Search results for: restricted Boltzmann machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3416

Search results for: restricted Boltzmann machine

1556 Investigation on Machine Tools Energy Consumptions

Authors: Shiva Abdoli, Daniel T.Semere

Abstract:

Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.

Keywords: process parameters, cutting process, energy efficiency, Material Removal Rate (MRR)

Procedia PDF Downloads 495
1555 Determinants of Carbon-Certified Small-Scale Agroforestry Adoption In Rural Mount Kenyan

Authors: Emmanuel Benjamin, Matthias Blum

Abstract:

Purpose – We address smallholder farmers’ restricted possibilities to adopt sustainable technologies which have direct and indirect benefits. Smallholders often face little asset endowment due to small farm size und insecure property rights, therefore experiencing constraints in adopting agricultural innovation. A program involving payments for ecosystem services (PES) benefits poor smallholder farmers in developing countries in many ways and has been suggested as a means of easing smallholder farmers’ financial constraints. PES may also provide additional mainstay which can eventually result in more favorable credit contract terms due to the availability of collateral substitute. Results of this study may help to understand the barriers, motives and incentives for smallholders’ participation in PES and help in designing a strategy to foster participation in beneficial programs. Design/methodology/approach – This paper uses a random utility model and a logistic regression approach to investigate factors that influence agroforestry adoption. We investigate non-monetary factors, such as information spillover, that influence the decision to adopt such conservation strategies. We collected original data from non-government-run agroforestry mitigation programs with PES that have been implemented in the Mount Kenya region. Preliminary Findings – We find that spread of information, existing networks and peer involvement in such programs drive participation. Conversely, participation by smallholders does not seem to be influenced by education, land or asset endowment. Contrary to some existing literature, we found weak evidence for a positive correlation between the adoption of agroforestry with PES and age of smallholder, e.g., one increases with the other, in the Mount Kenyan region. Research implications – Poverty alleviation policies for developing countries should target social capital to increase the adoption rate of modern technologies amongst smallholders.

Keywords: agriculture innovation, agroforestry adoption, smallholders, payment for ecosystem services, Sub-Saharan Africa

Procedia PDF Downloads 381
1554 Changing Patterns of Marriage and Sexual Relations among Young Single Female Workers in Garment Factories in Gazipur, Bangladesh

Authors: Runa Laila

Abstract:

In Bangladesh, migration and employment opportunities in the ready-made garment factories presented an alternative to early and arranged-marriage to many young women from the countryside. Although the positive impact of young women’s labour migration and employment in the garment industry on economic independence, increased negotiation power, and enhancement of self-esteem have been well documented, impact of employment on sexual norms and practices remained under-researched. This ethnographic study comprising of an in-depth interview of 21 single young women working in various garment factories in Gazipur, Dhaka, explores the implication of work on sexual norms and practices. This study found young single garment workers experience a range of consensual and coercive sexual relations. The mixed-sex work environment in the garment manufacturing industry and private housing arrangements provide young single women opportunities to develop romantic and sexual relationships in the transient urban space, which was more restricted in the rural areas. The use of mobile phones further aids lovers to meet in amusement parks, friends’ houses, or residential hotels beyond the gaze of colleagues and neighbors. Due to sexual double standard, men’s sexual advantage is seen as natural and accepted, while women are being blamed as immoral for being engaged in pre-marital sex. Although self-choice marriage and premarital relations reported to be common among garment workers, stigma related to premarital sex lead young single women to resort to secret abortion practices. Married men also use power position to lure women in a subordinate position in coerce sexual relations, putting their reproductive and psychological health at risk. To improve sexual and reproductive health and wellbeing of young female garment workers, it is important to understand these changing sexual practices which otherwise remain taboo in public health discourses.

Keywords: female migration, ready-made garment, reproductive health, sexual practice

Procedia PDF Downloads 185
1553 Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification

Authors: S. Kherchaoui, A. Houacine

Abstract:

This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space.

Keywords: facial expression identification, curvelet coefficient, support vector machine (SVM), recognition system

Procedia PDF Downloads 231
1552 Contribution to the Evaluation of Uncertainties of Measurement to the Data Processing Sequences of a Cmm

Authors: Hassina Gheribi, Salim Boukebbab

Abstract:

The measurement of the parts manufactured on CMM (coordinate measuring machine) is based on the association of a surface of perfect geometry to the group of dots palpated via a mathematical calculation of the distances between the palpated points and itself surfaces. Surfaces not being never perfect, they are measured by a number of points higher than the minimal number necessary to define them mathematically. However, the central problems of three-dimensional metrology are the estimate of, the orientation parameters, location and intrinsic of this surface. Including the numerical uncertainties attached to these parameters help the metrologist to make decisions to be able to declare the conformity of the part to specifications fixed on the design drawing. During this paper, we will present a data-processing model in Visual Basic-6 which makes it possible automatically to determine the whole of these parameters, and their uncertainties.

Keywords: coordinate measuring machines (CMM), associated surface, uncertainties of measurement, acquisition and modeling

Procedia PDF Downloads 324
1551 Work-Related Musculoskeletal Disorders Among Malaysian Office Workers in Klang Valley

Authors: Mohd Fadzly Yahya, Matthew Teo Yong Chang

Abstract:

Globally, the increasing life expectancy of human beings has brought more issues with non-communicable diseases, especially work-related musculoskeletal disorders (WMDs). WMSD also is one of the leading causes of health-related absence from work restricted work time in Malaysia. WMDs are cumulative disorders, resulting from repeated exposure to high or low-intensity loads over a long period. Evidence from a previous study showed that office workers in government and private sectors were showing high WRMDs prevalence in Malaysia. The objectives of this study were to determine the prevalence of MSDs among Malaysian office workers in Klang Valley and to identify the association between MSDs pain and working experience among office workers. This is a cross-sectional study focusing on officer workers in the Klang Valley area. The questionnaires consisted of the subject’s demographics, Nordic Musculoskeletal Questionnaire, and The Numeric Pain Rating Scale were distributed online via google forms to all consenting participants. The data were analyzed for descriptive analysis, parametric test, and student T-test using IBM SPSS Statistics Version 27. From a total of 244 participants, 95 (38.9%) were male and 149 (61.1%) were female. 57.8% of the total samples were government staff while private-sector workers were 42.2%. The highest MSDs prevalence was neck pain during the last 12 months which contributed to 69.3% (n=169) of total participants, which is male 38.5% (n=65) and female 61.5% (n=104). Our study revealed that female office workers have a higher prevalence of WMDs and there is a significant difference in elbow pain, wrist, and hands pain, and lower back pain across four different working experience groups. Office workers in this study were highly exposed to MSDs due to poor ergonomics implementation at the workplace. It is crucial to advocate preventative measures to employers such as workplace ergonomics and changes to work practices to reduce the incidence of MSDs cases in office settings.

Keywords: musculoskeletal disorders, pain, prevalence rate, office workers, risks

Procedia PDF Downloads 132
1550 Experimental Study of Various Sandwich Composites

Authors: R. Naveen, E. Vanitha, S. Gayathri

Abstract:

The use of Sandwich composite materials in aerospace and civil infrastructure application has been increasing especially due to their enormously low weight that leads to a reduction in the total weight and fuel consumption, high flexural and transverse shear stiffness, and corrosion resistance. The essential properties of sandwich materials vary according to the application area of the structure. The objectives of this study are to identify the mechanical behaviour and failure mechanisms of sandwich structures made of bamboo, V- board and metal (Aluminium as face sheet and Foam as Core material). The three-point bending test and UTM (Universal testing machine) experimental tests are done for three specimens for each type of sandwich composites. From the experiment results of three sandwich composites, bamboo shows high Young’s modulus of elasticity and low density.

Keywords: bamboo sandwich composite, metal sandwich composite, sandwich composite, v-board sandwich composite

Procedia PDF Downloads 255
1549 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection

Authors: Tim Farrelly

Abstract:

In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.

Keywords: deep learning, object detection, machine vision applications, sport, network design

Procedia PDF Downloads 143
1548 Genotypic Identification of Oral Bacteria Using 16S rRNA in Children with and without Early Childhood Caries in Kelantan, Malaysia

Authors: Zuliani Mahmood, Thirumulu Ponnuraj Kannan, Yean Yean Chan, Salahddin A. Al-Hudhairy

Abstract:

Caries is the most common childhood disease which develops due to disturbances in the physiological equilibrium in the dental plaque resulting in demineralization of tooth structures. Plaque and dentine samples were collected from three different tooth surfaces representing caries progression (intact, over carious lesion and dentine) in children with early childhood caries (ECC, n=36). In caries free (CF) children, plaque samples were collected from sound tooth surfaces at baseline and after one year (n=12). The genomic DNA was extracted from all samples and subjected to 16S rRNA PCR amplification. The end products were cloned into pCR®2.1-TOPO® Vector. Five randomly selected positive clones collected from each surface were sent for sequencing. Identification of the bacterial clones was performed using BLAST against GenBank database. In the ECC group, the frequency of Lactobacillus sp. detected was significantly higher in the dentine surface (p = 0.031) than over the cavitated lesion. The highest frequency of bacteria detected in the intact surfaces was Fusobacterium nucleatum subsp. polymorphum (33.3%) while Streptococcus mutans was detected over the carious lesions and dentine surfaces at a frequency of 33.3% and 52.7% respectively. Fusobacterium nucleatum subsp. polymorphum was also found to be highest in the CF group (41.6%). Follow up at the end of one year showed that the frequency of Corynebacterium matruchotii detected was highest in those who remained caries free (16.6%), while Porphyromonas catoniae was highest in those who developed caries (25%). In conclusion, Streptococcus mutans and Porphyromonas catoniae are strongly associated with caries progression, while Lactobacillus sp. is restricted to deep carious lesions. Fusobacterium nucleatum subsp. polymorphum and Corynebacterium matruchotii may play a role in sustaining the healthy equilibrium in the dental plaque. These identified bacteria show promise as potential biomarkers in diagnosis which could help in the management of dental caries in children.

Keywords: early childhood caries, genotypic identification, oral bacteria, 16S rRNA

Procedia PDF Downloads 273
1547 Characterization of the Music Admission Requirements and Evaluation of the Relationship among Motivation and Performance Achievement

Authors: Antonio M. Oliveira, Patricia Oliveira-Silva, Jose Matias Alves, Gary McPherson

Abstract:

The music teaching is oriented towards offering formal music training. Due to its specificities, this vocational program starts at a very young age. Although provided by the State, the offer is limited to 6 schools throughout the country, which means that the vacancies for prospective students are very limited every year. It is therefore crucial that these vacancies be taken by especially motivated children grown within households that offer the ideal setting for success. Some of the instruments used to evaluate musical performance are highly sensitive to specific previous training, what represents a severe validity problem for testing children who have had restricted opportunities for formal training. Moreover, these practices may be unfair because, for instance, they may not reflect the candidates’ music aptitudes. Based on what constitutes a prerequisite for making an excellent music student, researchers in this field have long argued that motivation, task commitment, and parents’ support are as important as ability. Thus, the aim of this study is: (1) to prepare an inventory of admission requirements in Australia, Portugal and Ireland; (2) to examine whether the candidates to music conservatories and parents’ level of motivation, assessed at three evaluation points (i.e., admission, at the end of the first year, and at the end of the second year), correlates positively with the candidates’ progress in learning a musical instrument (i.e., whether motivation at the admission may predict student musicianship); (3) an adaptation of an existing instrument to assess the motivation (i.e., to adapt the items to the music setting, focusing on the motivation for playing a musical instrument). The inclusion criteria are: only children registered in the administrative services to be evaluated for entrance to the conservatory will be accepted for this study. The expected number of participants is fifty (5-6 years old) in all the three frequency schemes: integrated, articulated and supplementary. Revisiting musical admission procedures is of particular importance and relevance to musical education because this debate may bring guidance and assistance about the needed improvement to make the process of admission fairer and more transparent.

Keywords: music learning, music admission requirements, student’s motivation, parent’s motivation

Procedia PDF Downloads 163
1546 Turbulent Boundary Layer over 3D Sinusoidal Roughness

Authors: Misarah Abdelaziz, L Djenidi, Mergen H. Ghayesh, Rey Chin

Abstract:

Measurements of a turbulent boundary layer over 3D sinusoidal roughness are performed for friction Reynolds numbers ranging from 650 < Reτ < 2700. This surface was fabricated by a Multicam CNC Router machine of an acrylic sheet to have an amplitude of k/2 = 0.8 mm and an equal wavelength of 8k in both streamwise and spanwise directions, a 0.6 mm stepover and 12 mm ball nose cutter was used. Single hotwire anemometry measurements are done at one location x=1.5 m downstream at different freestream velocities under zero-pressure gradient conditions. As expected, the roughness causes a downward shift on the wall-unit normalised streamwise mean velocity profile when compared to the smooth wall profile. The shift is increasing with increasing Reτ, 1.8 < ∆U+ < 6.2. The coefficient of friction is almost constant at all cases Cf = 0.0042 ± 0.0002. The results show a gradual reduction in the inner peak of profiles with increasing Reτ until fully destruction at Reτ of 2700.

Keywords: hotwire, roughness, TBL, ZPG

Procedia PDF Downloads 217
1545 Motor Gear Fault Diagnosis by Measurement of Current, Noise and Vibration on AC Machine

Authors: Sun-Ki Hong, Ki-Seok Kim, Yong-Ho Jo

Abstract:

Lots of motors have been being used in industry. Therefore many researchers have studied about the failure diagnosis of motors. In this paper, the effect of measuring environment for diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. For bad and good environment, the diagnosis results are compared. From these, it is shown that the bad measuring environment may not be able to detect exactly the motor gear fault. Therefore it is emphasized that the measuring environment should be carefully prepared.

Keywords: motor fault, diagnosis, FFT, vibration, noise, q-axis current, measuring environment

Procedia PDF Downloads 555
1544 A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials

Authors: Marc Sader, Michiel Stock, Bernard De Baets

Abstract:

Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported.

Keywords: adsorption, predictive modeling, QSAR, random forest

Procedia PDF Downloads 225
1543 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets

Authors: Debjit Ray

Abstract:

Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.

Keywords: genomics, pathogens, genome assembly, superbugs

Procedia PDF Downloads 196
1542 The Effectiveness of Probiotics in the Treatment of Minimal Hepatic Encephalopathy Among Patients with Cirrhosis: An Expanded Meta-Analysis

Authors: Erwin Geroleo, Higinio Mappala

Abstract:

Introduction Overt Hepatic Encephalopathy (OHE) is the most dreaded outcome of liver cirrhosis. Aside from the triggering factors which are already known to precipitate OHE, there is growing evidence that an altered gut microbiota profile (dysbiosis) can also trigger OHE. MHE is the mildest form of hepatic encephalopathy(HE), affecting about one-third of patients with cirrhosis, and close 80% of patients with cirrhosis and manifests as abnormalities in central nervous system function. Since these symptoms are subclinical most patients are not being treated to prevent OHE. The gut microbiota have been evaluated by several studies as a therapeutic option for MHE, especially in decreasing the levels of ammonia, thus preventing progression to OHE Objectives This study aims to evaluate the efficacy of probiotics in terms of reduction of ammonia levels in patient with minimal hepatic encephalopathies and to determine if Probiotics has role in the prevention of progression to overt hepatic encephalopathy in adult patients with minimal hepatic encephalopathy (MHE) Methods and Analysis The literature search strategy was restricted to human studies in adults subjects from 2004 to 2022. The Jadad Score Calculation was utilized in the assessment of the final studies included in this study. Eight (8) studies were included. Cochrane’s Revman Web, the Fixed Effects model and the Ztest were all used in the overall analysis of the outcomes. A p value of less than 0.0005 was statistically significant. Results. These results show that Probiotics significantly lowers the level of Ammonia in Cirrhotic patients with OHE. It also shows that the use of Probiotics significantly prevents the progression of MHE to OHE. The overall risk of bias graph indicates low risk of publication bias among the studies included in the meta-analysis. Main findings This research found that plasma ammonia concentration was lower among participants treated with probiotics (p<0.00001).) Ammonia level of the probiotics group is lower by 13.96 μmol/ on the average. Overall risk of developing overt hepatic encephalopathy in the probiotics group is shown to be decreased by 15% as compared to the placebo group Conclusion The analysis showed that compared with placebo, probiotics can decrease serum ammonia, may improve MHE and may prevent OHE.

Keywords: minimal hepatic encephalopathy, probiotics, liver cirrhosis, overt hepatic encephalopathy

Procedia PDF Downloads 43
1541 Evaluating Classification with Efficacy Metrics

Authors: Guofan Shao, Lina Tang, Hao Zhang

Abstract:

The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.

Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty

Procedia PDF Downloads 207
1540 Efficient Passenger Counting in Public Transport Based on Machine Learning

Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa

Abstract:

Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.

Keywords: computer vision, object detection, passenger counting, public transportation

Procedia PDF Downloads 151
1539 Ethical, Legal and Societal Aspects of Unmanned Aircraft in Defence

Authors: Henning Lahmann, Benjamyn I. Scott, Bart Custers

Abstract:

Suboptimal adoption of AI in defence organisations carries risks for the protection of the freedom, safety, and security of society. Despite the vast opportunities that defence AI-technology presents, there are also a variety of ethical, legal, and societal concerns. To ensure the successful use of AI technology by the military, ethical, legal, and societal aspects (ELSA) need to be considered, and their concerns continuously addressed at all levels. This includes ELSA considerations during the design, manufacturing and maintenance of AI-based systems, as well as its utilisation via appropriate military doctrine and training. This raises the question how defence organisations can remain strategically competitive and at the edge of military innovation, while respecting the values of its citizens. This paper will explain the set-up and share preliminary results of a 4-year research project commissioned by the National Research Council in the Netherlands on the ethical, legal, and societal aspects of AI in defence. The project plans to develop a future-proof, independent, and consultative ecosystem for the responsible use of AI in the defence domain. In order to achieve this, the lab shall devise a context-dependent methodology that focuses on the ‘analysis’, ‘design’ and ‘evaluation’ of ELSA of AI-based applications within the military context, which include inter alia unmanned aircraft. This is bolstered as the Lab also recognises and complements the existing methods in regards to human-machine teaming, explainable algorithms, and value-sensitive design. Such methods will be modified for the military context and applied to pertinent case-studies. These case-studies include, among others, the application of autonomous robots (incl. semi- autonomous) and AI-based methods against cognitive warfare. As the perception of the application of AI in the military context, by both society and defence personnel, is important, the Lab will study how these perceptions evolve and vary in different contexts. Furthermore, the Lab will monitor – as they may influence people’s perception – developments in the global technological, military and societal spheres. Although the emphasis of the research project is on different forms of AI in defence, it focuses on several case studies. One of these case studies is on unmanned aircraft, which will also be the focus of the paper. Hence, ethical, legal, and societal aspects of unmanned aircraft in the defence domain will be discussed in detail, including but not limited to privacy issues. Typical other issues concern security (for people, objects, data or other aircraft), privacy (sensitive data, hindrance, annoyance, data collection, function creep), chilling effects, PlayStation mentality, and PTSD.

Keywords: autonomous weapon systems, unmanned aircraft, human-machine teaming, meaningful human control, value-sensitive design

Procedia PDF Downloads 91
1538 Design and Implementation of a Wearable Artificial Kidney Prototype for Home Dialysis

Authors: R. A. Qawasma, F. M. Haddad, H. O. Salhab

Abstract:

Hemodialysis is a life-preserving treatment for a number of patients with kidney failure. The standard procedure of hemodialysis is three times a week during the hemodialysis procedure, the patient usually suffering from many inconvenient, exhausting feeling and effect on the heart and cardiovascular system are the most common signs. This paper provides a solution to reduce the previous problems by designing a wearable artificial kidney (WAK) taking in consideration a minimization the size of the dialysis machine. The WAK system consists of two circuits: blood circuit and dialysate circuit. The blood from the patient is filtered in the dialyzer before returning back to the patient. Several parameters using an advanced microcontroller and array of sensors. WAK equipped with visible and audible alarm system to aware the patients if there is any problem.

Keywords: artificial kidney, home dialysis, renal failure, wearable kidney

Procedia PDF Downloads 233
1537 Texture-Based Image Forensics from Video Frame

Authors: Li Zhou, Yanmei Fang

Abstract:

With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment.

Keywords: multimedia forensics, video frame, LBP, MTP, SVM

Procedia PDF Downloads 424
1536 A Molding Surface Auto-inspection System

Authors: Ssu-Han Chen, Der-Baau Perng

Abstract:

Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded, defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.

Keywords: molding surface, machine vision, statistical texture, discrete Fourier transformation

Procedia PDF Downloads 430
1535 Multimodal Employee Attendance Management System

Authors: Khaled Mohammed

Abstract:

This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.

Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio

Procedia PDF Downloads 154
1534 Integrating Wearable Devices in Real-Time Computer Applications of Petrochemical Systems

Authors: Paul B Stone, Subhashini Ganapathy, Mary E. Fendley, Layla Akilan

Abstract:

As notifications become more common through mobile devices, it is important to understand the impact of wearable devices on the improved user experience of man-machine interfaces. This study examined the use of a wearable device for a real-time system using a computer-simulated petrochemical system. The key research question was to determine how using the information provided by the wearable device can improve human performance through measures of situational awareness and decision making. Results indicate that there was a reduction in response time when using the watch, and there was no difference in situational awareness. Perception of using the watch was positive, with 83% of users finding value in using the watch and receiving haptic feedback.

Keywords: computer applications, haptic feedback, petrochemical systems, situational awareness, wearable technology

Procedia PDF Downloads 199
1533 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module

Procedia PDF Downloads 341
1532 Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm

Authors: Tomasz Robert Kuczerski

Abstract:

The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method.

Keywords: algorithm analysis, autonomous system, quantum optimization, tandem detonator

Procedia PDF Downloads 90
1531 A Multi-Agent Urban Traffic Simulator for Generating Autonomous Driving Training Data

Authors: Florin Leon

Abstract:

This paper describes a simulator of traffic scenarios tailored to facilitate autonomous driving model training for urban environments. With the rising prominence of self-driving vehicles, the need for diverse datasets is very important. The proposed simulator provides a flexible framework that allows the generation of custom scenarios needed for the validation and enhancement of trajectory prediction algorithms. Its controlled yet dynamic environment addresses the challenges associated with real-world data acquisition and ensures adaptability to diverse driving scenarios. By providing an adaptable solution for scenario creation and algorithm testing, this tool proves to be a valuable resource for advancing autonomous driving technology that aims to ensure safe and efficient self-driving vehicles.

Keywords: autonomous driving, car simulator, machine learning, model training, urban simulation environment

Procedia PDF Downloads 57
1530 Manifestations of Moral Imagination during the COVID-19 Pandemic in the Debates of Lithuanian Parliament

Authors: Laima Zakaraite, Vaidas Morkevicius

Abstract:

The COVID-19 pandemic brought important and pressing challenges for politicians around the world. Governments, parliaments, and political leaders had to make quick decisions about containment of the pandemic, usually without clear knowledge about the factual spread of the virus, the possible expected speed of spread, and levels of mortality. Opinions of experts were also divided, as some advocated for ‘herd immunity’ without closing down the economy and public life, and others supported the idea of strict lockdown. The debates about measures of pandemic containment were heated and involved strong moral tensions with regard to the possible outcomes. This paper proposes to study the manifestations of moral imagination in the political debates regarding the COVID-19 pandemic. Importantly, moral imagination is associated with twofold abilities of a decision-making actor: the ability to discern the moral aspects embedded within a situation and the ability to envision a range of possibilities alternative solutions to the situation from a moral perspective. The concept was most thoroughly investigated in business management studies. However, its relevance for the study of political decision-making is also rather clear. The results of the study show to what extent politicians are able to discern the wide range of moral issues related to a situation (in this case, consequences of COVID-19 pandemic in a country) and how broad (especially, from a moral perspective) are discussions of the possible solutions proposed for solving the problem (situation). Arguably, political discussions and considerations are broader and affected by a wider and more varied range of actors and ideas compared to decision making in the business management sector. However, the debates and ensuing solutions may also be restricted by ideological maxims and advocacy of special interests. Therefore, empirical study of policy proposals and their debates might reveal the actual breadth of moral imagination in political discussions. For this purpose, we carried out the qualitative study of the parliamentary debates related to the COVID-19 pandemic in Lithuania during the first wave (containment of which was considered very successful) and at the beginning and consequent acceleration of the second wave (when the spread of the virus became uncontrollable).

Keywords: decision making, moral imagination, political debates, political decision

Procedia PDF Downloads 146
1529 Conception of a Predictive Maintenance System for Forest Harvesters from Multiple Data Sources

Authors: Lazlo Fauth, Andreas Ligocki

Abstract:

For cost-effective use of harvesters, expensive repairs and unplanned downtimes must be reduced as far as possible. The predictive detection of failing systems and the calculation of intelligent service intervals, necessary to avoid these factors, require in-depth knowledge of the machines' behavior. Such know-how needs permanent monitoring of the machine state from different technical perspectives. In this paper, three approaches will be presented as they are currently pursued in the publicly funded project PreForst at Ostfalia University of Applied Sciences. These include the intelligent linking of workshop and service data, sensors on the harvester, and a special online hydraulic oil condition monitoring system. Furthermore the paper shows potentials as well as challenges for the use of these data in the conception of a predictive maintenance system.

Keywords: predictive maintenance, condition monitoring, forest harvesting, forest engineering, oil data, hydraulic data

Procedia PDF Downloads 140
1528 Reusing of HSS Hacksaw Blades as Rough Machining Tool

Authors: Raja V., Chokkalingam B.

Abstract:

For rough cutting, in many industries and educational institutions using carbon steels or HSS single point cutting tools in center lathe machine. In power hacksaw blades, only the cutter teeth region used to parting off the given material. The portions other than the teeth can be used as a single point cutting tool for rough turning and facing on soft materials. The hardness and Tensile strength of this used Power hacksaw blade is almost same as conventional cutting tools. In this paper, the effect of power hacksaw blades over conventional tool has been compared. Thickness of the blade (1.6 mm) is very small compared to its length and width. Hence, a special tool holding device is designed to hold the tool.

Keywords: hardness, high speed steels, power hacksaw blade, tensile strength

Procedia PDF Downloads 456
1527 Green Thumb Engineering - Explainable Artificial Intelligence for Managing IoT Enabled Houseplants

Authors: Antti Nurminen, Avleen Malhi

Abstract:

Significant progress in intelligent systems in combination with exceedingly wide application domains having machine learning as the core technology are usually opaque, non-intuitive, and commonly complex for human users. We use innovative IoT technology which monitors and analyzes moisture, humidity, luminosity and temperature levels to assist end users for optimization of environmental conditions for their houseplants. For plant health monitoring, we construct a system yielding the Normalized Difference Vegetation Index (NDVI), supported by visual validation by users. We run the system for a selected plant, basil, in varying environmental conditions to cater for typical home conditions, and bootstrap our AI with the acquired data. For end users, we implement a web based user interface which provides both instructions and explanations.

Keywords: explainable artificial intelligence, intelligent agent, IoT, NDVI

Procedia PDF Downloads 161