Search results for: time series regression
20645 The Relationship among Perceived Risk, Product Knowledge, Brand Image and the Insurance Purchase Intention of Taiwanese Working Holiday Youths
Authors: Wan-Ling Chang, Hsiu-Ju Huang, Jui-Hsiu Chang
Abstract:
In 2004, the Ministry of Foreign Affairs Taiwan launched ‘An Arrangement on Working Holiday Scheme’ with 15 countries including New Zealand, Japan, Canada, Germany, South Korea, Britain, Australia and others. The aim of the scheme is to allow young people to work and study English or other foreign languages. Each year, there are 30,000 Taiwanese youths applied for participating in the working holiday schemes. However, frequent accidents could cause huge medical expenses and post-delivery fee, which are usually unaffordable for most families. Therefore, this study explored the relationship among perceived risk toward working holiday, insurance product knowledge, brand image and insurance purchase intention for Taiwanese youths who plan to apply for working holiday. A survey questionnaire was distributed for data collection. A total of 316 questionnaires were collected for data analyzed. Data were analyzed using descriptive statistics, independent samples T-test, one-way ANOVA, correlation analysis, regression analysis and hierarchical regression methods of analysis and hypothesis testing. The results of this research indicate that perceived risk has a negative influence on insurance purchase intention. On the opposite, product knowledge has brand image has a positive influence on the insurance purchase intention. According to the mentioned results, practical implications were further addressed for insurance companies when developing a future marketing plan.Keywords: insurance product knowledges, insurance purchase intention, perceived risk, working holiday
Procedia PDF Downloads 25520644 The Effect of Sowing Time on Phytopathogenic Characteristics and Yield of Sunflower Hybrids
Authors: Adrienn Novák
Abstract:
The field research was carried out at the Látókép AGTC KIT research area of the University of Debrecen in Eastern-Hungary, on the area of the aeolain loess of the Hajdúság. We examined the effects of the sowing time on the phytopathogenic characteristics and yield production by applying various fertilizer treatments on two different sunflower genotypes (NK Ferti, PR64H42) in 2012 and 2013. We applied three different sowing times (early, optimal, late) and two different treatment levels of fungicides (control = no fungicides applied, double fungicide protection). During our investigations, the studied cropyears were of different sowing time optimum in terms of yield amount (2012: early, 2013: average). By Pearson’s correlation analysis, we have found that delaying the sowing time pronouncedly decreased the extent of infection in both crop years (Diaporthe: r=0.663**, r=0.681**, Sclerotinia: r=0.465**, r=0.622**). The fungicide treatment not only decreased the extent of infection, but had yield increasing effect too (2012: r=0.498**, 2013: r=0.603**). In 2012, delaying of the sowing time increased (r=0.600**), but in 2013, it decreased (r= 0.356*) the yield amount.Keywords: fungicide treatment, genotypes, sowing time, yield, sunflower
Procedia PDF Downloads 21420643 Applying GIS Geographic Weighted Regression Analysis to Assess Local Factors Impeding Smallholder Farmers from Participating in Agribusiness Markets: A Case Study of Vihiga County, Western Kenya
Authors: Mwehe Mathenge, Ben G. J. S. Sonneveld, Jacqueline E. W. Broerse
Abstract:
Smallholder farmers are important drivers of agriculture productivity, food security, and poverty reduction in Sub-Saharan Africa. However, they are faced with myriad challenges in their efforts at participating in agribusiness markets. How the geographic explicit factors existing at the local level interact to impede smallholder farmers' decision to participates (or not) in agribusiness markets is not well understood. Deconstructing the spatial complexity of the local environment could provide a deeper insight into how geographically explicit determinants promote or impede resource-poor smallholder farmers from participating in agribusiness. This paper’s objective was to identify, map, and analyze local spatial autocorrelation in factors that impede poor smallholders from participating in agribusiness markets. Data were collected using geocoded researcher-administered survey questionnaires from 392 households in Western Kenya. Three spatial statistics methods in geographic information system (GIS) were used to analyze data -Global Moran’s I, Cluster and Outliers Analysis (Anselin Local Moran’s I), and geographically weighted regression. The results of Global Moran’s I reveal the presence of spatial patterns in the dataset that was not caused by spatial randomness of data. Subsequently, Anselin Local Moran’s I result identified spatially and statistically significant local spatial clustering (hot spots and cold spots) in factors hindering smallholder participation. Finally, the geographically weighted regression results unearthed those specific geographic explicit factors impeding market participation in the study area. The results confirm that geographically explicit factors are indispensable in influencing the smallholder farming decisions, and policymakers should take cognizance of them. Additionally, this research demonstrated how geospatial explicit analysis conducted at the local level, using geographically disaggregated data, could help in identifying households and localities where the most impoverished and resource-poor smallholder households reside. In designing spatially targeted interventions, policymakers could benefit from geospatial analysis methods in understanding complex geographic factors and processes that interact to influence smallholder farmers' decision-making processes and choices.Keywords: agribusiness markets, GIS, smallholder farmers, spatial statistics, disaggregated spatial data
Procedia PDF Downloads 14220642 Exploring the Factors Affecting the Presence of Farmers’ Markets in Rural British Columbia
Authors: Amirmohsen Behjat, Aleck Ostry, Christina Miewald, Bernie Pauly
Abstract:
Farmers’ Markets have become one of the important healthy food suppliers in both rural communities and urban settings. Farmers’ markets are evolving and their number has rapidly increased in the past decade. Despite this drastic increase, the distribution of the farmers’ markets is not even across different areas. The main goal of this study is to explore the socioeconomic, geographic, and demographic variables which affect the establishment of farmers’ market in rural communities in British Columbia (BC). Thus, the data on available farmers’ markets in rural areas were collected from BC Association of Farmers’ Markets and spatially joined to BC map at Dissemination Area (DA) level using ArcGIS software to link the farmers’ market to the respective communities that they serve. Then, in order to investigate this issue and understand which rural communities farmer’ markets tend to operate, a binary logistic regression analysis was performed with the availability of farmer’ markets at DA-level as dependent variable and Deprivation Index (DI), Metro Influence Zone (MIZ) and population as independent variables. The results indicated that DI and MIZ variables are not statistically significant whereas the population is the only which had a significant contribution in predicting the availability of farmers’ markets in rural BC. Moreover, this study found that farmers’ markets usually do not operate in rural food deserts where other healthy food providers such as supermarkets and grocery stores are non-existent. In conclusion, the presence of farmers markets is not associated with socioeconomic and geographic characteristics of rural communities in BC, but farmers’ markets tend to operate in more populated rural communities in BC.Keywords: farmers’ markets, socioeconomic and demographic variables, metro influence zone, logistic regression, ArcGIS
Procedia PDF Downloads 19220641 Factors Influencing Adoption of Climate-Smart Agricultural Practices among Maize Farmers in Ondo State, Nigeria
Authors: Oduntan Oluwakemi, Obisesan Adekemi Adebisola, Ayo-Bello Taofeeq Ayodeji
Abstract:
The study examined the factors influencing the adoption of climate-smart agricultural practices among maize farmers in Ondo State, Nigeria. A Multi-stage sampling procedure was used to randomly select one hundred respondents for the study. Primary data were collected from the respondents with the aid of a structured questionnaire and analysed using descriptive statistics and a probit regression model. The results of this study showed that crop diversification was the most adopted climate-smart agricultural practice by the respondents, and adoption of Climate Smart Agricultural practices is still very low among the respondents. Results of probit regression revealed that marital status, access to extension services, farming experience, membership of farmers’ association, and access to credit had a positive influence on the adoption of climate-smart agricultural practices, while age, farm size, and total income had a negative influence. Based on the findings of the study, it was recommended that government should develop suitable policies that will encourage farmers, especially rural farmers, to adopt and utilize Climate Smart Agricultural Practices (CSAP). Equally, the study also recommended government should be geared towards supporting improved extension services, providing on-farm demonstration training, disseminating information about climate-smart agricultural practices, and providing credit facilities through the Agricultural Credit Guarantee Scheme Fund and bank credit to farmers in order to enhance the adoption.Keywords: adoption, agriculture, climate-smart, farmers, maize, Nigeria
Procedia PDF Downloads 13920640 Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography
Authors: M. Y. Lee, D. H. Shin, S. H. Park, W.C. Ham, S.K. Ko, C. G. Song
Abstract:
Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat’s kidney using real-time PAT.Keywords: photoacoustic tomography, inflammation detection, rat, kidney, contrast agent, ultrasound
Procedia PDF Downloads 46120639 The Application of Conceptual Metaphor Theory to the Treatment of Depression
Abstract:
Conceptual Metaphor Theory (CMT) proposes that metaphor is fundamental to human thought. CMT utilizes embodied cognition, in that emotions are conceptualized as effects on the body because of a coupling of one’s bodily experiences and one’s somatosensory system. Time perception is a function of embodied cognition and conceptual metaphor in that one’s experience of time is inextricably dependent on one’s perception of the world around them. A hallmark of depressive disorders is the distortion in one’s perception of time, such as neurological dysfunction and psychomotor retardation, and yet, to the author’s best knowledge, previous studies have not before linked CMT, embodied cognition, and depressive disorders. Therefore, the focus of this paper is the investigation of how the applications of CMT and embodied cognition (especially regarding time perception) have promise in improving current techniques to treat depressive disorders. This paper aimed to extend, through a thorough review of literature, the theoretical basis required to further research into CMT and embodied cognition’s application in treating time distortion related symptoms of depressive disorders. Future research could include the development of brain training technologies that capitalize on the principles of CMT, with the aim of promoting cognitive remediation and cognitive activation to mitigate symptoms of depressive disorder.Keywords: depression, conceptual metaphor theory, embodied cognition, time
Procedia PDF Downloads 16620638 Time-Frequency Feature Extraction Method Based on Micro-Doppler Signature of Ground Moving Targets
Authors: Ke Ren, Huiruo Shi, Linsen Li, Baoshuai Wang, Yu Zhou
Abstract:
Since some discriminative features are required for ground moving targets classification, we propose a new feature extraction method based on micro-Doppler signature. Firstly, the time-frequency analysis of measured data indicates that the time-frequency spectrograms of the three kinds of ground moving targets, i.e., single walking person, two people walking and a moving wheeled vehicle, are discriminative. Then, a three-dimensional time-frequency feature vector is extracted from the time-frequency spectrograms to depict these differences. At last, a Support Vector Machine (SVM) classifier is trained with the proposed three-dimensional feature vector. The classification accuracy to categorize ground moving targets into the three kinds of the measured data is found to be over 96%, which demonstrates the good discriminative ability of the proposed micro-Doppler feature.Keywords: micro-doppler, time-frequency analysis, feature extraction, radar target classification
Procedia PDF Downloads 41020637 Boundary Alert System for Powered Wheelchair in Confined Area Training
Authors: Tsoi Kim Ming, Yu King Pong
Abstract:
Background: With powered wheelchair, patients can travel more easily and conveniently. However, some patients suffer from other difficulties, such as visual impairment, cognitive disorder, or psychological issues, which make them unable to control powered wheelchair safely. Purpose: Therefore, those patients are required to complete a comprehensive driving training by therapists on confined area, which simulates narrow paths in daily live. During the training, therapists will give series of driving instruction to patients, which may be unaware of patients crossing out the boundary of area. To facilitate the training, it is needed to develop a device to provide warning to patients during training Method: We adopt LIDAR for distance sensing started from center of confined area. Then, we program the LIDAR with linear geometry to remember each side of the area. The LIDAR will sense the location of wheelchair continuously. Once the wheelchair is driven out of the boundary, audio alert will be given to patient. Result: Patients can pay their attention to the particular driving situation followed by audio alert during driving training, which can learn how to avoid out of boundary in similar situation next time. Conclusion: Instead of only instructed by therapist, the LIDAR can facilitate the powered wheelchair training by patients actively pay their attention to driving situation. After training, they are able to control the powered wheelchair safely when facing difficult and narrow path in real life.Keywords: PWC, training, rehab, AT
Procedia PDF Downloads 11120636 Nature of Body Image Distortion in Eating Disorders
Authors: Katri K. Cornelissen, Lise Gulli Brokjob, Kristofor McCarty, Jiri Gumancik, Martin J. Tovee, Piers L. Cornelissen
Abstract:
Recent research has shown that body size estimation of healthy women is driven by independent attitudinal and perceptual components. The attitudinal component represents psychological concerns about body, coupled to low self-esteem and a tendency towards depressive symptomatology, leading to over-estimation of body size, independent of the Body Mass Index (BMI) someone actually has. The perceptual component is a normal bias known as contraction bias, which, for bodies is dependent on actual BMI. Women with a BMI less than the population norm tend to overestimate their size, while women with a BMI greater than the population norm tend to underestimate their size. Women whose BMI is close to the population mean are most accurate. This is indexed by a regression of estimated BMI on actual BMI with a slope less than one. It is well established that body dissatisfaction, i.e. an attitudinal distortion, leads to body size overestimation in eating disordered individuals. However, debate persists as to whether women with eating disorders may also suffer a perceptual body distortion. Therefore, the current study was set to ask whether women with eating disorders exhibit the normal contraction bias when they estimate their own body size. If they do not, this would suggest differences in the way that women with eating disorders process the perceptual aspects of body shape and size in comparison to healthy controls. 100 healthy controls and 33 women with a history of eating disorders were recruited. Critically, it was ensured that both groups of participants represented comparable and adequate ranges of actual BMI (e.g. ~18 to ~40). Of those with eating disorders, 19 had a history of anorexia nervosa, 6 bulimia nervosa, and 8 OSFED. 87.5% of the women with a history of eating disorders self-reported that they were either recovered or recovering, and 89.7% of them self-reported that they had had one or more instances of relapse. The mean time lapsed since first diagnosis was 5 years and on average participants had experienced two relapses. Participants were asked to fill number of psychometric measures (EDE-Q, BSQ, RSE, BDI) to establish the attitudinal component of their body image as well as their tendency to internalize socio-cultural body ideals. Additionally, participants completed a method of adjustment psychophysical task, using photorealistic avatars calibrated for BMI, in order to provide an estimate of their own body size and shape. The data from the healthy controls replicate previous findings, revealing independent contributions to body size estimation from both attitudinal and perceptual (i.e. contraction bias) body image components, as described above. For the eating disorder group, once the adequacy of their actual BMI ranges was established, a regression of estimated BMI on actual BMI had a slope greater than 1, significantly different to that from controls. This suggests that (some) eating disordered individuals process the perceptual aspects of body image differently from healthy controls. It therefore is necessary to develop interventions which are specific to the perceptual processing of body shape and size for the management of (some) individuals with eating disorders.Keywords: body image distortion, perception, recovery, relapse, BMI, eating disorders
Procedia PDF Downloads 7020635 Designing and Implementation of MPLS Based VPN
Authors: Muhammad Kamran Asif
Abstract:
MPLS stands for Multi-Protocol Label Switching. It is the technology which replaces ATM (Asynchronous Transfer Mode) and frame relay. In this paper, we have designed a full fledge small scale MPLS based service provider network core network model, which provides communication services (e.g. voice, video and data) to the customer more efficiently using label switching technique. Using MPLS VPN provides security to the customers which are either on LAN or WAN. It protects its single customer sites from being attacked by any intruder from outside world along with the provision of concept of extension of a private network over an internet. In this paper, we tried to implement a service provider network using minimum available resources i.e. five 3800 series CISCO routers comprises of service provider core, provider edge routers and customer edge routers. The customers on the one end of the network (customer side) is capable of sending any kind of data to the customers at the other end using service provider cloud which is MPLS VPN enabled. We have also done simulation and emulation for the model using GNS3 (Graphical Network Simulator-3) and achieved the real time scenarios. We have also deployed a NMS system which monitors our service provider cloud and generates alarm in case of any intrusion or malfunctioning in the network. Moreover, we have also provided a video help desk facility between customers and service provider cloud to resolve the network issues more effectively.Keywords: MPLS, VPN, NMS, ATM, asynchronous transfer mode
Procedia PDF Downloads 33320634 Machine Learning in Agriculture: A Brief Review
Authors: Aishi Kundu, Elhan Raza
Abstract:
"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting
Procedia PDF Downloads 11020633 Assessment of the Impacts of Climate Change on Watershed Runoff Using Soil and Water Assessment Tool Model in Southeast Nigeria
Authors: Samuel Emeka Anarah, Kingsley Nnaemeka Ogbu, Obasi Arinze
Abstract:
Quantifying the hydrological response due to changes in climate change is imperative for proper management of water resources within a watershed. The impact of climate change on the hydrology of the Upper Ebony River (UER) watershed, South East Nigeria, was studied using the Soil and Water Assessment Tool (SWAT) hydrological model. A climatological time series analysis from 1985 - 2014 using non-parametric test showed significant negative trends in precipitation and relative humidity trend while minimum and maximum temperature, solar radiation and wind speed showed significant positive trends. Future hypothetical land-use change scenarios (Scenarios 1, 2, 3 and 4) representing urbanization and conversion of forest to agricultural land were combined with future downscaled climate model (CSIRO-Mk3-6-0) and simulated in SWAT model. Relative to the Baseline scenario (2005 - 2014), the results showed a decrease in streamflow by 10.29%, 26.20%, 11.80% and 26.72% for Scenarios 1, 2, 3, and 4 respectively. Model results suggest development of adaptation strategies to cope with the predicted hydrological conditions under future climate change in the watershed.Keywords: climate change, hydrology, runoff, SWAT model
Procedia PDF Downloads 15020632 Managing Pseudoangiomatous Stromal Hyperplasia Appropriately and Safely: A Retrospective Case Series Review
Authors: C. M. Williams, R. English, P. King, I. M. Brown
Abstract:
Introduction: Pseudoangiomatous Stromal Hyperplasia (PASH) is a benign fibrous proliferation of breast stroma affecting predominantly premenopausal women with no significant increased risk of breast cancer. Informal recommendations for management have continued to evolve over recent years from surgical excision to observation, although there are no specific national guidelines. This study assesses the safety of a non-surgical approach to PASH management by review of cases at a single centre. Methods: Retrospective case series review (January 2011 – August 2016) was conducted on consecutive PASH cases. Diagnostic classification (clinical, radiological and histological), management outcomes, and breast cancer incidence were recorded. Results: 43 patients were followed up for median of 25 months (3-64) with 75% symptomatic at presentation. 12% of cases (n=5) had a radiological score (BIRADS MMG or US) ≥ 4 of which 3 were confirmed malignant. One further malignancy was detected and proven radiologically occult and contralateral. No patients were diagnosed with a malignancy during follow-up. Treatment evolved from 67% surgical in 2011 to 33% in 2016. Conclusions: The management of PASH has transitioned in line with other published experience. The preliminary findings suggest this appears safe with no evidence of missed malignancies; however, longer follow up is required to confirm long-term safety. Recommendations: PASH with suspicious radiological findings ( ≥ U4/R4) warrants multidisciplinary discussion for excision. In the absence of histological or radiological suspicion of malignancy, PASH can be safely managed without surgery.Keywords: benign breast disease, conservative management, malignancy, pseudoangiomatous stromal hyperplasia, surgical excision
Procedia PDF Downloads 13720631 Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application
Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon
Abstract:
This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion.Keywords: neutral systems, time-delay, stability, Lyapnov method, LMI
Procedia PDF Downloads 35220630 Impact of Macroeconomic Variables on Indian Mutual Funds: A Time Series Analysis
Authors: Sonali Agarwal
Abstract:
The investor perception about investment avenues is affected to a great degree by the current happenings, within the country, and on the global stage. The influencing events can range from government policies, bilateral trade agreements, election agendas, to changing exchange rates, appreciation and depreciation of currency, recessions, meltdowns, bankruptcies etc. The current research attempts to discover and unravel the effect of various macroeconomic variables (crude oil price, gold price, silver price and USD exchange rate) on the Indian mutual fund industry in general and the chosen funds (Axis Gold Fund, BSL Gold Fund, Kotak Gold Fund & SBI gold fund) in particular. Cointegration tests and Vector error correction equations prove that the chosen variables have strong effect on the NAVs (net asset values) of the mutual funds. However, the greatest influence is felt from the fund’s own past and current information and it is found that when an innovation of fund’s own lagged NAVs is given, variance caused is high that changes the current NAVs markedly. The study helps to highlight the interplay of macroeconomic variables and their repercussion on mutual fund industry.Keywords: cointegration, Granger causality, impulse response, macroeconomic variables, mutual funds, stationarity, unit root test, variance decomposition, VECM
Procedia PDF Downloads 24820629 Evaluation of Newly Synthesized Steroid Derivatives Using In silico Molecular Descriptors and Chemometric Techniques
Authors: Milica Ž. Karadžić, Lidija R. Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Z. Kovačević, Anamarija I. Mandić, Katarina Penov-Gaši, Andrea R. Nikolić, Aleksandar M. Oklješa
Abstract:
This study considered selection of the in silico molecular descriptors and the models for newly synthesized steroid derivatives description and their characterization using chemometric techniques. Multiple linear regression (MLR) models were established and gave the best molecular descriptors for quantitative structure-retention relationship (QSRR) modeling of the retention of the investigated molecules. MLR models were without multicollinearity among the selected molecular descriptors according to the variance inflation factor (VIF) values. Used molecular descriptors were ranked using generalized pair correlation method (GPCM). In this method, the significant difference between independent variables can be noticed regardless almost equal correlation between dependent variable. Generated MLR models were statistically and cross-validated and the best models were kept. Models were ranked using sum of ranking differences (SRD) method. According to this method, the most consistent QSRR model can be found and similarity or dissimilarity between the models could be noticed. In this study, SRD was performed using average values of experimentally observed data as a golden standard. Chemometric analysis was conducted in order to characterize newly synthesized steroid derivatives for further investigation regarding their potential biological activity and further synthesis. This article is based upon work from COST Action (CM1105), supported by COST (European Cooperation in Science and Technology).Keywords: generalized pair correlation method, molecular descriptors, regression analysis, steroids, sum of ranking differences
Procedia PDF Downloads 35120628 Budget Discipline and National Prosperity: The Nigerian Experience
Authors: Ben-Caleb Egbide, Iyoha Francis, Egharevba Mathew, Oduntan Emmanuel
Abstract:
The prosperity of any nation is determined not just by the availability of resources, but also by the discipline exercised in the management of those resources. This paper examines the functional association between adherence to budgetary estimates or budget discipline (BDISC) and national prosperity proxied by Real Gross Domestic Product (RGDP) and Relative Poverty Index (RPI)/Human Development Index (HDI). Adopting a longitudinal retrospective research strategy, time series data relating to both the endogenous and exogenous variables were extracted from official government publications for 36 years’ (1980-2015 in the case of RGDP and RPI), and for 26 years (1990-2015 in the case of HDI). Ordinary Least Square (OLS), as well as cointegration regressions, were employed to gauge both the short term and long term impact of BDISC on RPI/HDI and RGDP. The results indicated that BDISC is directly related with RGDP but indirectly related with RPI. The implication is that while adherence to budgetary estimate can enhance economic growth, it has the capacity to slow down the rate of poverty in the long run. The paper, therefore, recommend stricter adherence to budgets as a way out of economic under performance in Nigeria and engender the process of promoting human development and national prosperity.Keywords: budget discipline, human development index, national prosperity, Nigeria
Procedia PDF Downloads 24120627 Time Variance and Spillover Effects between International Crude Oil Price and Ten Emerging Equity Markets
Authors: Murad A. Bein
Abstract:
This paper empirically examines the time-varying relationship and spillover effects between the international crude oil price and ten emerging equity markets, namely three oil-exporting countries (Brazil, Mexico, and Russia) and seven Central and Eastern European (CEE) countries (Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, and Slovakia). The results revealed that there are spillover effects from oil markets into almost all emerging equity markets save Slovakia. Besides, the oil supply glut had a homogenous effect on the emerging markets, both net oil-exporting, and oil-importing countries (CEE). Further, the time variance drastically increased during financial turmoil. Indeed, the time variance remained high from 2009 to 2012 in response to aggregate demand shocks (global financial crisis and Eurozone debt crisis) and quantitative easing measures. Interestingly, the time variance was slightly higher for the oil-exporting countries than for some of the CEE countries. Decision-makers in emerging economies should therefore seek policy coordination when dealing with financial turmoil.Keywords: crude oil, spillover effects, emerging equity, time-varying, aggregate demand shock
Procedia PDF Downloads 12920626 A Probabilistic Study on Time to Cover Cracking Due to Corrosion
Authors: Chun-Qing Li, Hassan Baji, Wei Yang
Abstract:
Corrosion of steel in reinforced concrete structures is a major problem worldwide. The volume expansion of corrosion products causes concrete cover cracking, which could lead to delamination of concrete cover. The time to cover cracking plays a key role to the assessment of serviceability of reinforced concrete structures subjected to corrosion. Many analytical, numerical, and empirical models have been developed to predict the time to cracking initiation due to corrosion. In this study, a numerical model based on finite element modeling of corrosion-induced cracking process is used. In order to predict the service life based on time to cover initiation, the numerical approach is coupled with a probabilistic procedure. In this procedure, all the influential factors affecting time to cover cracking are modeled as random variables. The results show that the time to cover cracking is highly variables. It is also shown that rust product expansion ratio and the size of more porous concrete zone around the rebar are the most influential factors in predicting service life of corrosion-affected structures.Keywords: corrosion, crack width, probabilistic, service life
Procedia PDF Downloads 20720625 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions
Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer
Abstract:
The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping
Procedia PDF Downloads 21820624 Field-Programmable Gate Arrays Based High-Efficiency Oriented Fast and Rotated Binary Robust Independent Elementary Feature Extraction Method Using Feature Zone Strategy
Authors: Huang Bai-Cheng
Abstract:
When deploying the Oriented Fast and Rotated Binary Robust Independent Elementary Feature (BRIEF) (ORB) extraction algorithm on field-programmable gate arrays (FPGA), the access of global storage for 31×31 pixel patches of the features has become the bottleneck of the system efficiency. Therefore, a feature zone strategy has been proposed. Zones are searched as features are detected. Pixels around the feature zones are extracted from global memory and distributed into patches corresponding to feature coordinates. The proposed FPGA structure is targeted on a Xilinx FPGA development board of Zynq UltraScale+ series, and multiple datasets are tested. Compared with the streaming pixel patch extraction method, the proposed architecture obtains at least two times acceleration consuming extra 3.82% Flip-Flops (FFs) and 7.78% Look-Up Tables (LUTs). Compared with the non-streaming one, the proposed architecture saves 22.3% LUT and 1.82% FF, causing a latency of only 0.2ms and a drop in frame rate for 1. Compared with the related works, the proposed strategy and hardware architecture have the superiority of keeping a balance between FPGA resources and performance.Keywords: feature extraction, real-time, ORB, FPGA implementation
Procedia PDF Downloads 12620623 Improved Approach to the Treatment of Resistant Breast Cancer
Authors: Lola T. Alimkhodjaeva, Lola T. Zakirova, Soniya S. Ziyavidenova
Abstract:
Background: Breast cancer (BC) is still one of the urgent oncology problems. The essential obstacle to the full anti-tumor therapy implementation is drug resistance development. Taking into account the fact that chemotherapy is main antitumor treatment in BC patients, the important task is to improve treatment results. Certain success in overcoming this situation has been associated with the use of methods of extracorporeal blood treatment (ECBT), plasmapheresis. Materials and Methods: We examined 129 women with resistant BC stages 3-4, aged between 56 to 62 years who had previously received 2 courses of CAF chemotherapy. All patients additionally underwent 2 courses of CAF chemotherapy but against the background ECBT with ultrasonic exposure. We studied the following parameters: 1. The highlights of peripheral blood before and after therapy. 2. The state of cellular immunity and identification of activation markers CD23 +, CD25 +, CD38 +, CD95 + on lymphocytes was performed using monoclonal antibodies. Evaluation of humoral immunity was determined by the level of main classes of immunoglobulins IgG, IgA, IgM in serum. 3. The degree of tumor regression was assessed by WHO recommended 4 gradations. (complete - 100%, partial - more than 50% of initial size, process stabilization–regression is less than 50% of initial size and tumor advance progressing). 4. Medical pathomorphism in the tumor was determined by Lavnikova. 5. The study of immediate and remote results, up to 3 years and more. Results and Discussion: After performing extracorporeal blood treatment anemia occurred in 38.9%, leukopenia in 36.8%, thrombocytopenia in 34.6%, hypolymphemia in 26.8%. Studies of immunoglobulin fractions in blood serum were able to establish a certain relationship between the classes of immunoglobulin A, G, M and their functions. The results showed that after treatment the values of main immunoglobulins in patients’ serum approximated to normal. Analysis of expression of activation markers CD25 + cells bearing receptors for IL-2 (IL-2Rα chain) and CD95 + lymphocytes that were mediated physiological apoptosis showed the tendency to increase, which apparently was due to activation of cellular immunity cytokines allocated by ultrasonic treatment. To carry out ECBT on the background of ultrasonic treatment improved the parameters of the immune system, which were expressed in stimulation of cellular immunity and correcting imbalances in humoral immunity. The key indicator of conducted treatment efficiency is the immediate result measured by the degree of tumor regression. After ECBT performance the complete regression was 10.3%, partial response - 55.5%, process stabilization - 34.5%, tumor advance progressing no observed. Morphological investigations of tumor determined therapeutic pathomorphism grade 2 in 15%, in 25% - grade 3 and therapeutic pathomorphism grade 4 in 60% of patients. One of the main criteria for the effect of conducted treatment is to study the remission terms in the postoperative period (up to 3 years or more). The remission terms up to 3 years with ECBT was 34.5%, 5-year survival was 54%. Carried out research suggests that a comprehensive study of immunological and clinical course of breast cancer allows the differentiated approach to the choice of methods for effective treatment.Keywords: breast cancer, immunoglobulins, extracorporeal blood treatment, chemotherapy
Procedia PDF Downloads 27720622 The Effects of Interest Rates on Islamic Banks in a Dual Banking System: Empirical Evidence from Saudi Arabia
Authors: Mouldi Djelassi, Jamel Boukhatem
Abstract:
Background: A relation has been established between Islamic banks' activities and interest rates. The aim of this study was to explore the impact of interest rates on the deposits and loans held by Islamic and conventional banks in Saudi Arabia. Methods: A time series data was performed over the period 2008Q1-2020Q2 on eight conventional banks and four Islamic banks. The impacts of interest rate shocks on deposits and loans were identified through panel vector autoregressive models. Results: Impulse response function analysis showed that increasing interest rates reduce loans and conventional deposits. For Islamic banks, deposits are more affected by interest rates than lending. Variance decomposition analysis revealed that deposits contribute to 61% of the Islamic financing variation and only 25% of the conventional loans. Conclusion: Interest rates impacted Islamic banks especially through deposits, which is inconsistent with the theoretical framework. Islamic deposits played an important role in Islamic financing variation and may provide to be a channel for the transmission of the monetary policy in a dual banking system. Monetary policy in Saudi Arabia works in part through “credits” (conventional bank credits) as well as through “money” (conventional and Islamic bank deposits).Keywords: Islamic banking, interest rates, monetary policy transmission, panel VAR
Procedia PDF Downloads 11520621 Impact of Reclamation on the Water Exchange in Bohai Bay
Authors: Luyao Liu, Dekui Yuan, Xu Li
Abstract:
As one of the most important bays of China, the water exchange capacity of Bohai Bay can influence the economic development and urbanization of surrounding cities. However, the rapid reclamation has influenced the weak water exchange capacity of this semi-enclosed bay in recent years. This paper sets two hydrodynamic models of Bohai Bay with two shorelines before and after reclamation. The mean value and distribution of Turn-over Time, the distribution of residual current, and the feature of the tracer path are compared. After comparison, it is found that Bohai Bay keeps these characteristics; the spending time of water exchange in the northern is longer than southern, and inshore is longer than offshore. However, the mean water exchange time becomes longer after reclamation. In addition, the material spreading is blocked because of the inwardly extending shorelines, and the direction changed from along the shoreline to towards the center after reclamation.Keywords: Bohai Bay, water exchange, reclamation, turn-over time
Procedia PDF Downloads 15720620 Development of IDF Curves for Precipitation in Western Watershed of Guwahati, Assam
Authors: Rajarshi Sharma, Rashidul Alam, Visavino Seleyi, Yuvila Sangtam
Abstract:
The Intensity-Duration-Frequency (IDF) relationship of rainfall amounts is one of the most commonly used tools in water resources engineering for planning, design and operation of water resources project, or for various engineering projects against design floods. The establishment of such relationships was reported as early as in 1932 (Bernard). Since then many sets of relationships have been constructed for several parts of the globe. The objective of this research is to derive IDF relationship of rainfall for western watershed of Guwahati, Assam. These relationships are useful in the design of urban drainage works, e.g. storm sewers, culverts and other hydraulic structures. In the study, rainfall depth for 10 years viz. 2001 to 2010 has been collected from the Regional Meteorological Centre Borjhar, Guwahati. Firstly, the data has been used to construct the mass curve for duration of more than 7 hours rainfall to calculate the maximum intensity and to form the intensity duration curves. Gumbel’s frequency analysis technique has been used to calculate the probable maximum rainfall intensities for a period of 2 yr, 5 yr, 10 yr, 50 yr, 100 yr from the maximum intensity. Finally, regression analysis has been used to develop the intensity-duration-frequency (IDF) curve. Thus, from the analysis the values for the constants ‘a’,‘b’ &‘c’ have been found out. The values of ‘a’ for which the sum of the squared deviation is minimum has been found out to be 40 and when the corresponding value of ‘c’ and ‘b’ for the minimum squared deviation of ‘a’ are 0.744 and 1981.527 respectively. The results obtained showed that in all the cases the correlation coefficient is very high indicating the goodness of fit of the formulae to estimate IDF curves in the region of interest.Keywords: intensity-duration-frequency relationship, mass curve, regression analysis, correlation coefficient
Procedia PDF Downloads 25020619 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller
Authors: Jia-Shiun Chen, Hsiu-Ying Hwang
Abstract:
Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.Keywords: hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control
Procedia PDF Downloads 38720618 Design and Development of Sustained Release Floating Tablet of Stavudine
Authors: Surajj Sarode, G. Vidya Sagar, G. P. Vadnere
Abstract:
The purpose of the present study was to prolong the gastric residence time of Stavudine by developing gastric floating drug delivery system (GFDDS). Moreover, to study influence of different polymers on its release rate using gas-forming agents, like sodium bicarbonate, citric acid. Floating tablets were prepared by wet granulation method using PVP K-30 as a binder and the other polymers include Pullulan Gum, HPMC K100M, six different formulations with the varying concentrations of polymers were prepared and the tablets were evaluated in terms of their pre-compression parameters like bulk density, tapped density, Haunsner ratio, angle of repose, compressibility index, post compression physical characteristics, in vitro release, buoyancy, floating lag time (FLT), total floating time (TFT) and swelling index. All the formulations showed good floating lag time i.e. less than 3 mins. The batch containing combination of Pullulan Gum and HPMC 100M (i.e. F-6) showed total floating lag time more than 12 h., the highest swelling index among all the prepared batches. The drug release was found to follow zero order kinetics.Keywords: Suavudine, floating, total floating time (TFT), gastric residence
Procedia PDF Downloads 40420617 Modeling and Analysis of Laser Sintering Process Scanning Time for Optimal Planning and Control
Authors: Agarana Michael C., Akinlabi Esther T., Pule Kholopane
Abstract:
In order to sustain the advantages of an advanced manufacturing technique, such as laser sintering, minimization of total processing cost of the parts being produced is very important. An efficient time management would usually very important in optimal cost attainment which would ultimately result in an efficient advanced manufacturing process planning and control. During Laser Scanning Process Scanning (SLS) procedures it is possible to adjust various manufacturing parameters which are used to influence the improvement of various mechanical and other properties of the products. In this study, Modelling and mathematical analysis, including sensitivity analysis, of the laser sintering process time were carried out. The results of the analyses were represented with graphs, from where conclusions were drawn. It was specifically observed that achievement of optimal total scanning time is key for economic efficiency which is required for sustainability of the process.Keywords: modeling and analysis, optimal planning and control, laser sintering process, scanning time
Procedia PDF Downloads 10120616 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization
Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang
Abstract:
Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning
Procedia PDF Downloads 420