Search results for: failure detection and prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7729

Search results for: failure detection and prediction

5869 Multi-Faceted Growth in Creative Industries

Authors: Sanja Pfeifer, Nataša Šarlija, Marina Jeger, Ana Bilandžić

Abstract:

The purpose of this study is to explore the different facets of growth among micro, small and medium-sized firms in Croatia and to analyze the differences between models designed for all micro, small and medium-sized firms and those in creative industries. Three growth prediction models were designed and tested using the growth of sales, employment and assets of the company as dependent variables. The key drivers of sales growth are: prudent use of cash, industry affiliation and higher share of intangible assets. Growth of assets depends on retained profits, internal and external sources of financing, as well as industry affiliation. Growth in employment is closely related to sources of financing, in particular, debt and it occurs less frequently than growth in sales and assets. The findings confirm the assumption that growth strategies of small and medium-sized enterprises (SMEs) in creative industries have specific differences in comparison to SMEs in general. Interestingly, only 2.2% of growing enterprises achieve growth in employment, assets and sales simultaneously.

Keywords: creative industries, growth prediction model, growth determinants, growth measures

Procedia PDF Downloads 333
5868 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform

Authors: David Jurado, Carlos Ávila

Abstract:

Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.

Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis

Procedia PDF Downloads 85
5867 Detection of Cryptosporidium Oocysts by Acid-Fast Staining Method and PCR in Surface Water from Tehran, Iran

Authors: Mohamad Mohsen Homayouni, Niloofar Taghipour, Ahmad Reza Memar, Niloofar Khalaji, Hamed Kiani, Seyyed Javad Seyyed Tabaei

Abstract:

Background and Objective: Cryptosporidium is a coccidian protozoan parasite; its oocysts in surface water are a global health problem. Due to the low number of parasites in the water resources and the lack of laboratory culture, rapid and sensitive method for detection of the organism in the water resources is necessarily required. We applied modified acid-fast staining and PCR for the detection of the Cryptosporidium spp. and analysed the genotypes in 55 samples collected from surface water. Methods: Over a period of nine months, 55 surface water samples were collected from the five rivers in Tehran, Iran. The samples were filtered by using cellulose acetate membrane filters. By acid fast method, initial identification of Cryptosporidium oocyst were carried out on surface water samples. Then, nested PCR assay was designed for the specific amplification and analysed the genotypes. Results: Modified Ziehl-Neelsen method revealed 5–20 Cryptosporidium oocysts detected per 10 Liter. Five out of the 55 (9.09%) surface water samples were found positive for Cryptosporidium spp. by Ziehl-Neelsen test and seven (12.7%) were found positive by nested PCR. The staining results were consistent with PCR. Seven Cryptosporidium PCR products were successfully sequenced and five gp60 subtypes were detected. Our finding of gp60 gene revealed that all of the positive isolates were Cryptosporidium parvum and belonged to subtype families IIa and IId. Conclusion: Our investigations were showed that collection of water samples were contaminated by Cryptosporidium, with potential hazards for the significant health problem. This study provides the first report on detection and genotyping of Cryptosporidium species from surface water samples in Iran, and its result confirmed the low clinical incidence of this parasite on the community.

Keywords: Cryptosporidium spp., membrane filtration, subtype, surface water, Iran

Procedia PDF Downloads 417
5866 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores

Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi

Abstract:

In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.

Keywords: drug synergy, clustering, prediction, machine learning., deep learning

Procedia PDF Downloads 83
5865 Development of Risk-Based Dam Safety Framework in Climate Change Condition for Batu Dam, Malaysia

Authors: Wan Noorul Hafilah Binti Wan Ariffin

Abstract:

Dam safety management is the crucial infrastructure as dam failure has a catastrophic effect on the community. Dam safety management is the effective framework of key actions and activities for the dam owner to manage the safety of the dam for its entire life cycle. However, maintaining dam safety is a challenging task as there are changes in current dam states. These changes introduce new risks to the dam's safety, which had not been considered when the dam was designed. A new framework has to be developed to adapt to the changes in the dam risk and make the dams resilient. This study proposes a risk-based decision-making adaptation framework for dam safety management. The research focuses on climate change's impact on hydrological situations as it causes floods and damages the dam structure. The risk analysis framework is adopted to improve the dam management strategies. The proposed study encompasses four phases. To start with, measuring the effect by assessing the impact of climate change on embankment dam, the second phase is to analyze the potential embankment dam failures. The third is analyzing the different components of risks related to the dam and, finally, developing a robust decision-making framework.

Keywords: climate change, embankment dam, failure, risk-informed decision making

Procedia PDF Downloads 172
5864 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 364
5863 Design and Development of Novel Anion Selective Chemosensors Derived from Vitamin B6 Cofactors

Authors: Darshna Sharma, Suban K. Sahoo

Abstract:

The detection of intracellular fluoride in human cancer cell HeLa was achieved by chemosensors derived from vitamin B6 cofactors using fluorescence imaging technique. These sensors were first synthesized by condensation of pyridoxal/pyridoxal phosphate with 2-amino(thio)phenol. The anion recognition ability was explored by experimental (UV-VIS, fluorescence and 1H NMR) and theoretical DFT [(B3LYP/6-31G(d,p)] methods in DMSO and mixed DMSO-H2O system. All the developed sensors showed both naked-eye detectable color change and remarkable fluorescence enhancement in the presence of F- and AcO-. The anion recognition was occurred through the formation of hydrogen bonded complexes between these anions and sensor, followed by the partial deprotonation of sensor. The detection limit of these sensors were down to micro(nano) molar level of F- and AcO-.

Keywords: chemosensors, fluoride, acetate, turn-on, live cells imaging, DFT

Procedia PDF Downloads 404
5862 Productivity Improvement of Faffa Food Share Company Using a Computerized Maintenance Management System

Authors: Gadisa Alemayehu, Muralidhar Avvari, Atkilt Mulu G.

Abstract:

Since 1962 EC, the Faffa Food Share Company has been producing and supplying flour (famix) and value-added flour (baby food) in Ethiopia. It meets nearly all of the country's total flour demand, both for relief and commercial markets. However, it is incompetent in the international market due to a poor maintenance management system. The results of recorded documents and stopwatches revealed that frequent failure machines, as well as a poor maintenance management system, cause increased production downtimes, resulting in a 29.19 percent decrease in production from the planned production. As a result, the current study's goal is to recommend newly developed software for use in and as a Computerized Maintenance Management System (CMMS). As a result, the system increases machine reliability and decreases the frequency of equipment failure, reducing breakdown time and maintenance costs. The company's overall manufacturing performance improved by 4.45 percent, particularly after the implementation of the CMMS.

Keywords: CMMS, manufacturing performance, delivery, availability, flexibility, Faffa Food Share Company

Procedia PDF Downloads 140
5861 Efficient Passenger Counting in Public Transport Based on Machine Learning

Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa

Abstract:

Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.

Keywords: computer vision, object detection, passenger counting, public transportation

Procedia PDF Downloads 157
5860 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System

Authors: Lixin Tian, Wei Xue

Abstract:

Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.

Keywords: cyclic shift, multiple detection, parallel combined spread spectrum, PN code

Procedia PDF Downloads 140
5859 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition

Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil

Abstract:

The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.

Keywords: DT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.

Procedia PDF Downloads 241
5858 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution

Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani Alghamdi

Abstract:

Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.

Keywords: binary segmentation, change point, exponentialLomax distribution, information criterion

Procedia PDF Downloads 177
5857 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 60
5856 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails

Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali

Abstract:

When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.

Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis

Procedia PDF Downloads 51
5855 Comparison of Different Intraocular Lens Power Calculation Formulas in People With Very High Myopia

Authors: Xia Chen, Yulan Wang

Abstract:

purpose: To compare the accuracy of Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, Emmetropia Verifying Optical (EVO) and Kane for intraocular lens power calculation in patients with axial length (AL) ≥ 28 mm. Methods: In this retrospective single-center study, 50 eyes of 41 patients with AL ≥ 28 mm that underwent uneventful cataract surgery were enrolled. The actual postoperative refractive results were compared to the predicted refraction calculated with different formulas (Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, EVO and Kane). The mean absolute prediction errors (MAE) 1 month postoperatively were compared. Results: The MAE of different formulas were as follows: Haigis (0.509), SRK/T (0.705), T2 (0.999), Holladay 1 (0.714), Hoffer Q (0.583), Barrett Universal II (0.552), EVO (0.463) and Kane (0.441). No significant difference was found among the different formulas (P = .122). The Kane and EVO formulas achieved the lowest level of mean prediction error (PE) and median absolute error (MedAE) (p < 0.05). Conclusion: The Kane and EVO formulas had a better success rate than others in predicting IOL power in high myopic eyes with AL longer than 28 mm in this study.

Keywords: cataract, power calculation formulas, intraocular lens, long axial length

Procedia PDF Downloads 88
5854 Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda

Authors: Emmanuel Iyamuremye

Abstract:

Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing.

Keywords: exceedances, extreme value theory, generalized Pareto distribution, Poisson generalized Pareto distribution

Procedia PDF Downloads 138
5853 Truthful or Untruthful Social Media Posts: Applying Statement Analysis to Decode online Deception

Authors: Christa L. Arnold, Margaret C. Stewart

Abstract:

This research shares the results of an exploratory study examining Statement Analysis (SA) to detect deception in online truthful and untruthful social media posts. Applying a Law Enforcement methodology SA, used in criminal interview statements, this research analyzes what is stated to assist in evaluating written deceptive information. Preliminary findings reveal qualitative and quantitative nuances for SA in online deception detection and uncover insights regarding digital deceptive behavior. Thus far, findings reveal truthful statements tend to differ from untruthful statements in both content and quality.

Keywords: deception detection, online deception, social media content, statement analysis

Procedia PDF Downloads 67
5852 Off-Policy Q-learning Technique for Intrusion Response in Network Security

Authors: Zheni S. Stefanova, Kandethody M. Ramachandran

Abstract:

With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.

Keywords: cyber security, intrusion prevention, optimal policy, Q-learning

Procedia PDF Downloads 242
5851 Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn, N. Prathengjit

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 522
5850 Electrospray Deposition Technique of Dye Molecules in the Vacuum

Authors: Nouf Alharbi

Abstract:

The electrospray deposition technique became an important method that enables fragile, nonvolatile molecules to be deposited in situ in high vacuum environments. Furthermore, it is considered one of the ways to close the gap between basic surface science and molecular engineering, which represents a gradual change in the range of scientist research. Also, this paper talked about one of the most important techniques that have been developed and aimed for helping to further develop and characterize the electrospray by providing data collected using an image charge detection instrument. Image charge detection mass spectrometry (CDMS) is used to measure speed and charge distributions of the molecular ions. As well as, some data has been included using SIMION simulation to simulate the energies and masses of the molecular ions through the system in order to refine the mass-selection process.

Keywords: charge, deposition, electrospray, image, ions, molecules, SIMION

Procedia PDF Downloads 135
5849 Threshold Sand Detection Limits for Acoustic Monitors in Multiphase Flow

Authors: Vinod Ponnagandla, Brenton McLaury, Siamack Shirazi

Abstract:

Sand production can lead to deposition of particles or erosion. Low production rates resulting in deposition can partially clog systems and cause under deposit corrosion. Commercially available nonintrusive acoustic sand detectors are attractive as they claim to detect sand production. Acoustic sand detectors are used during oil and gas production; however, operators often do not know the threshold detection limits of these devices. It is imperative to know the detection limits to appropriately plan for cleaning of separation equipment or examine risk of erosion. These monitors are based on detecting the acoustic signature of sand as the particles impact the pipe walls. The objective of this work is to determine threshold detection limits for acoustic sand monitors that are commercially available. The minimum threshold sand concentration that can be detected in a pipe are determined as a function of flowing gas and liquid velocities. A large scale flow loop with a 4-inch test section is utilized. Commercially available sand monitors (ClampOn and Roxar) are evaluated for different flow regimes, sand sizes and pipe orientation (vertical and horizontal). The manufacturers’ recommend that the monitors be placed on a bend to maximize the number of particle impacts, so results are shown for monitors placed at 45 and 90 degree positions in a bend. Acoustic sand monitors that clamp to the outside of pipe are passive and listen for solid particle impact noise. The threshold sand rate is calculated by eliminating the background noise created by the flow of gas and liquid in the pipe for various flow regimes that are generated in horizontal and vertical test sections. The average sand sizes examined are 150 and 300 microns. For stratified and bubbly flows the threshold sand rates are much higher than other flow regimes such as slug and annular flow regimes that are investigated. However, the background noise generated by slug flow regime is very high and cause a high uncertainty in detection limits. The threshold sand rates for annular flow and dry gas conditions are the lowest because of high gas velocities. The effects of monitor placement around elbows that are in vertical and horizontal pipes are also examined for 150 micron. The results show that the threshold sand rates that are detected in vertical orientation are generally lower for all various flow regimes that are investigated.

Keywords: acoustic monitor, sand, multiphase flow, threshold

Procedia PDF Downloads 412
5848 Prediction of Critical Flow Rate in Tubular Heat Exchangers for the Onset of Damaging Flow-Induced Vibrations

Authors: Y. Khulief, S. Bashmal, S. Said, D. Al-Otaibi, K. Mansour

Abstract:

The prediction of flow rates at which the vibration-induced instability takes place in tubular heat exchangers due to cross-flow is of major importance to the performance and service life of such equipment. In this paper, the semi-analytical model for square tube arrays was extended and utilized to study the triangular tube patterns. A laboratory test rig with instrumented test section is used to measure the fluidelastic coefficients to be used for tuning the mathematical model. The test section can be made of any bundle pattern. In this study, two test sections were constructed for both the normal triangular and the rotated triangular tube arrays. The developed scheme is utilized in predicting the onset of flow-induced instability in the two triangular tube arrays. The results are compared to those obtained for two other bundle configurations. The results of the four different tube patterns are viewed in the light of TEMA predictions. The comparison demonstrated that TEMA guidelines are more conservative in all configurations considered

Keywords: fluid-structure interaction, cross-flow, heat exchangers,

Procedia PDF Downloads 279
5847 Ultrasensitive Hepatitis B Virus Detection in Blood Using Nano-Porous Silicon Oxide: Towards POC Diagnostics

Authors: N. Das, N. Samanta, L. Pandey, C. Roy Chaudhuri

Abstract:

Early diagnosis of infection like Hep-B virus in blood is important for low cost medical treatment. For this purpose, it is desirable to develop a point of care device which should be able to detect trace quantities of the target molecule in blood. In this paper, we report a nanoporous silicon oxide sensor which is capable of detecting down to 1fM concentration of Hep-B surface antigen in blood without the requirement of any centrifuge or pre-concentration. This has been made possible by the presence of resonant peak in the sensitivity characteristics. This peak is observed to be dependent only on the concentration of the specific antigen and not on the interfering species in blood serum. The occurrence of opposite impedance change within the pores and at the bottom of the pore is responsible for this effect. An electronic interface has also been designed to provide a display of the virus concentration.

Keywords: impedance spectroscopy, ultrasensitive detection in blood, peak frequency, electronic interface

Procedia PDF Downloads 405
5846 Robust Diagnosis Efficiency by Bond-Graph Approach

Authors: Benazzouz Djamel, Termeche Adel, Touati Youcef, Alem Said, Ouziala Mahdi

Abstract:

This paper presents an approach which detect and isolate efficiently a fault in a system. This approach avoids false alarms, non-detections and delays in detecting faults. A study case have been proposed to show the importance of taking into consideration the uncertainties in the decision-making procedure and their effect on the degradation diagnostic performance and advantage of using Bond Graph (BG) for such degradation. The use of BG in the Linear Fractional Transformation (LFT) form allows generating robust Analytical Redundancy Relations (ARR’s), where the uncertain part of ARR’s is used to generate the residuals adaptive thresholds. The study case concerns an electromechanical system composed of a motor, a reducer and an external load. The aim of this application is to show the effectiveness of the BG-LFT approach to robust fault detection.

Keywords: bond graph, LFT, uncertainties, detection and faults isolation, ARR

Procedia PDF Downloads 307
5845 Reduce the Impact of Wildfires by Identifying Them Early from Space and Sending Location Directly to Closest First Responders

Authors: Gregory Sullivan

Abstract:

The evolution of global warming has escalated the number and complexity of forest fires around the world. As an example, the United States and Brazil combined generated more than 30,000 forest fires last year. The impact to our environment, structures and individuals is incalculable. The world has learned to try to take this in stride, trying multiple ways to contain fires. Some countries are trying to use cameras in limited areas. There are discussions of using hundreds of low earth orbit satellites and linking them together, and, interfacing them through ground networks. These are all truly noble attempts to defeat the forest fire phenomenon. But there is a better, simpler answer. A bigger piece of the solutions puzzle is to see the fires while they are small, soon after initiation. The approach is to see the fires while they are very small and report their location (latitude and longitude) to local first responders. This is done by placing a sensor at geostationary orbit (GEO: 26,000 miles above the earth). By placing this small satellite in GEO, we can “stare” at the earth, and sense temperature changes. We do not “see” fires, but “measure” temperature changes. This has already been demonstrated on an experimental scale. Fires were seen at close to initiation, and info forwarded to first responders. it were the first to identify the fires 7 out of 8 times. The goal is to have a small independent satellite at GEO orbit focused only on forest fire initiation. Thus, with one small satellite, focused only on forest fire initiation, we hope to greatly decrease the impact to persons, property and the environment.

Keywords: space detection, wildfire early warning, demonstration wildfire detection and action from space, space detection to first responders

Procedia PDF Downloads 73
5844 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran

Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi

Abstract:

Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.

Keywords: watershed simulation, WetSpa, stream flow, flood prediction

Procedia PDF Downloads 245
5843 Flexural Response of Glass Fiber Reinforced Polymer Sandwich Panels with 3D Woven Honeycomb Core

Authors: Elif Kalkanli, Constantinos Soutis

Abstract:

The use of textile preform in the advanced fields including aerospace, automotive and marine has exponentially grown in recent years. These preforms offer excellent advantages such as being lightweight and low-cost, and also, their suitability for creating different fiber architectures with different materials whilst improved mechanical properties in certain aspects. In this study, a novel honeycomb core is developed by a 3Dweaving process. The assembly of the layers is achieved thanks to innovative weaving design. Polyester yarn is selected for the 3D woven honeycomb core (3DWHC). The core is used to manufacture a sandwich panel with 2x2 twill glass fiber composite face sheets. These 3DWHC sandwich panels will be tested in three-point bending. The in-plane and out-of-plane (through-the-thickness) mechanical response of the core will be examined as a function of cell size in addition to the flexural response of the sandwich panel. The failure mechanisms of the core and the sandwich skins will be reported in addition to flexural strength and stiffness. Possible engineering applications will be identified.

Keywords: 3D woven, assembly, failure modes, honeycomb sandwich panel

Procedia PDF Downloads 207
5842 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect

Authors: Maha Jazouli

Abstract:

Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.

Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition

Procedia PDF Downloads 191
5841 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering

Procedia PDF Downloads 400
5840 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran

Authors: Reza Zakerinejad

Abstract:

Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.

Keywords: TreeNet model, terrain analysis, Golestan Province, Iran

Procedia PDF Downloads 538