Search results for: solar chemistry
313 Determination of Community Based Reference Interval of Aspartate Aminotransferase to Platelet Ratio Index (APRI) among Healthy Populations in Mekelle City Tigray, Northern Ethiopia
Authors: Getachew Belay Kassahun
Abstract:
Background: Aspartate aminotransferase to Platelet Ratio Index (APRI) currently becomes a biomarker for screening liver fibrosis since liver biopsy procedure is invasive and variation in pathological interpretation. Clinical Laboratory Standard Institute recommends establishing age, sex and environment specific reference interval for biomarkers in a homogenous population. The current study was aimed to derive community based reference interval of APRI aged between 12 and 60 years old in Mekelle city Tigrai, Northern Ethiopia. Method: Six hundred eighty eight study participants were collected from three districts in Mekelle city. The 3 districts were selected through random sampling technique and sample size to kebelles (small administration) were distributed proportional to household number in each district. Lottery method was used at household level if more than 2 study participants to each age partition were found. A community based cross sectional in a total of 534 study participants, 264 male and 270 females, were included in the final laboratory and data analysis but around 154 study participants were excluded through exclusion criteria. Aspartate aminotransferase was analyzed through Biosystem chemistry analyzer and Sysmix machine was used to analyze platelet. Man Whitney U test non parametric stastical tool was used to appreciate stastical difference among gender after excluding the outliers through Box and Whisker. Result: The study appreciated stastical difference among gender for APRI reference interval. The combined, male and female reference interval in the current study was 0.098-0.390, 0.133-0.428 and 0.090-0.319 respectively. The upper and lower reference interval of males was higher than females in all age partition and there was no stastical difference (p-value (<0.05)) between age partition. Conclusion: The current study showed using sex specific reference interval is significant to APRI biomarker in clinical practice for result interpretation.Keywords: reference interval, aspartate aminotransferase to platelet ratio Index, Ethiopia, tigray
Procedia PDF Downloads 114312 Mitigating Biofouling on Reverse Osmosis Membranes: Applying Greener Preservatives to Biofilm Treatment
Authors: Anna Curtin, Matthew Thibodeau, Heather Buckley
Abstract:
Water scarcity is characterized by a lack of access to clean and affordable drinking water, as well as water for hygienic and economic needs. The amount of people effected by water scarcity is expected to increase in the coming years due to climate change, population growth, and pollution, amongst other things. In response, scientists are pursuing cost effective drinking water treatment methods, often with a focus on alternative water sources. Desalination of seawater via reverse osmosis is one promising alternative method. Desalination of seawater via reverse osmosis, however, is limited significantly by biofouling of the filtration membrane. Biofouling is the buildup of microorganisms in a biofilm at the water-membrane interface. It clogs the membrane, decreasing the efficiency of filtration, consequently increasing operational and maintenance costs. Although effective, existing chemical treatment methods can damage the membrane, decreasing the lifespan of the membrane; create antibiotic resistance; and cause harm to humans and the environment if they pass through the membrane into the permeate. The current project focuses on applying safer preservatives used in home and personal care products to RO membranes to investigate the biofouling treatment efficacy. Currently, many of these safer preservatives have only been tested on cells in planktonic phase in suspension cultures, not on cells in biofilms. The results of suspension culture tests are not applicable to biofouling scenarios because organisms in planktonic phase in suspension cultures exhibit different morphological, chemical, and metabolic characteristics than those in a biofilm. Testing antifoulant efficacy of safer preservatives on biofilms will provide more applicable results to biofouling on RO membranes. To do this, biofilms will be grown on 96-well-plates and minimum inhibitory concentrations (MIC90) and log-reductions will be calculated for various safer preservatives. Results from these tests will be used to guide doses for tests of safer preservatives in a bench-scale RO system.Keywords: reverse osmosis, biofouling, preservatives, antimicrobial, safer alternative, green chemistry
Procedia PDF Downloads 144311 Hydrochemistry and Stable Isotopes (ẟ18O and ẟ2H) Tools Applied to the Study of Karst Aquifers in Wonderfonteinspruit Valley: North West, South Africa
Authors: Naziha Mokadem, Rainier Dennis, Ingrid Dennis
Abstract:
In South Africa, Karst aquifers are receiving greater attention since they provide large supplies of water which is used for domestic and agricultural purposes as well as for industry. Accordingly, a better insight into the origin of water mineralization and the geochemical processes controlling the recharge of the aquifer is crucial. Analyses of geochemical and environmental isotopes could lead to relevant information regarding karstification and infiltration processes, groundwater chemistry and isotopy. A study was conducted in a typical karst landscape of Wonderfonteinspruit catchment, also known as Wonderfonteinspruit Valley in North-western -South Africa. Furthermore, fifty-two samples were collected from (35 boreholes, 5 surface waters, 4 Dams, 4 springs, 1 canal, 2 pipelines, 1 cave) within the study area for hydrochemistry and 2H and 18O analysis. The determination of the anions (Cl-, SO42-, NO2, NO3-) were performed using Metrohm ion chromatography, model: 761 compact IC, with a precision of ± 0.001 mg/l. While, the cations (Na+, Mg2+, K+, Ca2+) were determined using Metrohm ion chromatography, Model: ICP-MS 7500 series. The alkalinity (Alk) was determined by pH meter with volumetric titration using HCL to pH 4.5; 4.2; and 8.2. In addition, 18O and 2H relative to the Vienna-Standard Mean Ocean Water (RVSMOW), were determined by picarro L2130-I Isotopic H2O (Cavity Ringdown laser spectrometer, Picarro Ltd). The hydrochemical analysis of Wonderfonteinspruit groundwater showed a dominance of the cations Ca-Mg and the anion HCO3. Piper diagram shows that the groundwater sample of study area is characterized by four hydrochemical facies: Two main groups: (1) Ca–Mg–Cl–SO4; (2) Ca–Mg–HCO3 and two minor groups: (3) Ca–Mg–Cl; (4) Na–K–HCO3. The majority of boreholes of Malmani (Transvaal Supergroup) aquifer are plotted in Ca–Mg–HCO3.Oxygen-18 (18O‰SMOW) and deuterium (D‰SMOW) isotopic data indicate that the aquifer’s recharge is influenced by two phenomena; precipitation rates for most of the samples and river flow (Wonderfonteinspruit, Middelvieinspruit, Renfonteinspruit) for some samples.Keywords: South Africa, Wonderfonteinspruit Valley, isotopic, hydrochemical, carbonate aquifers
Procedia PDF Downloads 154310 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane
Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua
Abstract:
Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability
Procedia PDF Downloads 323309 Polymer Mediated Interaction between Grafted Nanosheets
Authors: Supriya Gupta, Paresh Chokshi
Abstract:
Polymer-particle interactions can be effectively utilized to produce composites that possess physicochemical properties superior to that of neat polymer. The incorporation of fillers with dimensions comparable to polymer chain size produces composites with extra-ordinary properties owing to very high surface to volume ratio. The dispersion of nanoparticles is achieved by inducing steric repulsion realized by grafting particles with polymeric chains. A comprehensive understanding of the interparticle interaction between these functionalized nanoparticles plays an important role in the synthesis of a stable polymer nanocomposite. With the focus on incorporation of clay sheets in a polymer matrix, we theoretically construct the polymer mediated interparticle potential for two nanosheets grafted with polymeric chains. The self-consistent field theory (SCFT) is employed to obtain the inhomogeneous composition field under equilibrium. Unlike the continuum models, SCFT is built from the microscopic description taking in to account the molecular interactions contributed by both intra- and inter-chain potentials. We present the results of SCFT calculations of the interaction potential curve for two grafted nanosheets immersed in the matrix of polymeric chains of dissimilar chemistry to that of the grafted chains. The interaction potential is repulsive at short separation and shows depletion attraction for moderate separations induced by high grafting density. It is found that the strength of attraction well can be tuned by altering the compatibility between the grafted and the mobile chains. Further, we construct the interaction potential between two nanosheets grafted with diblock copolymers with one of the blocks being chemically identical to the free polymeric chains. The interplay between the enthalpic interaction between the dissimilar species and the entropy of the free chains gives rise to a rich behavior in interaction potential curve obtained for two separate cases of free chains being chemically similar to either the grafted block or the free block of the grafted diblock chains.Keywords: clay nanosheets, polymer brush, polymer nanocomposites, self-consistent field theory
Procedia PDF Downloads 252308 Experimental Investigation of the Impact of Biosurfactants on Residual-Oil Recovery
Authors: S. V. Ukwungwu, A. J. Abbas, G. G. Nasr
Abstract:
The increasing high price of natural gas and oil with attendant increase in energy demand on world markets in recent years has stimulated interest in recovering residual oil saturation across the globe. In order to meet the energy security, efforts have been made in developing new technologies of enhancing the recovery of oil and gas, utilizing techniques like CO2 flooding, water injection, hydraulic fracturing, surfactant flooding etc. Surfactant flooding however optimizes production but poses risk to the environment due to their toxic nature. Amongst proven records that have utilized other type of bacterial in producing biosurfactants for enhancing oil recovery, this research uses a technique to combine biosurfactants that will achieve a scale of EOR through lowering interfacial tension/contact angle. In this study, three biosurfactants were produced from three Bacillus species from freeze dried cultures using sucrose 3 % (w/v) as their carbon source. Two of these produced biosurfactants were screened with the TEMCO Pendant Drop Image Analysis for reduction in IFT and contact angle. Interfacial tension was greatly reduced from 56.95 mN.m-1 to 1.41 mN.m-1 when biosurfactants in cell-free culture (Bacillus licheniformis) were used compared to 4. 83mN.m-1 cell-free culture of Bacillus subtilis. As a result, cell-free culture of (Bacillus licheniformis) changes the wettability of the biosurfactant treatment for contact angle measurement to more water-wet as the angle decreased from 130.75o to 65.17o. The influence of microbial treatment on crushed rock samples was also observed by qualitative wettability experiments. Treated samples with biosurfactants remained in the aqueous phase, indicating a water-wet system. These results could prove that biosurfactants can effectively change the chemistry of the wetting conditions against diverse surfaces, providing a desirable condition for efficient oil transport in this way serving as a mechanism for EOR. The environmental friendly effect of biosurfactants applications for industrial purposes play important advantages over chemically synthesized surfactants, with various possible structures, low toxicity, eco-friendly and biodegradability.Keywords: bacillus, biosurfactant, enhanced oil recovery, residual oil, wettability
Procedia PDF Downloads 279307 Synthesis of Fluorescent PET-Type “Turn-Off” Triazolyl Coumarin Based Chemosensors for the Sensitive and Selective Sensing of Fe⁺³ Ions in Aqueous Solutions
Authors: Aidan Battison, Neliswa Mama
Abstract:
Environmental pollution by ionic species has been identified as one of the biggest challenges to the sustainable development of communities. The widespread use of organic and inorganic chemical products and the release of toxic chemical species from industrial waste have resulted in a need for advanced monitoring technologies for environment protection, remediation and restoration. Some of the disadvantages of conventional sensing methods include expensive instrumentation, well-controlled experimental conditions, time-consuming procedures and sometimes complicated sample preparation. On the contrary, the development of fluorescent chemosensors for biological and environmental detection of metal ions has attracted a great deal of attention due to their simplicity, high selectivity, eidetic recognition, rapid response and real-life monitoring. Coumarin derivatives S1 and S2 (Scheme 1) containing 1,2,3-triazole moieties at position -3- have been designed and synthesized from azide and alkyne derivatives by CuAAC “click” reactions for the detection of metal ions. These compounds displayed a strong preference for Fe3+ ions with complexation resulting in fluorescent quenching through photo-induced electron transfer (PET) by the “sphere of action” static quenching model. The tested metal ions included Cd2+, Pb2+, Ag+, Na+, Ca2+, Cr3+, Fe3+, Al3+, Cd2+, Ba2+, Cu2+, Co2+, Hg2+, Zn2+ and Ni2+. The detection limits of S1 and S2 were determined to be 4.1 and 5.1 uM, respectively. Compound S1 displayed the greatest selectivity towards Fe3+ in the presence of competing for metal cations. S1 could also be used for the detection of Fe3+ in a mixture of CH3CN/H¬2¬O. Binding stoichiometry between S1 and Fe3+ was determined by using both Jobs-plot and Benesi-Hildebrand analysis. The binding was shown to occur in a 1:1 ratio between the sensor and a metal cation. Reversibility studies between S1 and Fe3+ were conducted by using EDTA. The binding site of Fe3+ to S1 was determined by using 13 C NMR and Molecular Modelling studies. Complexation was suggested to occur between the lone-pair of electrons from the coumarin-carbonyl and the triazole-carbon double bond.Keywords: chemosensor, "click" chemistry, coumarin, fluorescence, static quenching, triazole
Procedia PDF Downloads 162306 Synthesis and Two-Photon Polymerization of a Cytocompatibility Tyramine Functionalized Hyaluronic Acid Hydrogel That Mimics the Chemical, Mechanical, and Structural Characteristics of Spinal Cord Tissue
Authors: James Britton, Vijaya Krishna, Manus Biggs, Abhay Pandit
Abstract:
Regeneration of the spinal cord after injury remains a great challenge due to the complexity of this organ. Inflammation and gliosis at the injury site hinder the outgrowth of axons and hence prevent synaptic reconnection and reinnervation. Hyaluronic acid (HA) is the main component of the spinal cord extracellular matrix and plays a vital role in cell proliferation and axonal guidance. In this study, we have synthesized and characterized a photo-cross-linkable HA-tyramine (tyr) hydrogel from a chemical, mechanical, electrical, biological and structural perspective. From our experimentation, we have found that HA-tyr can be synthesized with controllable degrees of tyramine substitution using click chemistry. The complex modulus (G*) of HA-tyr can be tuned to mimic the mechanical properties of the native spinal cord via optimization of the photo-initiator concentration and UV exposure. We have examined the degree of tyramine-tyramine covalent bonding (polymerization) as a function of UV exposure and photo-initiator use via Photo and Nuclear magnetic resonance spectroscopy. Both swelling and enzymatic degradation assays were conducted to examine the resilience of our 3D printed hydrogel constructs in-vitro. Using a femtosecond 780nm laser, the two-photon polymerization of HA-tyr hydrogel in the presence of riboflavin photoinitiator was optimized. A laser power of 50mW and scan speed of 30,000 μm/s produced high-resolution spatial patterning within the hydrogel with sustained mechanical integrity. Using dorsal root ganglion explants, the cytocompatibility of photo-crosslinked HA-tyr was assessed. Using potentiometry, the electrical conductivity of photo-crosslinked HA-tyr was assessed and compared to that of native spinal cord tissue as a function of frequency. In conclusion, we have developed a biocompatible hydrogel that can be used for photolithographic 3D printing to fabricate tissue engineered constructs for neural tissue regeneration applications.Keywords: 3D printing, hyaluronic acid, photolithography, spinal cord injury
Procedia PDF Downloads 152305 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria
Authors: David B. Tsuanyo, Didier Aussel, Yao Azoumah, Pierre Neveu
Abstract:
An innovative concept called “Flexy-Energy”is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energies sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel gensets and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel gensets. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand. This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.Keywords: investments criteria, optimization, PV hybrid, sizing, rural electrification
Procedia PDF Downloads 441304 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients
Authors: Enes Yasa, Guven Fidan
Abstract:
Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling
Procedia PDF Downloads 421303 One-Step Synthesis and Characterization of Biodegradable ‘Click-Able’ Polyester Polymer for Biomedical Applications
Authors: Wadha Alqahtani
Abstract:
In recent times, polymers have seen a great surge in interest in the field of medicine, particularly chemotherapeutics. One recent innovation is the conversion of polymeric materials into “polymeric nanoparticles”. These nanoparticles can be designed and modified to encapsulate and transport drugs selectively to cancer cells, minimizing collateral damage to surrounding healthy tissues, and improve patient quality of life. In this study, we have synthesized pseudo-branched polyester polymers from bio-based small molecules, including sorbitol, glutaric acid and a propargylic acid derivative to further modify the polymer to make it “click-able" with an azide-modified target ligand. Melt polymerization technique was used for this polymerization reaction, using lipase enzyme catalyst NOVO 435. This reaction was conducted between 90- 95 °C for 72 hours. The polymer samples were collected in 24-hour increments for characterization and to monitor reaction progress. The resulting polymer was purified with the help of methanol dissolving and filtering with filter paper then characterized via NMR, GPC, FTIR, DSC, TGA and MALDI-TOF. Following characterization, these polymers were converted to a polymeric nanoparticle drug delivery system using solvent diffusion method, wherein DiI optical dye and chemotherapeutic drug Taxol can be encapsulated simultaneously. The efficacy of the nanoparticle’s apoptotic effects were analyzed in-vitro by incubation with prostate cancer (LNCaP) and healthy (CHO) cells. MTT assays and fluorescence microscopy were used to assess the cellular uptake and viability of the cells after 24 hours at 37 °C and 5% CO2 atmosphere. Results of the assays and fluorescence imaging confirmed that the nanoparticles were successful in both selectively targeting and inducing apoptosis in 80% of the LNCaP cells within 24 hours without affecting the viability of the CHO cells. These results show the potential of using biodegradable polymers as a vehicle for receptor-specific drug delivery and a potential alternative for traditional systemic chemotherapy. Detailed experimental results will be discussed in the e-poster.Keywords: chemotherapeutic drug, click chemistry, nanoparticle, prostat cancer
Procedia PDF Downloads 115302 Investigation of Effective Parameters on Water Quality of Iranian Rivers Using Hydrochemical and Statistical Methods
Authors: Maryam Sayadi, Rana Sedighpour, Hossein Rezaie
Abstract:
In this study, in order to evaluate water quality of Gamasiab and Gharehsoo rivers located in Kermanshah province, the information of a 5-year statistical period during the years 2014-2018 was used. To evaluate the hydrochemistry of water, first the type and hydrogeochemical facies of river water were determined using Stiff and Piper diagrams. Then, based on Gibbs diagram and combination diagrams, the factors controlling the chemical parameters of the two rivers were identified. Saturation indices were used to predict the possibility of dissolution and deposition of some minerals. Then, in order to classify water in different sections, fourteen water quality indicators for different uses along with WHO standard were used. Finally, factor analysis was used to determine the processes affecting the hydrochemistry of the two rivers. The results of this study showed that in both rivers, the predominant type and facies are bicarbonate of calcite. Also, the main factor in changing the chemical quality of water in both Gamasiab and Gharehsoo rivers is the water-rock reaction. According to the results of factor analysis in both rivers, two factors have the greatest impact on water quality in the region. Among the parameters of Gamasiab river in the first factor, HCO3-, Na+ and Cl-, respectively, had the highest factor loads, and in the second factor, SO42- and Mg2+ were selected as the main parameters. The parameters Ca2+, Cl- and Na have the highest factor loads in the first factor and in the second factor Mg2+ and SO42- have the highest factor loads in Gharehsoo river. The dissolution of carbonate formations due to their abundance and expansion in the two basins has a more significant effect on changing water chemistry. It has saturated the water of rivers with aragonite, calcite and dolomite. Due to the low contribution of the second factor in changing the chemical parameters, the water of both rivers is saturated with respect to evaporative minerals such as gypsum, halite and anhydrite in all stations. Based on Schoeller diagrams, Wilcox and other quality indicators in these two sections, the amount of main physicochemical parameters are in the desired range for drinking and agriculture. The results of Langelier, Ryznar, Larson-Skold and Puckorius indices showed that water is corrosive in industry.Keywords: factor analysis, hydrochemical, saturation index, surface water quality
Procedia PDF Downloads 126301 Comparison of Serum Protein Fraction between Healthy and Diarrhea Calf by Electrophoretogram
Authors: Jinhee Kang, Kwangman Park, Ruhee Song, Suhee Kim, Do-Hyeon Yu, Kyoungseong Choi, Jinho Park
Abstract:
Statement of the Problem: Animal blood components maintain homeostasis when animals are healthy, and changes in chemical composition of the blood and body fluids can be observed if animals have a disease. In particular, newborn calves are susceptible to disease and therefore hematologic tests and serum chemistry tests could become an important guideline to the diagnosis and the treatment of diseases. Diarrhea in newborn calves is the most damaging to cattle ranch, whether dairy or cattle fattening, and is a large part of calf atrophy and death. However, since the study on calf electrophoresis was not carried out, a survey analysis was conducted on it. Methodology and Theoretical Orientation: The calves were divided into healthy calves and disease (diarrhea) calves, and calves were classified by 1-14d, 15-28d, and more than 28d, respectively. The fecal state was classified by solid (0-value), semi-solid (1-value), loose (2-value) and watery (3-value). In the solid (0-value) and semi-solid (1-value) feces valuable pathogen was not detected, but loose (2-value) and watery (3-value) feces were detected. Findings: ALB, α-1, α-2, α-SUM, β and γ (Gamma) were examined by electrophoresis analysis of healthy calves and diarrhea calves. Test results showed that there were age differences between healthy calves and diarrheic calves. When we look at the γ-globulin at 1-14 days of age, we can see that the average calf of healthy calves is 16.8% and the average of diarrheal calves is 7.7%, when we look at the figures for the α-2 at 1-14 days, we found that healthy calves average 5.2% and diarrheal calves 8.7% higher than healthy cows. On α-1, 15-28 days, and after 28 days, healthy calves average 10.4% and diarrheal calves average 7.5% diarrhea calves were 12.6% and 12.4% higher than healthy calves. In the α-SUM, the healthy calves were 21.6%, 16.8%, and 14.5%, respectively, after 1-14 days, 15-28 days and 28 days. diarrheal calves were 23.1%, 19.5%, and 19.8%. Conclusion and Significance: In this study, we examined the electrophoresis results of healthy calves and diseased (diarrhea) calves, gamma globulin at 1-14 days of age were lower than those of healthy calves (diarrhea), indicating that the calf was unable to consume colostrum from the mother when it was a new calf. α-1, α-2, α-SUM may be associated with an acute inflammatory response as a result of increased levels of calves with diarrhea (diarrhea). Further research is needed to investigate the effects of acute inflammatory responses on additional calf-forming proteins. Information on the results of the electrophoresis test will be provided where necessary according to the item.Keywords: alpha, electrophoretogram, serum protein, γ, gamma
Procedia PDF Downloads 139300 Analysis of the Factors of Local Acceptance of Wind Power Generation Facilities
Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim
Abstract:
The government that declared 'de-nuclearization' pushes up renewable energy policies such as solar power and wind power as an alternative to nuclear power generation. However, local residents who are concerned about the development and natural disasters have been hit by opposition, and related businesses around the country are experiencing difficulties. There is also a voice saying that installing a large wind power generator will cause landslides, low frequencies and noise, which will have a bad influence. Renewal is only a harmful and disgusting facility for the residents. In this way, it is expected that extreme social conflicts will occur in the decision making process related to the locally unwanted land-use (LULU). The government's efforts to solve this problem have been steadily progressing, but the systematic methodology for bringing in active participation and opinion gathering of the residents has not yet been established except for the simple opinion poll or referendum. Therefore, it is time to identify the factors that concern the local residents about the wind power generation facilities, and to find ways to make policy decision-making possible. In this study, we analyze the perception of people about offshore and onshore wind power facilities through questionnaires or interviews, and examine quantitative and qualitative precedent studies to analyze them. In addition, the study evaluates what factors affect the local acceptance of wind power facilities. As a result of the factor analysis of the questionnaire items, factors affecting the residents' acceptance of the wind power facility were extracted from four factors such as environmental, economic, risk, social, and management factor. The study also found that the influence of the determinants of local acceptance on the regional acceptability differs according to the demographic characteristics such as gender and income level. This study will contribute to minimizing the conflict on the installation of wind power facilities through communication among the local residents.Keywords: factor analysis, local acceptance, locally unwanted land-use, LULU, wind power generation facilities
Procedia PDF Downloads 156299 Lead Chalcogenide Quantum Dots for Use in Radiation Detectors
Authors: Tom Nakotte, Hongmei Luo
Abstract:
Lead chalcogenide-based (PbS, PbSe, and PbTe) quantum dots (QDs) were synthesized for the purpose of implementing them in radiation detectors. Pb based materials have long been of interest for gamma and x-ray detection due to its high absorption cross section and Z number. The emphasis of the studies was on exploring how to control charge carrier transport within thin films containing the QDs. The properties of QDs itself can be altered by changing the size, shape, composition, and surface chemistry of the dots, while the properties of carrier transport within QD films are affected by post-deposition treatment of the films. The QDs were synthesized using colloidal synthesis methods and films were grown using multiple film coating techniques, such as spin coating and doctor blading. Current QD radiation detectors are based on the QD acting as fluorophores in a scintillation detector. Here the viability of using QDs in solid-state radiation detectors, for which the incident detectable radiation causes a direct electronic response within the QD film is explored. Achieving high sensitivity and accurate energy quantification in QD radiation detectors requires a large carrier mobility and diffusion lengths in the QD films. Pb chalcogenides-based QDs were synthesized with both traditional oleic acid ligands as well as more weakly binding oleylamine ligands, allowing for in-solution ligand exchange making the deposition of thick films in a single step possible. The PbS and PbSe QDs showed better air stability than PbTe. After precipitation the QDs passivated with the shorter ligand are dispersed in 2,6-difloupyridine resulting in colloidal solutions with concentrations anywhere from 10-100 mg/mL for film processing applications, More concentrated colloidal solutions produce thicker films during spin-coating, while an extremely concentrated solution (100 mg/mL) can be used to produce several micrometer thick films using doctor blading. Film thicknesses of micrometer or even millimeters are needed for radiation detector for high-energy gamma rays, which are of interest for astrophysics or nuclear security, in order to provide sufficient stopping power.Keywords: colloidal synthesis, lead chalcogenide, radiation detectors, quantum dots
Procedia PDF Downloads 127298 Electrochemical Impedance Spectroscopy Based Label-Free Detection of TSG101 by Electric Field Lysis of Immobilized Exosomes from Human Serum
Authors: Nusrat Praween, Krishna Thej Pammi Guru, Palash Kumar Basu
Abstract:
Designing non-invasive biosensors for cancer diagnosis is essential for developing an affordable and specific tool to measure cancer-related exosome biomarkers. Exosomes, released by healthy as well as cancer cells, contain valuable information about the biomarkers of various diseases, including cancer. Despite the availability of various isolation techniques, ultracentrifugation is the standard technique that is being employed. Post isolation, exosomes are traditionally exposed to detergents for extracting their proteins, which can often lead to protein degradation. Further to this, it is very essential to develop a sensing platform for the quantification of clinically relevant proteins in a wider range to ensure practicality. In this study, exosomes were immobilized on the Au Screen Printed Electrode (SPE) using EDC/NHS chemistry to facilitate binding. After immobilizing the exosomes on the screen-printed electrode (SPE), we investigated the impact of the electric field by applying various voltages to induce exosome lysis and release their contents. The lysed solution was used for sensing TSG101, a crucial biomarker associated with various cancers, using both faradaic and non-faradaic electrochemical impedance spectroscopy (EIS) methods. The results of non-faradaic and faradaic EIS were comparable and showed good consistency, indicating that non-faradaic sensing can be a reliable alternative. Hence, the non-faradaic sensing technique was used for label-free quantification of the TSG101 biomarker. The results were validated using ELISA. Our electrochemical immunosensor demonstrated a consistent response of TSG101 from 125 pg/mL to 8000 pg/mL, with a detection limit of 0.125 pg/mL at room temperature. Additionally, since non-faradic sensing is label-free, the ease of usage and cost of the final sensor developed can be reduced. The proposed immunosensor is capable of detecting the TSG101 protein at low levels in healthy serum with good sensitivity and specificity, making it a promising platform for biomarker detection.Keywords: biosensor, exosomes isolation on SPE, electric field lysis of exosome, EIS sensing of TSG101
Procedia PDF Downloads 46297 Development and Characterization of Cathode Materials for Sodium-Metal Chloride Batteries
Authors: C. D’Urso, L. Frusteri, M. Samperi, G. Leonardi
Abstract:
Solid metal halides are used as active cathode ingredients in the case of Na-NiCl2 batteries that require a fused secondary electrolyte, sodium tetrachloraluminate (NaAlCl4), to facilitate the movement of the Na+ ion into the cathode. The sodium-nickel chloride (Na - NiCl2) battery has been extensively investigated as a promising system for large-scale energy storage applications. The growth of Ni and NaCl particles in the cathodes is one of the most important factors that degrade the performance of the Na-NiCl2 battery. The larger the particles of active ingredients contained in the cathode, the smaller the active surface available for the electrochemical reaction. Therefore, the growth of Ni and NaCl particles can lead to an increase in cell polarization resulting from the reduced active area. A higher current density, a higher state of charge (SOC) at the end of the charge (EOC) and a lower Ni / NaCl ratio are the main parameters that result in the rapid growth of Ni particles. In light of these problems, cathode and chemistry Nano-materials with recognized and well-documented electrochemical functions have been studied and manufactured to simultaneously improve battery performance and develop less expensive and more performing, sustainable and environmentally friendly materials. Starting from the well-known cathodic material (Na-NiCl2), the new electrolytic materials have been prepared on the replacement of nickel with iron (10-90%substitution of Nichel with Iron), to obtain a new material with potential advantages compared to current battery technologies; for example,, (1) lower cost of cathode material compared to state of the art as well as (2) choices of cheaper materials (stainless steels could be used for cell components, including cathode current collectors and cell housings). The study on the particle size of the cathode and the physicochemical characterization of the cathode was carried out in the test cell using, where possible, the GITT method (galvanostatic technique of intermittent titration). Furthermore, the impact of temperature on the different cathode compositions of the positive electrode was studied. Especially the optimum operating temperature is an important parameter of the active material.Keywords: critical raw materials, energy storage, sodium metal halide, battery
Procedia PDF Downloads 109296 Rock-Bed Thermocline Storage: A Numerical Analysis of Granular Bed Behavior and Interaction with Storage Tank
Authors: Nahia H. Sassine, Frédéric-Victor Donzé, Arnaud Bruch, Barthélemy Harthong
Abstract:
Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost–effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. For instance, when rocks are used as storage material, the tank wall expands more than the solid medium during charge process, a gap is created between the rocks and tank walls and the filler material settles down to fill it. During discharge, the tank contracts against the bed, resulting in thermal stresses that may exceed the wall tank yield stress and generate plastic deformation. This phenomenon is repeated over the cycles and the tank will be slowly ratcheted outward until it fails. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogeneously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material. Besides the study of the influence of different thermal configurations on the storage tank response, other parameters are varied, such as the internal angle of friction of the granular material, the dispersion of particles diameters as well as the tank’s dimensions. Then, their influences on the kinematics of the granular bed submitted to thermal cycles are highlighted.Keywords: discrete element method (DEM), thermal cycles, thermal energy storage, thermocline
Procedia PDF Downloads 402295 Development of Micelle-Mediated Sr(II) Fluorescent Analysis System
Authors: K. Akutsu, S. Mori, T. Hanashima
Abstract:
Fluorescent probes are useful for the selective detection of trace amount of ions and biomolecular imaging in living cells. Various kinds of metal ion-selective fluorescent compounds have been developed, and some compounds have been applied as effective metal ion-selective fluorescent probes. However, because competition between the ligand and water molecules for the metal ion constitutes a major contribution to the stability of a complex in aqueous solution, it is difficult to develop a highly sensitive, selective, and stable fluorescent probe in aqueous solution. The micelles, these are formed in the surfactant aqueous solution, provides a unique hydrophobic nano-environment for stabilizing metal-organic complexes in aqueous solution. Therefore, we focused on the unique properties of micelles to develop a new fluorescence analysis system. We have been developed a fluorescence analysis system for Sr(II) by using a Sr(II) fluorescent sensor, N-(2-hydroxy-3-(1H-benzimidazol-2-yl)-phenyl)-1-aza-18-crown-6-ether (BIC), and studied its complexation behavior with Sr(II) in micellar solution. We revealed that the stability constant of Sr(II)-BIC complex was 10 times higher than that in aqueous solution. In addition, its detection limit value was also improved up to 300 times by this system. However, the mechanisms of these phenomena have remained obscure. In this study, we investigated the structure of Sr(II)-BIC complex in aqueous micellar solution by combining use the extended X-ray absorption fine structure (EXAFS) and neutron reflectivity (NR) method to understand the unique properties of the fluorescence analysis system from the view point of structural chemistry. EXAFS and NR experiments were performed on BL-27B at KEK-PF and on BL17 SHARAKU at J-PARC MLF, respectively. The obtained EXAFS spectra and their fitting results indicated that Sr(II) and BIC formed a Sr(18-crown-6-ether)-like complex in aqueous micellar solution. The EXAFS results also indicated that the hydrophilic head group of surfactant molecule was directly coordinated with Sr(II). In addition, the NR results also indicated that Sr(II)-BIC complex would interact with the surface of micelle molecules. Therefore, we concluded that Sr(II), BIC, and surfactant molecule formed a ternary complexes in aqueous micellar solution, and at least, it is clear that the improvement of the stability constant in micellar solution is attributed to the result of the formation of Sr(BIC)(surfactant) complex.Keywords: micell, fluorescent probe, neutron reflectivity, EXAFS
Procedia PDF Downloads 183294 Study of Water Cluster-Amorphous Silica Collisions in the Extreme Space Environment Using the ReaxFF Reactive Force Field Molecular Dynamics Simulation Method
Authors: Ali Rahnamoun, Adri van Duin
Abstract:
The concept of high velocity particle impact on the spacecraft surface materials has been one of the important issues in the design of such materials. Among these particles, water clusters might be the most abundant and the most important particles to be studied. The importance of water clusters is that upon impact on the surface of the materials, they can cause damage to the material and also if they are sub-cooled water clusters, they can attach to the surface of the materials and cause ice accumulation on the surface which is very problematic in spacecraft and also aircraft operations. The dynamics of the collisions between amorphous silica structures and water clusters with impact velocities of 1 km/s to 10 km/s are studied using the ReaxFF reactive molecular dynamics simulation method. The initial water clusters include 150 water molecules and the water clusters are collided on the surface of amorphous fully oxidized and suboxide silica structures. These simulations show that the most abundant molecules observed on the silica surfaces, other than reflecting water molecules, are H3O+ and OH- for the water cluster impacts on suboxide and fully oxidized silica structures, respectively. The effect of impact velocity on the change of silica mass is studied. At high impact velocities the water molecules attach to the silica surface through a chemisorption process meaning that water molecule dissociates through the interaction with silica surface. However, at low impact velocities, physisorbed water molecules are also observed, which means water molecule attaches and accumulates on the silica surface. The amount of physisorbed waters molecules at low velocities is higher on the suboxide silica surfaces. The evolution of the temperatures of the water clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting water clusters increase to about 2000K, with individual molecules oocasionally reaching temperatures of over 8000K and thus will be prudent to consider the concept of electron excitation at these higher impact velocities which goes beyond the current ReaxFF ability.Keywords: spacecraft materials, hypervelocity impact, reactive molecular dynamics simulation, amorphous silica
Procedia PDF Downloads 418293 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop
Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya
Abstract:
Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.Keywords: conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide
Procedia PDF Downloads 241292 Transmission Line Protection Challenges under High Penetration of Renewable Energy Sources and Proposed Solutions: A Review
Authors: Melake Kuflom
Abstract:
European power networks involve the use of multiple overhead transmission lines to construct a highly duplicated system that delivers reliable and stable electrical energy to the distribution level. The transmission line protection applied in the existing GB transmission network are normally independent unit differential and time stepped distance protection schemes, referred to as main-1 & main-2 respectively, with overcurrent protection as a backup. The increasing penetration of renewable energy sources, commonly referred as “weak sources,” into the power network resulted in the decline of fault level. Traditionally, the fault level of the GB transmission network has been strong; hence the fault current contribution is more than sufficient to ensure the correct operation of the protection schemes. However, numerous conventional coal and nuclear generators have been or about to shut down due to the societal requirement for CO2 emission reduction, and this has resulted in a reduction in the fault level on some transmission lines, and therefore an adaptive transmission line protection is required. Generally, greater utilization of renewable energy sources generated from wind or direct solar energy results in a reduction of CO2 carbon emission and can increase the system security and reliability but reduces the fault level, which has an adverse effect on protection. Consequently, the effectiveness of conventional protection schemes under low fault levels needs to be reviewed, particularly for future GB transmission network operating scenarios. The proposed paper will evaluate the transmission line challenges under high penetration of renewable energy sources andprovides alternative viable protection solutions based on the problem observed. The paper will consider the assessment ofrenewable energy sources (RES) based on a fully rated converter technology. The DIgSILENT Power Factory software tool will be used to model the network.Keywords: fault level, protection schemes, relay settings, relay coordination, renewable energy sources
Procedia PDF Downloads 206291 Photodegradation of Profoxydim Herbicide in Amended Paddy Soil-Water System
Authors: A. Cervantes-Diaz, B. Sevilla-Moran, Manuel Alcami, Al Mokhtar Lamsabhi, J. L. Alonso-Prados, P. Sandin-España
Abstract:
Profoxydim is a post-emergence herbicide belonging to the cyclohexanedione oxime family, used to control weeds in rice crops. The use of soil organic amendments has increased significantly in the last decades, and their effects on the behavior of many herbicides are still unknown. Additionally, it is known that photolysis is an important degradation process to be considered when evaluating the persistence of this family of herbicides in the environment. In this work, the photodegradation of profoxydim in an amended paddy soil-water system with alperujo compost was studied. Photodegradation experiments were carried out under laboratory conditions using simulated solar light (Suntest equipment) in order to evaluate the reaction kinetics of the active substance. The photochemical behavior of profoxydim was investigated in soil with and without alperujo amendment. Furthermore, due to the rice crop characteristics, profoxydim photodegradation in water in contact with these types of soils was also studied. Determination of profoxydim degradation kinetics was performed by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD). Furthermore, we followed the evolution of resulting transformation by-products, and their tentative identification was achieved by mass spectrometry. All the experiments allowed us to fit the data of profoxydim photodegradation to a first-order kinetic. Photodegradation of profoxydim was very rapid in all cases. The half-lives in aqueous matrices were in the range of 86±0.3 to 103±0.5 min. The addition of alperujo amendment to the soil produced an increase in the half-life from 62±0.2 min (soil) to 75±0.3 min (amended soil). In addition, a comparison to other organic amendments was also performed. Results showed that the presence of the organic amendment retarded the photodegradation in paddy soil and water. Regarding degradation products, the main process involved was the cleavage of the oxime moiety giving rise to the formation of the corresponding imine compound.Keywords: by-products, herbicide, organic amendment, photodegradation, profoxydim
Procedia PDF Downloads 79290 Quantum Chemical Calculations on Molecular Structure, Spectroscopy and Non-Linear Optical Properties of Some Chalcone Derivatives
Authors: Archana Gupta, Rajesh Kumar
Abstract:
The chemistry of chalcones has generated intensive scientific studies throughout the world. Especially, interest has been focused on the synthesis and biodynamic activities of chalcones. The blue light transmittance, excellent crystallizability and the two planar rings connected through a conjugated double bond show that chalcone derivatives are superior nonlinear organic compounds. 3-(2-Chloro-6-fluoro¬phen¬yl)-1-(2-thien¬yl) prop-2-en-1-one, 3-(2, 4- Dichlorophenyl) – 1 - (4-methylphenyl) – prop -2-en-1-one, (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one are some chalcone derivatives exhibiting non linear optical (NLO) properties. NLO materials have been extensively investigated in recent years as they are the key elements for photonic technologies of optical communication, optical interconnect oscillator, amplifier, frequency converter etc. Due to their high molecular hyperpolarizabilities, organic materials display a number of significant NLO properties. Experimental measurements and theoretical calculations on molecular hyperpolarizability β have become one of the key factors in the design of second order NLO materials. Theoretical determination of hyperpolarizability is quite useful both in understanding the relationship between the molecular structure and NLO properties. It also provides a guideline to experimentalists for the design and synthesis of organic NLO materials. Quantum-chemical calculations have made an important contribution to the understanding of the electronic polarization underlying the molecular NLO processes and the establishment of structure–property relationships. In the present investigation, the detailed vibrational analysis of some chalcone derivatives is taken up to understand the correlation of the charge transfer interaction and the NLO activity of the molecules based on density functional theory calculations. The vibrational modes contributing toward the NLO activity have been identified and analyzed. Rather large hyperpolarizability derived by theoretical calculations suggests the possible future use of these compounds for non-linear optical applications. The study suggests the importance of π - conjugated systems for non-linear optical properties and the possibility of charge transfer interactions. We hope that the results of the present study of chalcone derivatives are of assistance in development of new efficient materials for technological applications.Keywords: hyperpolarizability, molecular structure, NLO material, quantum chemical calculations
Procedia PDF Downloads 234289 Coupled Exciton - Surface Plasmon Polariton Enhanced Photoresponse of Two-Dimensional Hydrogenated Honeycomb Silicon Boride
Authors: Farzaneh Shayeganfar, Ali Ramazani
Abstract:
Exciton (strong electronic interaction of electron-hole) and hot carriers created by surface plasmon polaritons has been demonstrated in nanoscale optoelectronic devices, enhancing the photoresponse of the system. Herein, we employ a quantum framework to consider coupled exciton- hot carriers effects on photovoltaiv energy distribution, scattering process, polarizability and light emission of 2D-semicnductor. We use density functional theory (DFT) to design computationally a semi-functionalized 2D honeycomb silicon boride (SiB) monolayer with H atoms, suitable for photovoltaics. The dynamical stability, electronic and optical properties of SiB and semi-hydrogenated SiB structures were investigated utilizing the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated phonon dispersion shows that while an unhydrogenated SiB monolayer is dynamically unstable, surface semi-hydrogenation improves the stability of the structure and leads to a transition from metallic to semiconducting conductivity with a direct band gap of about 1.57 eV, appropriate for photovoltaic applications. The optical conductivity of this H-SiB structure, determined using the random phase approximation (RPA), shows that light adsorption should begin at the boundary of the visible range of light. Additionally, due to hydrogenation, the reflectivity spectrum declines sharply with respect to the unhydrogenated reflectivity spectrum in the IR and visible ranges of light. The energy band gap remains direct, increasing from 0.9 to 1.8 eV, upon increasing the strain from -6% (compressive) to +6% (tensile). Additionally, compressive and tensile strains lead, respectively, to red and blue shifts of optical the conductivity threshold around the visible range of light. Overall, this study suggests that H-SiB monolayers are suitable as two-dimensional solar cell materials.Keywords: surface plasmon, hot carrier, strain engineering, valley polariton
Procedia PDF Downloads 109288 Graphene-Intercalated P4Se3@CNF Hybrid Electrode for Sustainable Energy Storage Solution: Enabling High Energy Density and Ultra-long Cyclic Stability
Authors: Daya Rani
Abstract:
Non-metal-based compounds have emerged as promising electrodes in recent years to replace scarce and expensive transition-metals for energy storage applications. Herein, a simple electro-spinning technique followed by carbonization is used to create tetraphosphorus triselenide(P4Se3)nano-flakes encapsulated in carbon nanofiber (P4Se3@CNF) to obtain a binder-free, metal-free and flexible hybrid electrode with high electrical conductivity and cyclic stability. A remarkable capacitive performance (5.5-folds@P4Se3) of 810Fg-1/[email protected] has been obtained using P4Se3@CNF electrode with an excellent rate capability compared to pristine(P4Se3) which is further supported by theoretical calculations via intercalating graphene within bare P4Se3 flakes inducing partial charge redistribution in hetero-structure. A flexible pouch-type hybrid-supercapacitor followed by coin-cell has been manufactured offering exceptional energy-density without sacrificing power density and ultra-long durability over 35000 and 100000-cycles with capacitance-retention of 99.77% and 100%, respectively. It has been demonstrated that as-fabricated device has practical usefulness towards renewable energy harvesting and storage via integrating commercial solar cell module with supercapattery array that can enlighten the blue LED approximately for 31minutes, rotate the homemade windmill device, power Arduino and glow “INST” against 2minutes of charging. This work demonstrates a facile route towards the development of metal-free electrochemical renewable energy storage/transfer devices offering an inevitable adoption in industrial platforms.Keywords: metal free, carbon nano-fiber, pouch-type hybrid super-capacitor, nano-flakes
Procedia PDF Downloads 22287 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: machine-learning, habitability, exoplanets, supercomputing
Procedia PDF Downloads 89286 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: exoplanets, habitability, machine-learning, supercomputing
Procedia PDF Downloads 116285 Inkjet Printed Silver Nanowire Network as Semi-Transparent Electrode for Organic Photovoltaic Devices
Authors: Donia Fredj, Marie Parmentier, Florence Archet, Olivier Margeat, Sadok Ben Dkhil, Jorg Ackerman
Abstract:
Transparent conductive electrodes (TCEs) or transparent electrodes (TEs) are a crucial part of many electronic and optoelectronic devices such as touch panels, liquid crystal displays (LCDs), organic light-emitting diodes (OLEDs), solar cells, and transparent heaters. The indium tin oxide (ITO) electrode is the most widely utilized transparent electrode due to its excellent optoelectrical properties. However, the drawbacks of ITO, such as the high cost of this material, scarcity of indium, and the fragile nature, limit the application in large-scale flexible electronic devices. Importantly, flexibility is becoming more and more attractive since flexible electrodes have the potential to open new applications which require transparent electrodes to be flexible, cheap, and compatible with large-scale manufacturing methods. So far, several materials as alternatives to ITO have been developed, including metal nanowires, conjugated polymers, carbon nanotubes, graphene, etc., which have been extensively investigated for use as flexible and low-cost electrodes. Among them, silver nanowires (AgNW) are one of the promising alternatives to ITO thanks to their excellent properties, high electrical conductivity as well as desirable light transmittance. In recent years, inkjet printing became a promising technique for large-scale printed flexible and stretchable electronics. However, inkjet printing of AgNWs still presents many challenges. In this study, a synthesis of stable AgNW that could compete with ITO was developed. This material was printed by inkjet technology directly on a flexible substrate. Additionally, we analyzed the surface microstructure, optical and electrical properties of the printed AgNW layers. Our further research focused on the study of all inkjet-printed organic modules with high efficiency.Keywords: transparent electrodes, silver nanowires, inkjet printing, formulation of stable inks
Procedia PDF Downloads 221284 Carbon, Nitrogen Doped TiO2 Macro/Mesoporous Monoliths with High Visible Light Absorption for Photocatalytic Wastewater Treatment
Authors: Paolo Boscaro, Vasile Hulea, François Fajula, Francis Luck, Anne Galarneau
Abstract:
TiO2 based monoliths with hierarchical macropores and mesopores have been synthesized following a novel one pot sol-gel synthesis method. Taking advantage of spinodal separation that occurs between titanium isopropoxide and an acidic solution in presence of polyethylene oxide polymer, monoliths with homogeneous interconnected macropres of 3 μm in diameter and mesopores of ca. 6 nm (surface area 150 m2/g) are obtained. Furthermore, these monoliths present some carbon and nitrogen (as shown by XPS and elemental analysis), which considerably reduce titanium oxide energy gap and enable light to be absorbed up to 700 nm wavelength. XRD shows that anatase is the dominant phase with a small amount of brookite. Enhanced light absorption and high porosity of the monoliths are responsible for a remarkable photocatalytic activity. Wastewater treatment has been performed in closed reactor under sunlight using orange G dye as target molecule. Glass reactors guarantee that most of UV radiations (to almost 300 nm) of solar spectrum are excluded. TiO2 nanoparticles P25 (usually used in photocatalysis under UV) and un-doped TiO2 monoliths with similar porosity were used as comparison. C,N-doped TiO2 monolith allowed a complete colorant degradation in less than 1 hour, whereas 10 h are necessary for 40% colorant degradation with P25 and un-doped monolith. Experiment performed in the dark shows that only 3% of molecules have been adsorbed in the C,N-doped TiO2 monolith within 1 hour. The much higher efficiency of C,N-doped TiO2 monolith in comparison to P25 and un-doped monolith, proves that doping TiO2 is an essential issue and that nitrogen and carbon are effective dopants. Monoliths offer multiples advantages in respect to nanometric powders: sample can be easily removed from batch (no needs to filter or to centrifuge). Moreover flow reactions can be set up with cylindrical or flat monoliths by simple sheathing or by locking them with O-rings.Keywords: C-N doped, sunlight photocatalytic activity, TiO2 monolith, visible absorbance
Procedia PDF Downloads 230