procedia PDF Downloads 23016890 A Study on Human Musculoskeletal Model for Cycle Fitting: Comparison with EMG
Authors: Yoon- Ho Shin, Jin-Seung Choi, Dong-Won Kang, Jeong-Woo Seo, Joo-Hack Lee, Ju-Young Kim, Dae-Hyeok Kim, Seung-Tae Yang, Gye-Rae Tack
Abstract:
It is difficult to study the effect of various variables on cycle fitting through actual experiment. To overcome such difficulty, the forward dynamics of a musculoskeletal model was applied to cycle fitting in this study. The measured EMG data were compared with the muscle activities of the musculoskeletal model through forward dynamics. EMG data were measured from five cyclists who do not have musculoskeletal diseases during three minutes pedaling with a constant load (150 W) and cadence (90 RPM). The muscles used for the analysis were the Vastus Lateralis (VL), Tibialis Anterior (TA), Bicep Femoris (BF), and Gastrocnemius Medial (GM). Person’s correlation coefficients of the muscle activity patterns, the peak timing of the maximum muscle activities, and the total muscle activities were calculated and compared. BIKE3D model of AnyBody (Anybodytech, Denmark) was used for the musculoskeletal model simulation. The comparisons of the actual experiments with the simulation results showed significant correlations in the muscle activity patterns (VL: 0.789, TA: 0.503, BF: 0.468, GM: 0.670). The peak timings of the maximum muscle activities were distributed at particular phases. The total muscle activities were compared with the normalized muscle activities, and the comparison showed about 10% difference in the VL (+10%), TA (+9.7%), and BF (+10%), excluding the GM (+29.4%). Thus, it can be concluded that muscle activities of model & experiment showed similar results. The results of this study indicated that it was possible to apply the simulation of further improved musculoskeletal model to cycle fitting.Keywords: musculoskeletal modeling, EMG, cycle fitting, simulation
Procedia PDF Downloads 56816889 Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects
Authors: Preeda Sansakorn, Min An
Abstract:
In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes.Keywords: safety risk assessment, building construction safety, fuzzy reasoning, construction risk assessment model, building construction projects
Procedia PDF Downloads 49216888 Cigarette Smoking and Alcohol Use among Mauritian Adolescents: Analysis of 2017 WHO Global School-Based Student Health Survey
Authors: Iyanujesu Adereti, Tajudeen Basiru, Ayodamola Olanipekun
Abstract:
Background: Substance abuse among adolescents is of public health concern globally. Despite being the most abused by adolescents, there are limited studies on the prevalence of alcohol use and cigarette smoking among adolescents in Mauritius. Objectives: To determine the prevalence of cigarette smoking, alcohol use and associated correlates among school-going adolescents in Mauritius. Methodology: Data obtained from 2017 WHO Global School-based Student Health Survey (GSHS) survey of 3,012 school-going adolescents in Mauritius was analyzed using STATA. Descriptive statistics were used to obtain prevalence. Bivariate and multivariate logistic regression analysis was used to evaluate predictors of cigarette smoking and alcohol use. Results: Prevalence of alcohol consumption and cigarette smoking were 26.0% and 17.1%, respectively. Smoking and alcohol use was more prevalent among males, younger adolescents, and those in higher school grades (p-value <.000). In multivariable logistic regression, male gender was associated with a higher risk of cigarette smoking (adjusted Odds Ratio (aOR) [95%Confidence Interval (CI)]= 1.51[1.06-2.14]) but lower risk of alcohol use (aOR[95%CI]= 0.69[0.53-0.90]) while older age (mid and late adolescence) and parental smoking were found to be associated with increased risk of alcohol use (aOR[95%CI]= 1.94[1.34-2.99] and 1.36[1.05-1.78] respectively). Marijuana use, truancy, being in a fight and suicide ideation were associated with increased odds of alcohol use (aOR[95%CI]= 3.82[3.39-6.09]; 2.15[1.62-2.87]; 1.83[1.34-2.49] and 1.93[1.38-2.69] respectively) and cigarette smoking (aOR[95%CI]= 17.28[10.4 - 28.51]; 1.73[1.21-2. 49]; 1.67[1.14-2.45] and 2.17[1.43-3.28] respectively) while involvement in sexual activity was associated with reduced risk of alcohol use (aOR[95%CI]= 0.50[0.37-0.68]) and cigarette smoking (aOR[95%CI]= 0.47[0.33-0.69]). Parental support and parental monitoring were uniquely associated with lower risk of cigarette smoking (aOR[95%CI]= 0.69[0.47-0.99] and 0.62[0.43-0.91] respectively). Conclusion: The high prevalence of alcohol use and cigarette smoking in this study shows the need for the government of Mauritius to enhance policies that will help address this issue putting into accounts the various risk and protective factors.Keywords: adolescent health, alcohol use, cigarette smoking, global school-based student health survey
Procedia PDF Downloads 25216887 The Supply Chain Operation Reference Model Adaptation in the Developing Countries: An Empirical Study on the Egyptian Automotive Sector
Authors: Alaa Osman, Sara Elgazzar, Breksal Elmiligy
Abstract:
The Supply Chain Operation Reference (SCOR) model is considered one of the most widely implemented supply chain performance measurement systems (SCPMSs). Several studies have been proposed on the SCOR model adaptation in developed countries context; while there is a limited availability of previous work on the SCPMSs application generally and the SCOR model specifically in developing nations. This paper presents a research agenda on the SCOR model adaptation in the developing countries. It aims at investigating the challenges of adapting the SCOR model to manage and measure supply chain performance in developing countries. The research will exemplify the system in the Egyptian automotive sector to gain a comprehensive understanding of how the application of the SCOR model can affect the performance of automotive companies in Egypt, with a necessary understanding of challenges and obstacles faced the adaptation of the model in the Egyptian supply chain context. An empirical study was conducted on the Egyptian automotive sector in three companies considering three different classes: BMW, Hyundai and Brilliance. First, in-depth interviews were carried out to gain an insight into the implementation and the relevance of the concepts of supply chain management and performance measurement in the Egyptian automotive industry. Then, a formal survey was designed based on the SCOR model five main processes (plan, source, make, deliver and return) and best practices to investigate the challenges and obstacles faced the adaptation of the SCOR model in the Egyptian automotive supply chain. Finally, based on the survey results, the appropriate best practices for each process were identified in order to overcome the SCOR model adaptation challenges. The results showed that the implementation of the SCOR model faced different challenges and unavailability of the required enablers. The survey highlighted the low integration of end-to-end supply chain, lacks commitment for the innovative ideas and technologies, financial constraints and lack of practical training and support as the main challenges faced the adaptation of the SCOR model in the Egyptian automotive supply chain. The research provides an original contribution to knowledge by proposing a procedure to identify challenges encountered during the process of SCOR model adoption which can pave a way for further research in the area of SCPMSs adaptation, particularly in the developing countries. The research can help managers and organizations to identify obstacles and difficulties of the SCOR model adaptation, subsequently this can facilitate measuring the improved performance or changes in the organizational performance.Keywords: automotive sector, developing countries, SCOR model, supply chain performance
Procedia PDF Downloads 37416886 Kou Jump Diffusion Model: An Application to the SP 500; Nasdaq 100 and Russell 2000 Index Options
Authors: Wajih Abbassi, Zouhaier Ben Khelifa
Abstract:
The present research points towards the empirical validation of three options valuation models, the ad-hoc Black-Scholes model as proposed by Berkowitz (2001), the constant elasticity of variance model of Cox and Ross (1976) and the Kou jump-diffusion model (2002). Our empirical analysis has been conducted on a sample of 26,974 options written on three indexes, the S&P 500, Nasdaq 100 and the Russell 2000 that were negotiated during the year 2007 just before the sub-prime crisis. We start by presenting the theoretical foundations of the models of interest. Then we use the technique of trust-region-reflective algorithm to estimate the structural parameters of these models from cross-section of option prices. The empirical analysis shows the superiority of the Kou jump-diffusion model. This superiority arises from the ability of this model to portray the behavior of market participants and to be closest to the true distribution that characterizes the evolution of these indices. Indeed the double-exponential distribution covers three interesting properties that are: the leptokurtic feature, the memory less property and the psychological aspect of market participants. Numerous empirical studies have shown that markets tend to have both overreaction and under reaction over good and bad news respectively. Despite of these advantages there are not many empirical studies based on this model partly because probability distribution and option valuation formula are rather complicated. This paper is the first to have used the technique of nonlinear curve-fitting through the trust-region-reflective algorithm and cross-section options to estimate the structural parameters of the Kou jump-diffusion model.Keywords: jump-diffusion process, Kou model, Leptokurtic feature, trust-region-reflective algorithm, US index options
Procedia PDF Downloads 42916885 Radiative Reactions Analysis at the Range of Astrophysical Energies
Authors: A. Amar
Abstract:
Analysis of the elastic scattering of protons on 10B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V0) and proton energy (Ep) has been obtained. Also, surface imaginary potential WD is proportional to the proton energy (Ep) in the range 0.400 and 17 MeV. The radiative reaction 10B(p,γ)11C has been analyzed using potential model. A comparison between 10B(p,γ)11C and 6Li(p,γ)7Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction 7Li(p,γ)8Be has been studied.Keywords: elastic scattering of protons on 10B nuclei, optical potential parameters, potential model, radiative reaction
Procedia PDF Downloads 21116884 Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery
Authors: S. Benkraouda, Z. Djelloul-Khedda, B. Yagoubi
Abstract:
we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection.Keywords: forest fire, forest fire detection, satellite image, normal distribution, theoretical gaussian model, thermal infrared matrix image
Procedia PDF Downloads 14216883 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test
Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany
Abstract:
Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution
Procedia PDF Downloads 16816882 Numerical Approach for Characterization of Flow Field in Pump Intake Using Two Phase Model: Detached Eddy Simulation
Authors: Rahul Paliwal, Gulshan Maheshwari, Anant S. Jhaveri, Channamallikarjun S. Mathpati
Abstract:
Large pumping facility is the necessary requirement of the cooling water systems for power plants, process and manufacturing facilities, flood control and water or waste water treatment plant. With a large capacity of few hundred to 50,000 m3/hr, cares must be taken to ensure the uniform flow to the pump to limit vibration, flow induced cavitation and performance problems due to formation of air entrained vortex and swirl flow. Successful prediction of these phenomena requires numerical method and turbulence model to characterize the dynamics of these flows. In the past years, single phase shear stress transport (SST) Reynolds averaged Navier Stokes Models (like k-ε, k-ω and RSM) were used to predict the behavior of flow. Literature study showed that two phase model will be more accurate over single phase model. In this paper, a 3D geometries simulated using detached eddy simulation (LES) is used to predict the behavior of the fluid and the results are compared with experimental results. Effect of different grid structure and boundary condition is also studied. It is observed that two phase flow model can more accurately predict the mean flow and turbulence statistics compared to the steady SST model. These validate model will be used for further analysis of vortex structure in lab scale model to generate their frequency-plot and intensity at different location in the set-up. This study will help in minimizing the ill effect of vortex on pump performance.Keywords: grid structure, pump intake, simulation, vibration, vortex
Procedia PDF Downloads 17516881 Quantification of Leachate Potential of the Quezon City Controlled Dumping Facility Using Help Model
Authors: Paul Kenneth D. Luzon, Maria Antonia N. Tanchuling
Abstract:
The Quezon City Controlled Dumping facility also known as Payatas produces leachate which can contaminate soil and water environment in the area. The goal of this study is to quantify the leachate produced by the QCCDF using the Hydrologic Evaluation of Landfill Performance (HELP) model. Results could be used as input for groundwater contaminant transport studies. The HELP model is based on a simple water budget and is an essential “model requirement” used by the US Environmental Protection Agency (EPA). Annual waste profile of the QCCDF was calculated. Based on topographical maps and estimation of settlement due to overburden pressure and degradation, a total of 10M m^3 of waste is contained in the landfill. The input necessary for the HELP model are weather data, soil properties, and landfill design. Results showed that from 1988 to 2011, an average of 50% of the total precipitation percolates through the bottom layer. Validation of the results is still needed due to the assumptions made in the study. The decrease in porosity of the top soil cover showed the best mitigation for minimizing percolation rate. This study concludes that there is a need for better leachate management system in the QCCDF.Keywords: help model, landfill, payatas trash slide, quezon city controlled dumping facility
Procedia PDF Downloads 29116880 Flow and Heat Transfer Analysis of Copper-Water Nanofluid with Temperature Dependent Viscosity past a Riga Plate
Authors: Fahad Abbasi
Abstract:
Flow of electrically conducting nanofluids is of pivotal importance in countless industrial and medical appliances. Fluctuations in thermophysical properties of such fluids due to variations in temperature have not received due attention in the available literature. Present investigation aims to fill this void by analyzing the flow of copper-water nanofluid with temperature dependent viscosity past a Riga plate. Strong wall suction and viscous dissipation have also been taken into account. Numerical solutions for the resulting nonlinear system have been obtained. Results are presented in the graphical and tabular format in order to facilitate the physical analysis. An estimated expression for skin friction coefficient and Nusselt number are obtained by performing linear regression on numerical data for embedded parameters. Results indicate that the temperature dependent viscosity alters the velocity, as well as the temperature of the nanofluid and, is of considerable importance in the processes where high accuracy is desired. Addition of copper nanoparticles makes the momentum boundary layer thinner whereas viscosity parameter does not affect the boundary layer thickness. Moreover, the regression expressions indicate that magnitude of rate of change in effective skin friction coefficient and Nusselt number with respect to nanoparticles volume fraction is prominent when compared with the rate of change with variable viscosity parameter and modified Hartmann number.Keywords: heat transfer, peristaltic flows, radially varying magnetic field, curved channel
Procedia PDF Downloads 16616879 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm
Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri
Abstract:
This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction
Procedia PDF Downloads 3116878 A Practical Approach and Implementation of Digital Library Towards Best Practice in Malaysian Academic Library
Authors: Zainab Ajab Mohideen, Kiran Kaur, A. Basheer Ahamadhu, Noor Azlinda Wan Jan, Sukmawati Muhammad
Abstract:
The corpus in the digital library is to provide an overview and evidence from library automation that can be used to justify the needs of the digital library. This paper disperses the approach and implementation of the digital library as part of best practices by the Automation Division at Hamzah Sendut Library of the University Science Malaysia (USM). The implemented digital library model emphasizes on the entire library collections, technical perspective, and automation solution. This model served as a foundation for digital library services as part of information delivery in the USM digital library. The approach to digital library includes discussion on key factors, design, architecture, and pragmatic model that has been collected, captured, and identified during the implementation stages. At present, the USM digital library has achieved the status of an Institutional Repository (IR).Keywords: academic digital library, digital information system, digital library best practice, digital library model
Procedia PDF Downloads 55516877 The Associations between Self-Determined Motivation and Physical Activity in Patients with Coronary Heart Disease
Authors: I. Hua Chu, Hsiang-Chi Yu, Hsuan Su
Abstract:
Purpose: To examine the associations between self-determined motivation and physical activity in patients with coronary heart disease (CHD) in a longitudinal study. Methods: Patients with CHD were recruited for this study. Their motivations for exercise were measured by the Behavioral Regulation in Exercise Questionnaire-2 (BREQ-2). Physical activity was assessed using the 7-day physical activity recall questionnaire. Duration and energy expenditure of moderate to vigorous physical activity (MVPA) were used in data analysis. All outcome measures were assessed at baseline and 12 months follow up. Data were analyzed using Pearson correlation analysis and regression analysis. Results: The results of the 45 participants (mean age 60.24 yr; 90.2% male) revealed that there were significant negative correlations between amotivation at baseline and duration (r=-.295, p=.049) and energy expenditure (r=-.300, p=.045) of MVPA at 12 months. In contrast, there were significant positive correlations between calculated relative autonomy index (RAI) at baseline and duration (r=.377, p=.011) and energy expenditure (r=.382, p=.010) of MVPA at 12 months. There was no significant correlation between other subscales of the BREQ-2 and duration or energy expenditure of MVPA. Regression analyses revealed that RAI was a significant predictor of duration (p=.011) and energy expenditure (p=.010) of MVPA at 12 months follow-up. Conclusions: These results suggest that the relative degree of self-determined motivation could predict long-term MVPA behaviors in CHD patients. Physical activity interventions are recommended to target enhancing one’s identified and intrinsic motivation to increase the likelihood of physical activity participation in this population.Keywords: self-determined motivation, physical activity, coronary heart disease, relative autonomy index (RAI)
Procedia PDF Downloads 42816876 Development of a Value Evaluation Model of Highway Box-Girder Bridge
Authors: Hao Hsi Tseng
Abstract:
Taiwan’s infrastructure is gradually deteriorating, while resources for maintenance and replacement are increasingly limited, raising the urgent need for methods for maintaining existing infrastructure within constrained budgets. Infrastructure value evaluation is used to enhance the efficiency of infrastructure maintenance work, allowing administrators to quickly assess the maintenance needs and performance by observing variation in infrastructure value. This research establishes a value evaluation model for Taiwan’s highway box girder bridges. The operating mechanism and process of the model are illustrated in a practical case.Keywords: box girder bridge, deterioration, infrastructure, maintenance, value evaluation
Procedia PDF Downloads 19016875 Developing an Information Model of Manufacturing Process for Sustainability
Authors: Jae Hyun Lee
Abstract:
Manufacturing companies use life-cycle inventory databases to analyze sustainability of their manufacturing processes. Life cycle inventory data provides reference data which may not be accurate for a specific company. Collecting accurate data of manufacturing processes for a specific company requires enormous time and efforts. An information model of typical manufacturing processes can reduce time and efforts to get appropriate reference data for a specific company. This paper shows an attempt to build an abstract information model which can be used to develop information models for specific manufacturing processes.Keywords: process information model, sustainability, OWL, manufacturing
Procedia PDF Downloads 43016874 Automatic Slider Design in Injection Moldings
Authors: Alan C. Lin, Tran Anh Son
Abstract:
This study proposes an approach to determine the undercut regions and their releasing directions for slider design of complex parts represented by the file format of STL (STereoLithography). In order to delineate the border of undercut regions, orthogonal cutting planes are firstly employed to automatically find the inner loops of a part model. To discover the facets belonging to undercut regions, attributes are then assigned to the facets of the part model based on the topological relationship of adjacent facets of each inner loop. After that, the undercut regions are separated from other facets in the model. Through the recognized facets of the undercut regions, the concept of 'visibility map (V-map)' is further applied to determine feasible releasing directions for each of the undercut regions. The undercut regions having the same releasing direction are finally grouped to form a slider in the injection mold.Keywords: solid model, STL data, injection mold design, visibility map
Procedia PDF Downloads 39516873 A Generation Outside: Afghan Refugees in Greece 2003-2016
Authors: Kristina Colovic, Mari Janikian, Nikolaos Takis, Fotini-Sonia Apergi
Abstract:
A considerable number of Afghan asylum seekers in Greece are still waiting for answers about their future and status for personal, social and societal advancement. Most have been trapped in a stalemate of continuously postponed or temporarily progressed levels of integration into the EU/Greek process of asylum. Limited quantitative research exists investigating the psychological effects of long-term displacement among Afghans refugees in Greece. The purpose of this study is to investigate factors that are associated with and predict psychological distress symptoms among this population. Data from a sample of native Afghan nationals (N > 70) living in Greece for approximately the last ten years will be collected from May to July 2016. Criteria for participation include the following: being 18 years of age or older, and emigration from Afghanistan to Greece from 2003 onwards (i.e., long-term refugees or part of the 'old system of asylum'). Snowball sampling will be used to recruit participants, as this is considered the most effective option when attempting to study refugee populations. Participants will complete self-report questionnaires, consisting of the Afghan Symptom Checklist (ASCL), a culturally validated measure of psychological distress, the World Health Organization Quality of Life scale (WHOQOL-BREF), an adapted version of the Comprehensive Trauma Inventory-104 (CTI-104), and a modified Psychological Acculturation Scale. All instruments will be translated in Greek, through the use of forward- and back-translations by bilingual speakers of English and Greek, following WHO guidelines. A pilot study with 5 Afghan participants will take place to check for discrepancies in understanding and for further adapting the instruments as needed. Demographic data, including age, gender, year of arrival to Greece and current asylum status will be explored. Three different types of analyses (descriptive statistics, bivariate correlations, and multivariate linear regression) will be used in this study. Descriptive findings for respondent demographics, psychological distress symptoms, traumatic life events and quality of life will be reported. Zero-order correlations will assess the interrelationships among demographic, traumatic life events, psychological distress, and quality of life variables. Lastly, a multivariate linear regression model will be estimated. The findings from the study will contribute to understanding the determinants of acculturation, distress and trauma on daily functioning for Afghans in Greece. The main implications of the current study will be to advocate for capacity building and empower communities through effective program evaluation and design for mental health services for all refugee populations in Greece.Keywords: Afghan refugees, evaluation, Greece, mental health, quality of life
Procedia PDF Downloads 28816872 Relationship and Associated Factors of Breastfeeding Self-efficacy among Postpartum Couples in Malawi: A Cross-sectional Study
Authors: Roselyn Chipojola, Shu-yu Kuo
Abstract:
Background: Breastfeeding self-efficacy in both mothers and fathers play a crucial role in improving exclusive breastfeeding rates. However, less is known on the relationship and predictors of paternal and maternal breastfeeding self-efficacy. This study aimed to examine the relationship and associated factors of breastfeeding self-efficacy (BSE) among mothers and fathers in Malawi. Methods: A cross-sectional study was conducted on 180 pairs of postpartum mothers and fathers at a tertiary maternity facility in central Malawi. BSE was measured using the Breastfeeding Self-Efficacy Scale Short-Form. Depressive symptoms were assessed by the Edinburgh Postnatal Depression Scale. A structured questionnaire was used to collect demographic and health variables. Data were analyzed using multivariable logistic regression and multinomial logistic regression. Results: A higher score of self-efficacy was found in mothers (mean=55.7, Standard Deviation (SD) =6.5) compared to fathers (mean=50.2, SD=11.9). A significant association between paternal and maternal breastfeeding self-efficacy was found (r= 0. 32). Age, employment status, mode of birth was significantly related to maternal and paternal BSE, respectively. Older age and caesarean section delivery were significant factors of combined BSE scores in couples. A higher BSE score in either the mother or her partner predicted higher exclusive breastfeeding rates. BSE scores were lower when couples’ depressive symptoms were high. Conclusion: BSE are highly correlated between Malawian mothers and fathers, with a relatively higher score in maternal BSE. Importantly, a high BSE in couples predicted higher odds of exclusive breastfeeding, which highlights the need to include both mothers and fathers in future breastfeeding promotion strategies.Keywords: paternal, maternal, exclusive breastfeeding, breastfeeding self‑efficacy, malawi
Procedia PDF Downloads 68