Search results for: co-citation networks; keyword co-occurrence network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6072

Search results for: co-citation networks; keyword co-occurrence network

4212 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length

Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale

Abstract:

Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity.

Keywords: heart sounds, PCG segmentation, event detection, recurrent neural networks, PCG curve length

Procedia PDF Downloads 175
4211 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 167
4210 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications

Authors: Niloufar Yadgari

Abstract:

GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.

Keywords: GAN, pathology, generative adversarial network, neuro imaging

Procedia PDF Downloads 24
4209 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 200
4208 Clubhouse: A Minor Rebellion against the Algorithmic Tyranny of the Majority

Authors: Vahid Asadzadeh, Amin Ataee

Abstract:

Since the advent of social media, there has been a wave of optimism among researchers and civic activists about the influence of virtual networks on the democratization process, which has gradually waned. One of the lesser-known concerns is how to increase the possibility of hearing the voices of different minorities. According to the theory of media logic, the media, using their technological capabilities, act as a structure through which events and ideas are interpreted. Social media, through the use of the learning machine and the use of algorithms, has formed a kind of structure in which the voices of minorities and less popular topics are lost among the commotion of the trends. In fact, the recommended systems and algorithms used in social media are designed to help promote trends and make popular content more popular, and content that belongs to minorities is constantly marginalized. As social networks gradually play a more active role in politics, the possibility of freely participating in the reproduction and reinterpretation of structures in general and political structures in particular (as Laclau‎ and Mouffe had in mind‎) can be considered as criteria to democracy in action. The point is that the media logic of virtual networks is shaped by the rule and even the tyranny of the majority, and this logic does not make it possible to design a self-foundation and self-revolutionary model of democracy. In other words, today's social networks, though seemingly full of variety But they are governed by the logic of homogeneity, and they do not have the possibility of multiplicity as is the case in immanent radical democracies (influenced by Gilles Deleuze). However, with the emergence and increasing popularity of Clubhouse as a new social media, there seems to be a shift in the social media space, and that is the diminishing role of algorithms and systems reconditioners as content delivery interfaces. This has led to the fact that in the Clubhouse, the voices of minorities are better heard, and the diversity of political tendencies manifests itself better. The purpose of this article is to show, first, how social networks serve the elimination of minorities in general, and second, to argue that the media logic of social networks must adapt to new interpretations of democracy that give more space to minorities and human rights. Finally, this article will show how the Clubhouse serves the new interpretations of democracy at least in a minimal way. To achieve the mentioned goals, in this article by a descriptive-analytical method, first, the relation between media logic and postmodern democracy will be inquired. The political economy popularity in social media and its conflict with democracy will be discussed. Finally, it will be explored how the Clubhouse provides a new horizon for the concepts embodied in radical democracy, a horizon that more effectively serves the rights of minorities and human rights in general.

Keywords: algorithmic tyranny, Clubhouse, minority rights, radical democracy, social media

Procedia PDF Downloads 142
4207 Hand Symbol Recognition Using Canny Edge Algorithm and Convolutional Neural Network

Authors: Harshit Mittal, Neeraj Garg

Abstract:

Hand symbol recognition is a pivotal component in the domain of computer vision, with far-reaching applications spanning sign language interpretation, human-computer interaction, and accessibility. This research paper discusses the approach with the integration of the Canny Edge algorithm and convolutional neural network. The significance of this study lies in its potential to enhance communication and accessibility for individuals with hearing impairments or those engaged in gesture-based interactions with technology. In the experiment mentioned, the data is manually collected by the authors from the webcam using Python codes, to increase the dataset augmentation, is applied to original images, which makes the model more compatible and advanced. Further, the dataset of about 6000 coloured images distributed equally in 5 classes (i.e., 1, 2, 3, 4, 5) are pre-processed first to gray images and then by the Canny Edge algorithm with threshold 1 and 2 as 150 each. After successful data building, this data is trained on the Convolutional Neural Network model, giving accuracy: 0.97834, precision: 0.97841, recall: 0.9783, and F1 score: 0.97832. For user purposes, a block of codes is built in Python to enable a window for hand symbol recognition. This research, at its core, seeks to advance the field of computer vision by providing an advanced perspective on hand sign recognition. By leveraging the capabilities of the Canny Edge algorithm and convolutional neural network, this study contributes to the ongoing efforts to create more accurate, efficient, and accessible solutions for individuals with diverse communication needs.

Keywords: hand symbol recognition, computer vision, Canny edge algorithm, convolutional neural network

Procedia PDF Downloads 57
4206 On Privacy-Preserving Search in the Encrypted Domain

Authors: Chun-Shien Lu

Abstract:

Privacy-preserving query has recently received considerable attention in the signal processing and multimedia community. It is also a critical step in wireless sensor network for retrieval of sensitive data. The purposes of privacy-preserving query in both the areas of signal processing and sensor network are the same, but the similarity and difference of the adopted technologies are not fully explored. In this paper, we first review the recently developed methods of privacy-preserving query, and then describe in a comprehensive manner what we can learn from the mutual of both areas.

Keywords: encryption, privacy-preserving, search, security

Procedia PDF Downloads 251
4205 Formation of Physicalist and Mental Consciousness from a Continuous Four-Dimensional Continuum

Authors: Nick Alex

Abstract:

Consciousness is inseparably connected with energy. Based on panpsychism, consciousness is a fundamental substance that emerged with the birth of the Universe from a continuous four-dimensional continuum. It consists of a physicalist form of consciousness characteristic of all matter and a mental form characteristic of neural networks. Due to the physicalist form of consciousness, metabolic processes were formed, and life in the form of living matter emerged. It is the same for all living matter. Mental consciousness began to develop 3000 million years after the birth of the Universe due to the physicalist form of consciousness, with the emergence of neural networks. Mental consciousness is individualized in contrast to physicalist consciousness. It is characterized by cognitive abilities, self-identity, and the ability to influence the world around us. Each level of consciousness is in its own homeostasis environment.

Keywords: continuum, physicalism, neurons, metabolism

Procedia PDF Downloads 7
4204 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 110
4203 Calculate Product Carbon Footprint through the Internet of Things from Network Science

Authors: Jing Zhang

Abstract:

To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds.

Keywords: product carbon footprint, Internet of Things, network science, life cycle assessment

Procedia PDF Downloads 113
4202 Privacy-Preserving Model for Social Network Sites to Prevent Unwanted Information Diffusion

Authors: Sanaz Kavianpour, Zuraini Ismail, Bharanidharan Shanmugam

Abstract:

Social Network Sites (SNSs) can be served as an invaluable platform to transfer the information across a large number of individuals. A substantial component of communicating and managing information is to identify which individual will influence others in propagating information and also whether dissemination of information in the absence of social signals about that information will be occurred or not. Classifying the final audience of social data is difficult as controlling the social contexts which transfers among individuals are not completely possible. Hence, undesirable information diffusion to an unauthorized individual on SNSs can threaten individuals’ privacy. This paper highlights the information diffusion in SNSs and moreover it emphasizes the most significant privacy issues to individuals of SNSs. The goal of this paper is to propose a privacy-preserving model that has urgent regards with individuals’ data in order to control availability of data and improve privacy by providing access to the data for an appropriate third parties without compromising the advantages of information sharing through SNSs.

Keywords: anonymization algorithm, classification algorithm, information diffusion, privacy, social network sites

Procedia PDF Downloads 317
4201 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 208
4200 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network

Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar

Abstract:

Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.

Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE

Procedia PDF Downloads 352
4199 Rejuvenate: Face and Body Retouching Using Image Inpainting

Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny

Abstract:

In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.

Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery

Procedia PDF Downloads 69
4198 Evaluation of Redundancy Architectures Based on System on Chip Internal Interfaces for Future Unmanned Aerial Vehicles Flight Control Computer

Authors: Sebastian Hiergeist

Abstract:

It is a common view that Unmanned Aerial Vehicles (UAV) tend to migrate into the civil airspace. This trend is challenging UAV manufacturer in plenty ways, as there come up a lot of new requirements and functional aspects. On the higher application levels, this might be collision detection and avoidance and similar features, whereas all these functions only act as input for the flight control components of the aircraft. The flight control computer (FCC) is the central component when it comes up to ensure a continuous safe flight and landing. As these systems are flight critical, they have to be built up redundantly to be able to provide a Fail-Operational behavior. Recent architectural approaches of FCCs used in UAV systems are often based on very simple microprocessors in combination with proprietary Application-Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) extensions implementing the whole redundancy functionality. In the future, such simple microprocessors may not be available anymore as they are more and more replaced by higher sophisticated System on Chip (SoC). As the avionic industry cannot provide enough market power to significantly influence the development of new semiconductor products, the use of solutions from foreign markets is almost inevitable. Products stemming from the industrial market developed according to IEC 61508, or automotive SoCs, according to ISO 26262, can be seen as candidates as they have been developed for similar environments. Current available SoC from the industrial or automotive sector provides quite a broad selection of interfaces like, i.e., Ethernet, SPI or FlexRay, that might come into account for the implementation of a redundancy network. In this context, possible network architectures shall be investigated which could be established by using the interfaces stated above. Of importance here is the avoidance of any single point of failures, as well as a proper segregation in distinct fault containment regions. The performed analysis is supported by the use of guidelines, published by the aviation authorities (FAA and EASA), on the reliability of data networks. The main focus clearly lies on the reachable level of safety, but also other aspects like performance and determinism play an important role and are considered in the research. Due to the further increase in design complexity of recent and future SoCs, also the risk of design errors, which might lead to common mode faults, increases. Thus in the context of this work also the aspect of dissimilarity will be considered to limit the effect of design errors. To achieve this, the work is limited to broadly available interfaces available in products from the most common silicon manufacturer. The resulting work shall support the design of future UAV FCCs by giving a guideline on building up a redundancy network between SoCs, solely using on board interfaces. Therefore the author will provide a detailed usability analysis on available interfaces provided by recent SoC solutions, suggestions on possible redundancy architectures based on these interfaces and an assessment of the most relevant characteristics of the suggested network architectures, like e.g. safety or performance.

Keywords: redundancy, System-on-Chip, UAV, flight control computer (FCC)

Procedia PDF Downloads 213
4197 Supply Network Design for Production-Distribution of Fish: A Sustainable Approach Using Mathematical Programming

Authors: Nicolás Clavijo Buriticá, Laura Viviana Triana Sanchez

Abstract:

This research develops a productive context associated with the aquaculture industry in northern Tolima-Colombia, specifically in the town of Lerida. Strategic aspects of chain of fish Production-Distribution, especially those related to supply network design of an association devoted to cultivating, farming, processing and marketing of fish are addressed. This research is addressed from a special approach of Supply Chain Management (SCM) which guides management objectives to the system sustainability; this approach is called Sustainable Supply Chain Management (SSCM). The network design of fish production-distribution system is obtained for the case study by two mathematical programming models that aims to maximize the economic benefits of the chain and minimize total supply chain costs, taking into account restrictions to protect the environment and its implications on system productivity. The results of the mathematical models validated in the productive situation of the partnership under study, called Asopiscinorte shows the variation in the number of open or closed locations in the supply network that determines the final network configuration. This proposed result generates for the case study an increase of 31.5% in the partial productivity of storage and processing, in addition to possible favorable long-term implications, such as attending an agile or not a consumer area, increase or not the level of sales in several areas, to meet in quantity, time and cost of work in progress and finished goods to various actors in the chain.

Keywords: Sustainable Supply Chain, mathematical programming, aquaculture industry, Supply Chain Design, Supply Chain Configuration

Procedia PDF Downloads 534
4196 Design and Implementation of Neural Network Based Controller for Self-Driven Vehicle

Authors: Hassam Muazzam

Abstract:

This paper devises an autonomous self-driven vehicle that is capable of taking a disabled person to his/her desired location using three different power sources (gasoline, solar, electric) without any control from the user, avoiding the obstacles in the way. The GPS co-ordinates of the desired location are sent to the main processing board via a GSM module. After the GPS co-ordinates are sent, the path to be followed by the vehicle is devised by Pythagoras theorem. The distance and angle between the present location and the desired location is calculated and then the vehicle starts moving in the desired direction. Meanwhile real-time data from ultrasonic sensors is fed to the board for obstacle avoidance mechanism. Ultrasonic sensors are used to quantify the distance of the vehicle from the object. The distance and position of the object is then used to make decisions regarding the direction of vehicle in order to avoid the obstacles using artificial neural network which is implemented using ATmega1280. Also the vehicle provides the feedback location at remote location.

Keywords: autonomous self-driven vehicle, obstacle avoidance, desired location, pythagoras theorem, neural network, remote location

Procedia PDF Downloads 404
4195 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 41
4194 ChaQra: A Cellular Unit of the Indian Quantum Network

Authors: Shashank Gupta, Iteash Agarwal, Vijayalaxmi Mogiligidda, Rajesh Kumar Krishnan, Sruthi Chennuri, Deepika Aggarwal, Anwesha Hoodati, Sheroy Cooper, Ranjan, Mohammad Bilal Sheik, Bhavya K. M., Manasa Hegde, M. Naveen Krishna, Amit Kumar Chauhan, Mallikarjun Korrapati, Sumit Singh, J. B. Singh, Sunil Sud, Sunil Gupta, Sidhartha Pant, Sankar, Neha Agrawal, Ashish Ranjan, Piyush Mohapatra, Roopak T., Arsh Ahmad, Nanjunda M., Dilip Singh

Abstract:

Major research interests on quantum key distribution (QKD) are primarily focussed on increasing 1. point-to-point transmission distance (1000 Km), 2. secure key rate (Mbps), 3. security of quantum layer (device-independence). It is great to push the boundaries on these fronts, but these isolated approaches are neither scalable nor cost-effective due to the requirements of specialised hardware and different infrastructure. Current and future QKD network requires addressing different sets of challenges apart from distance, key rate, and quantum security. In this regard, we present ChaQra -a sub-quantum network with core features as 1) Crypto agility (integration in the already deployed telecommunication fibres), 2) Software defined networking (SDN paradigm for routing different nodes), 3) reliability (addressing denial-of-service with hybrid quantum safe cryptography), 4) upgradability (modules upgradation based on scientific and technological advancements), 5) Beyond QKD (using QKD network for distributed computing, multi-party computation etc). Our results demonstrate a clear path to create and accelerate quantum secure Indian subcontinent under the national quantum mission.

Keywords: quantum network, quantum key distribution, quantum security, quantum information

Procedia PDF Downloads 49
4193 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet

Authors: Ma Lei-Lei, Zhou You

Abstract:

Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.

Keywords: convolutional neural network, transformer, feature pyramid networks, loss function

Procedia PDF Downloads 92
4192 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice

Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha

Abstract:

Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.

Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability

Procedia PDF Downloads 106
4191 How Supply Chains Can Benefit from Open Innovation: Inspiration from Toyota Production System

Authors: Sam Solaimani, Jack A. A. van der Veen, Mehdi Latifi

Abstract:

Considering the increasingly VUCA (Volatile, Uncertain, Complex, Ambiguous) business market, innovation is the name of the game in contemporary business. Innovation is not solely created within the organization itself; its 'network environment' appears to be equally important for innovation. There are, at least, two streams of literature that emphasize the idea of using the extended organization to foster innovation capability, namely, Supply Chain Collaboration (SCC) (also rooted in the Lean philosophy) and Open Innovation (OI). Remarkably, these two concepts are still considered as being totally different in the sense that these appear in different streams of literature and applying different concepts in pursuing the same purposes. This paper explores the commonalities between the two concepts in order to conceptually further our understanding of how OI can effectively be applied in Supply Chain networks. Drawing on available literature in OI, SCC and Lean, the paper concludes with five principles that help firms to contextualize the implementation of OI to the peculiar setting of SC. Theoretically, the present paper aims at contributing to the relatively under-researched theme of Supply Chain Innovation. More in practical terms, the paper provides OI and SCC communities with a workable know-how to seize on and sustain OI initiatives.

Keywords: lean philosophy, open innovation, supply chain collaboration, supply chain management

Procedia PDF Downloads 312
4190 Second-Order Complex Systems: Case Studies of Autonomy and Free Will

Authors: Eric Sanchis

Abstract:

Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain.

Keywords: autonomy, free will, synthetic property, vaporous complex systems

Procedia PDF Downloads 196
4189 Students’ Online Forum Activities and Social Network Analysis in an E-Learning Environment

Authors: P. L. Cheng, I. N. Umar

Abstract:

Online discussion forum is a popular e-learning technique that allows participants to interact and construct knowledge. This study aims to examine the levels of participation, categories of participants and the structure of their interactions in a forum. A convenience sampling of one course coordinator and 23 graduate students was selected in this study. The forums’ log file and the Social Network Analysis software were used in this study. The analysis reveals 610 activities (including viewing forum’s topic, viewing discussion thread, posting a new thread, replying to other participants’ post, updating an existing thread and deleting a post) performed by them in this forum, with an average of 3.83 threads posted. Also, this forum consists of five at-risk participants, six bridging participants, four isolated participants and five leaders of information. In addition, the network density value is 0.15 and there exist five reciprocal interactions in this forum. The closeness value varied between 28 and 68 while the eigen vector centrality value varied between 0.008 and 0.39. The finding indicates that the participants tend to listen more rather than express their opinions in the forum. It was also revealed that those who actively provide supports in the discussion forum were not the same people who received the most responses from their peers. This study found that cliques do not exist in the forum and the participants are not selective to whom they response to, rather, it was based on the content of the posts made by their peers. Based upon the findings, further analysis with different method and population, larger sample size and a longer time frame are recommended.

Keywords: e-learning, learning management system, online forum, social network analysis

Procedia PDF Downloads 383
4188 Advancing the Hi-Tech Ecosystem in the Periphery: The Case of the Sea of Galilee Region

Authors: Yael Dubinsky, Orit Hazzan

Abstract:

There is a constant need for hi-tech innovation to be decentralized to peripheral regions. This work describes how we applied design science research (DSR) principles to define what we refer to as the Sea of Galilee (SoG) method. The goal of the SoG method is to harness existing and new technological initiatives in peripheral regions to create a socio-technological network that can initiate and maintain hi-tech activities. The SoG method consists of a set of principles, a stakeholder network, and actual hi-tech business initiatives, including their infrastructure and practices. The three cycles of DSR, the Relevance, Design, and Rigor cycles, layout a research framework to sharpen the requirements, collect data from case studies, and iteratively refine the SoG method based on the existing knowledge base. We propose that the SoG method can be deployed by regional authorities that wish to be considered smart regions (an extension of the notion of smart cities).

Keywords: design science research, socio-technological initiatives, Sea of Galilee method, periphery stakeholder network, hi-tech initiatieves

Procedia PDF Downloads 127
4187 Optimization of Floor Heating System in the Incompressible Turbulent Flow Using Constructal Theory

Authors: Karim Farahmandfar, Hamidolah Izadi, Mohammadreza Rezaei, Amin Ardali, Ebrahim Goshtasbi Rad, Khosro Jafarpoor

Abstract:

Statistics illustrates that the higher amount of annual energy consumption is related to surmounting the demand in buildings. Therefore, it is vital to economize the energy consumption and also find the solution with regard to this issue. One of the systems for the sake of heating the building is floor heating. As a matter of fact, floor heating performance is based on convection and radiation. Actually, in addition to creating a favorable heating condition, this method leads to energy saving. It is the goal of this article to outline the constructal theory and introduce the optimization method in branch networks for floor heating. There are several steps in order to gain this purpose. First of all, the pressure drop through the two points of the network is calculated. This pressure drop is as a function of pipes diameter and other parameters. After that, the amount of heat transfer is determined. Consequently, as a result of the combination of these two functions, the final function will be determined. It is necessary to mention that flow is laminar.

Keywords: constructal theory, optimization, floor heating system, turbulent flow

Procedia PDF Downloads 310
4186 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 130
4185 The Influence of Hydrogen Addition to Natural Gas Networks on Gas Appliances

Authors: Yitong Xie, Chaokui Qin, Zhiguang Chen, Shuangqian Guo

Abstract:

Injecting hydrogen, a competitive carbon-free energy carrier, into existing natural gas networks has become a promising step toward alleviating global warming. Considering the differences in properties of hydrogen and natural gas, there is very little evidence showing how many degrees of hydrogen admixture can be accepted and how to adjust appliances to adapt to gas constituents' variation. The lack of this type of analysis provides more uncertainty in injecting hydrogen into networks because of the short the basis of burner design and adjustment. First, the properties of methane and hydrogen were compared for a comprehensive analysis of the impact of hydrogen addition to methane. As the main determinant of flame stability, the burning velocity was adopted for hydrogen addition analysis. Burning velocities for hydrogen-enriched natural gas with different hydrogen percentages and equivalence ratios were calculated by the software CHEMKIN. Interchangeability methods, including single index methods, multi indices methods, and diagram methods, were adopted to determine the limit of hydrogen percentage. Cooktops and water heaters were experimentally tested in the laboratory. Flame structures of different hydrogen percentages and equivalence ratios were observed and photographed. Besides, the change in heat efficiency, burner temperature, emission by hydrogen percentage, and equivalence ratio was studied. The experiment methodologies and results in this paper provide an important basis for the introduction of hydrogen into gas pipelines and the adjustment of gas appliances.

Keywords: hydrogen, methane, combustion, appliances, interchangeability

Procedia PDF Downloads 85
4184 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network

Authors: Sandesh Achar

Abstract:

Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.

Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.

Procedia PDF Downloads 38
4183 Replacing an Old PFN System with a Solid State Modulator without Changing the Klystron Transformer

Authors: Klas Elmquist, Anders Larsson

Abstract:

Until the year 2000, almost all short pulse modulators in the accelerator world were made with the pulse forming network (PFN) technique. The pulse forming network systems have since then been replaced with solid state modulators that have better efficiency, better stability, and lower cost of ownership, and they are much smaller. In this paper, it is shown that it is possible to replace a pulse forming network system with a solid-state system without changing the klystron tank and the klystron transformer. The solid-state modulator uses semiconductors switching at 1 kV level. A first pulse transformer transforms the voltage up to 10 kV. The 10 kV pulse is finally fed into the original transformer that is placed under the klystron. A flatness of 0.8 percent and stability of 100 PPM is achieved. The test is done with a CPI 8262 type of klystron. It is also shown that it is possible to run such a system with long cables between the transformers. When using this technique, it will be possible to keep original sub-systems like filament systems, vacuum systems, focusing solenoid systems, and cooling systems for the klystron. This will substantially reduce the cost of an upgrade and prolong the life of the klystron system.

Keywords: modulator, solid-state, PFN-system, thyratron

Procedia PDF Downloads 126