Search results for: soil water content
13387 Survey of Corrosion and Scaling of Urban Drinking Water Supply Reservoirs (Case Study: Ilam City)
Authors: Ehsan Derikvand, Hamid Kaykha, Rooholah Mansoori Yekta, Taleb Javanmard, Mohsen Mehdi Zadeh
Abstract:
Corrosion and scaling are one of the most complicated and costly problems of drinking water supply. Corrosion has adverse effect on general health and public acceptance of water source and drinking water supply costs. The present study aimed to determine the potentials of corrosion and scaling of potable water supply reservoirs of Ilam city in June 2013 and August 2014 by Langelier Index (LI) and Reynar. The results of experiments and calculations show that the mean index of LSI in the first and second sampling stages is 0.34, 0.2, respectively and the mean index RSI in the first and second stages of sampling is 7.15 and 7.22, respectively. Based on LSI index of reservoirs water in the first phase, none of stations are corrosive and only one station in the second sampling phase has corrosive tendency. According to RSI index, there is no corrosive tendency in two phases. Based on the results, the water of drinking water reservoirs in Ilam city has no corrosion tendency and the analyses and results of Langelier Index (LI) and Ryznar are in relatively good condition.Keywords: corrosion, scaling, water reservoirs, langelier and ryznar indices, Ilam city
Procedia PDF Downloads 40813386 Recovery of Polyphenolic Phytochemicals From Greek Grape Pomace (Vitis Vinifera L.)
Authors: Christina Drosou, Konstantina E. Kyriakopoulou, Andreas Bimpilas, Dimitrios Tsimogiannis, Magdalini C. Krokida
Abstract:
Rationale: Agiorgitiko is one of the most widely-grown and commercially well-established red wine varieties in Greece. Each year viticulture industry produces a large amount of waste consisting of grape skins and seeds (pomace) during a short period. Grapes contain polyphenolic compounds which are partially transferred to wine during winemaking. Therefore, winery wastes could be an alternative cheap source for obtaining such compounds with important antioxidant activity. Specifically, red grape waste contains anthocyanins and flavonols which are characterized by multiple biological activities, including cardioprotective, anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant activity. Ultrasound assisted extraction (UAE) is considered an effective way to recover phenolic compounds, since it combines the advantage of mechanical effect with low temperature. Moreover, green solvents can be used in order to recover extracts intended for used in the food and nutraceutical industry. Apart from the extraction, pre-treatment process like drying can play an important role on the preservation of the grape pomace and the enhancement of its antioxidant capacity. Objective: The aim of this study is to recover natural extracts from winery waste with high antioxidant capacity using green solvents so they can be exploited and utilized as enhancers in food or nutraceuticals. Methods: Agiorgitiko grape pomace was dehydrated by air drying (AD) and accelerated solar drying (ASD) in order to explore the effect of the pre-treatment on the recovery of bioactive compounds. UAE was applied in untreated and dried samples using water and water: ethanol (1:1) as solvents. The total antioxidant potential and phenolic content of the extracts was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Folin-Ciocalteu method, respectively. Finally, the profile of anthocyanins and flavonols was specified using HPLC-DAD analysis. The efficiency of processes was determined in terms of extraction yield, antioxidant activity, phenolic content and the anthocyanins and flavovols profile. Results & Discussion: The experiments indicated that the pre-treatment was essential for the recovery of highly nutritious compounds from the pomace as long as the extracts samples showed higher phenolic content and antioxidant capacity. Water: ethanol (1:1) was considered a more effective solvent on the recovery of phenolic compounds. Moreover, ASD grape pomace extracted with the solvent system exhibited the highest antioxidant activity (IC50=0.36±0.01mg/mL) and phenolic content (TPC=172.68±0.01mgGAE/g dry extract), followed by AD and untreated pomace. The major compounds recovered were malvidin3-O-glucoside and quercetin3-O-glucoside according to the HPLC analysis. Conclusions: Winery waste can be exploited for the recovery of nutritious compounds using green solvents such as water or ethanol. The pretreatment of the pomace can significantly affect the concentration of phenolic compounds, while UAE is considered a highly effective extraction process.Keywords: agiorgitico grape pomace, antioxidants, phenolic compounds, ultrasound assisted extraction
Procedia PDF Downloads 39213385 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images
Authors: Reem El Chakik
Abstract:
The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination
Procedia PDF Downloads 11013384 Conservation Agriculture in North America
Authors: Ying Chen
Abstract:
Conservation Agriculture in a sustainable way of farming, as it brings many benefits, such as preventing soil from erosion and degradation, improving soil health, conserving energy, and sequestrating carbon. However, adoption of conservation agriculture has been progressing slowly in some part of the world due to some challenges. Among them, seeding in heavy crop residue is challenging, especially in corn production systems. Weed control is also challenging in conservation agriculture. This research aimed to investigate some technologies that can address these challenges. For crop residue management, vertical tillage and vertical seeding have been studied in multiple research projects. Results showed that vertical tillage and seeding were able to deal with crop residue through cutting residue into small segments, which would not plug seeder in the sub-sequent seeding. Vertical tillage is a conservation tillage system, as it leaves more than 30% crop residue on soil surface while incorporating some residue into the shallow soil layer for fast residue decomposition. For weed control, mechanical weeding can reduce chemical inputs in crop production. A tine weeder was studied for weed control during the early growing season of several field crops (corn, soybean, flax, and pea). Detail results of these studies will be shared at the conference.Keywords: tillage, seeding, mechanical weeding, crop residue
Procedia PDF Downloads 7313383 Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins Performance: North Gaza Emergency Sewage Treatment Plant as Case Study
Authors: Sadi Ali, Yaser Kishawi
Abstract:
As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load.Keywords: SAT, wastewater quality, soil remediation, North Gaza
Procedia PDF Downloads 23313382 The Effect of Partially Replacing Cement with Metakaolin on the Properties of Concrete
Authors: Gashaw Abebaw
Abstract:
Concrete usage in Ethiopia is expanding at a faster rate than before. Cement is the most important and costly ingredient in this respect. The construction industry is currently challenged by cement scarcity and stock market inflation. Scholars' trays, on the other hand, will use natural pozzolan material to substitute cement. Apart from that, Metakaolin has pozzolanic characteristics. According to the industrial mineral occurrence map, Ethiopia kaolin may be found in abundance. Some of them include Debretabor, so it is good to utilize Metakaolin as cement replacement material. In this study, the capability of Ethiopian Metakaolin as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of PPC by MA with 0.49 percent water to cement ratio is investigated. The study examines; the chemical properties of MA, Physical properties of cement paste, workability, compressive strength, water absorption, density and sulfate attack of concrete was investigated. The chemical composition of Metakaolin was examined and the summation of SiO₂, AlO₃, and FeO₃ is 86.25% and the ash was classified class N pozzolan. The normal consistency percent of water increases as the MA replacement amount increase and both initial and final setting time rang increase as the MA replacement amount increase. On the 28th day, the compressive strength of concrete with MA replacement of 5%, 10%, and 15% exceeds the goal mean strength (33.5Mpa) with compressive strength enhancements of 2.23 %, 4.05 %, and 2.23 %, respectively. Similarly, on the 56th day, 5 %, 10%, and 15% replacement enhance concrete strength by 2.06 %, 3.06 %, and 1.2 %, respectively. The MA mixed concrete has improved significantly in terms of water absorption and sulphate attack, with a 15% replacement level. MA content Metakaolin could possibly replace cement up to 15%, according to the studies. The study's findings will help to offset cement price increases while also boosting house affordability without significantly degrading.Keywords: metakaolin, compressive strength, sulphate attack, water absorption, N pozzolan
Procedia PDF Downloads 11813381 Investigation of Correlation Between Radon Concentration and Metals in Produced Water from Oilfield Activities
Authors: Nacer Hamza
Abstract:
Naturally radiation exposure that present due to the cosmic ray or the naturel occurring radioactives materials(NORMs) that originated in the earth's crust and are present everywhere in the environment(1) , a significant concentration of NORMs reported in the produced water which comes out during the oil extraction process, so that the management of this produced water is a challenge for oil and gas companies which include either minimization of produced water which considered as the best way in the term of environment based in the fact that ,the lower water produced the lower cost in treating this water , recycling and reuse by reinjected produced water that fulfills some requirements to enhance oil recovery or disposal in the case that the produced water cannot be minimize or reuse. In the purpose of produced water management, the investigation of NORMs activity concentration present in it considered as the main step for more understanding of the radionuclide’s distribution. Many studies reported the present of NORMs in produced water and investigated the correlation between 〖Ra〗^226and the different metals present in produced water(2) including Cations and anions〖Na〗^+,〖Cl〗^-, 〖Fe〗^(2+), 〖Ca〗^(2+) . and lead, nickel, zinc, cadmium, and copper commonly exist as heavy metal in oil and gas field produced water(3). However, there are no real interesting to investigate the correlation between 〖Rn〗^222and the different metals exist in produced water. methods using, in first to measure the radon concentration activity in produced water samples is a RAD7 .RAD7 is a radiometer instrument based on the solid state detectors(4) which is a type of semi-conductor detector for alpha particles emitting from Rn and their progenies, in second the concentration of different metals presents in produced water measure using an atomic absorption spectrometry AAS. Then to investigate the correlation between the 〖Rn〗^222concentration activity and the metals concentration in produced water a statistical method is Pearson correlation analysis which based in the correlation coefficient obtained between the 〖Rn〗^222 and metals. Such investigation is important to more understanding how the radionuclides act in produced water based on this correlation with metals , in first due to the fact that 〖Rn〗^222decays through the sequence 〖Po〗^218, 〖Pb〗^214, 〖Bi〗^214, 〖Po〗^214, and〖Pb〗^210, those daughters are metals thus they will precipitate with metals present in produced water, secondly the short half-life of 〖Rn〗^222 (3.82 days) lead to faster precipitation of its progenies with metals in produced water.Keywords: norms, radon concentration, produced water, heavy metals
Procedia PDF Downloads 14613380 Hydrological Characterization of a Watershed for Streamflow Prediction
Authors: Oseni Taiwo Amoo, Bloodless Dzwairo
Abstract:
In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.Keywords: hydrological characteristic, stream flow, runoff discharge, land and climate
Procedia PDF Downloads 33813379 Seasonal Profile of the Feeding Ecology of Auchenoglanis Occidentalis from Tagwai Lake, Minna Niger State, Nigeria
Authors: V. I. Chukwuemeka, S. M. Tsadu, R. O. Ojutiku, R. J. Kolo
Abstract:
The food and feeding habits of Auchenoglanis occidentalis, which is commonly called the “BuBu” cat fish or the giraffe cat fish from Tagwai Lake Minna, was analysed from January to June, 2013. A total of 216 fish specimen were used for the study which were obtained from the local fishermen operating in Tagwai Lake Minna. Fishing gears used include cast nets and gills nets of various sizes. They also use hook and lines. The frequency of occurrence and dominance method were used to analyse the food in the gut. Auchenoglanis occidentalis from Tagwai Lake, Minna had a broad spectrum of food items in the gut, ranging from insects, fish, plant materials to protozoan. The percentage of insects was (31.75%), fish (12.70%), Chyme (20.63%), plant materials (20.63%), protozoa (1.59%) and soil (12.70%). The presence of different food items in the gut of the Auchenoglanis occidentalis which ranged from animal to plant and soil made it to be considered as an omnivore bottom feeder. The food habits of this fish showed no remarkable difference between the dry season months and the rainy season months. The broad food spectrum of the fish makes them a good aquaculture candidate. It also suggests that the specie feed both in surface water and near the substratum (sand).Keywords: Auchenoglanis occidentalis, ecology, Tagwai Lake, Nigeria
Procedia PDF Downloads 57113378 A Numerical Study for Mixing Depth and Applicability of Partial Cement Mixing Method Utilizing Geogrid and Fixing Unit
Authors: Woo-seok Choi, Eun-sup Kim, Nam-Seo Park
Abstract:
The demand for new technique in soft ground improvement continuously increases as general soft ground methods like PBD and DCM have a application problem in soft grounds with deep depth and wide distribution in Southern coast of Korea and Southeast. In this study, partial cement mixing method utilizing geogrid and fixing unit(CMG) is suggested and Finite element analysis is performed for analyzing the depth of surface soil and deep soil stabilization and comparing with DCM method. In the result of the experiment, the displacement in DCM method were lower than the displacement in CMG, it's because the upper load is transferred to deep part soil not treated by cement in CMG method case. The differential settlement in DCM method was higher than the differential settlement in CMG, because of the effect load transfer effect by surface part soil treated by cement and geogrid. In conclusion, CMG method has the advantage of economics and constructability in embankment road, railway, etc in which differential settlement is the important consideration.Keywords: soft ground, geogrid, fixing unit, partial cement mixing, finite element analysis
Procedia PDF Downloads 37713377 Waste from Drinking Water Treatment: The Feasibility for Application in Building Materials
Authors: Marco Correa
Abstract:
The increasing reduction of the volumes of surface water sources supplying most municipalities, as well as the rising demand for treated water, combined with the disposal of effluents from washing of decanters and filters of water treatment plants generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows alternatives for sludge dehydration from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, it is presented a case study for drainage in tanks geotextile, full-scale, which involve five sledge drainage tanks from WTP of the city of Rio Verde. Aiming to the reutilization of drained water from the sledge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to in the production of building materials.Keywords: dehydration, effluent discharges, re-use, sludge, WTP sludge
Procedia PDF Downloads 30813376 Geological Engineering Mapping Approach to Know Factor of Safety Distribution and Its Implication to Landslide Potential at Muria Mountain, Kudus, Central Java Province, Indonesia
Authors: Sony Hartono, Azka Decana, Vilia Yohana, Annisa Luthfianihuda, Yuni Faizah, Tati Andriani, Dewi Kania, Fachri Zulfiqar, Sugiar Yusup, Arman Nugraha
Abstract:
Landslide is a geological hazard that is quite common in some areas in Indonesia and have disadvantages impact for public around. Due to the high frequency of landslides in Indonesia, and extensive damage, landslides should be specifically noted. Landslides caused by a soil or rock unit that has been in a state of unstable slopes and not in ideal state again, so the value of ground resistance or the rock been passed by the value of the forces acting on the slope. Based on this fact, authors held a geological engineering mapping at Muria Mountain, Kudus, Central Java province which is known as an agriculture and religion tourism area. This geological engineering mapping is performed to determine landslides potential at Muria Mountain. Slopes stability will be illustrated by a number called the “factor of safety” where the number can describe how much potential a slope to fall. Slopes stability can be different depending on the physical and mechanical characteristics of the soil and slope conditions. Testing of physical and mechanical characteristics of the soil conducted in the geotechnical laboratory. The characteristics of the soil must be same when sampled as well as in the test laboratory. To meet that requirement, authors used "undisturb sample" method that will be guarantee sample will not be distracted by environtment influences. From laboratory tests on soil physical and mechanical properties obtained characteristics of the soil on a slope, and then inserted into a Geological Information Software that would generate a value of factor of safety and give a visualization slope form area of research. Then, as a result of the study, obtained a map of the ground movement distribution map and i is implications for landslides potential areas.Keywords: factor of safety, geological engineering mapping, landslides, slope stability, soil
Procedia PDF Downloads 41813375 Soil Bioremediation Monitoring Systems Powered by Microbial Fuel Cells
Authors: András Fülöp, Lejla Heilmann, Zsolt Szabó, Ákos Koós
Abstract:
Microbial fuel cells (MFCs) present a sustainable biotechnological solution to future energy demands. The aim of this study was to construct soil based, single cell, membrane-less MFC systems, operated without treatment to continuously power on-site monitoring and control systems during the soil bioremediation processes. Our Pseudomonas aeruginosa 541 isolate is an ideal choice for MFCs, because it is able to produce pyocyanin which behaves as electron-shuttle molecule, furthermore, it also has a significant antimicrobial effect. We tested several materials and structural configurations to obtain long term high power output. Comparing different configurations, a proton exchange membrane-less, 0.6 m long with 0.05 m diameter MFC tubes offered the best long-term performances. The long-term electricity production were tested from starch, yeast extract (YE), carboxymethyl cellulose (CMC) with humic acid (HA) as a mediator. In all cases, 3 kΩ external load have been used. The two best-operated systems were the Pseudomonas aeruginosa 541 containing MFCs with 1 % carboxymethyl cellulose and the MFCs with 1% yeast extract in the anode area and 35% hydrogel in the cathode chamber. The first had 3.3 ± 0.033 mW/m2 and the second had 4.1 ± 0.065 mW/m2 power density values. These systems have operated for 230 days without any treatment. The addition of 0.2 % HA and 1 % YE referred to the volume of the anode area resulted in 1.4 ± 0.035 mW/m2 power densities. The mixture of 1% starch with 0.2 % HA gave 1.82 ± 0.031 mW/m2. Using CMC as retard carbon source takes effect in the long-term bacterial survivor, thus enable the expression of the long term power output. The application of hydrogels in the cathode chamber significantly increased the performance of the MFC units due to their good water retention capacity.Keywords: microbial fuel cell, bioremediation, Pseudomonas aeruginosa, biotechnological solution
Procedia PDF Downloads 28913374 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas
Authors: Julien Caudeville, Muriel Ismert
Abstract:
Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.Keywords: health risk, environment, composite indicator, hotspot areas
Procedia PDF Downloads 24713373 A Case Study on the Drivers of Household Water Consumption for Different Socio-Economic Classes in Selected Communities of Metro Manila, Philippines
Authors: Maria Anjelica P. Ancheta, Roberto S. Soriano, Erickson L. Llaguno
Abstract:
The main purpose of this study is to examine whether there is a significant relationship between socio-economic class and household water supply demand, through determining or verifying the factors governing water use consumption patterns of households from a sampling from different socio-economic classes in Metro Manila, the national capital region of the Philippines. This study is also an opportunity to augment the lack of local academic literature due to the very few publications on urban household water demand after 1999. In over 600 Metro Manila households, a rapid survey was conducted on their average monthly water consumption and habits on household water usage. The questions in the rapid survey were based on an extensive review of literature on urban household water demand. Sample households were divided into socio-economic classes A-B and C-D. Cluster analysis, dummy coding and outlier tests were done to prepare the data for regression analysis. Subsequently, backward stepwise regression analysis was used in order to determine different statistical models to describe the determinants of water consumption. The key finding of this study is that the socio-economic class of a household in Metro Manila is a significant factor in water consumption. A-B households consume more water in contrast to C-D families based on the mean average water consumption for A-B and C-D households are 36.75 m3 and 18.92 m3, respectively. The most significant proxy factors of socio-economic class that were related to household water consumption were examined in order to suggest improvements in policy formulation and household water demand management.Keywords: household water uses, socio-economic classes, urban planning, urban water demand management
Procedia PDF Downloads 30013372 Technology Identification, Evaluation and Selection Methodology for Industrial Process Water and Waste Water Treatment Plant of 3x150 MWe Tufanbeyli Lignite-Fired Power Plant
Authors: Cigdem Safak Saglam
Abstract:
Most thermal power plants use steam as working fluid in their power cycle. Therefore, in addition to fuel, water is the other main input for thermal plants. Water and steam must be highly pure in order to protect the systems from corrosion, scaling and biofouling. Pure process water is produced in water treatment plants having many several treatment methods. Treatment plant design is selected depending on raw water source and required water quality. Although working principle of fossil-fuel fired thermal power plants are same, there is no standard design and equipment arrangement valid for all thermal power plant utility systems. Besides that, there are many other technology evaluation and selection criteria for designing the most optimal water systems meeting the requirements such as local conditions, environmental restrictions, electricity and other consumables availability and transport, process water sources and scarcity, land use constraints etc. Aim of this study is explaining the adopted methodology for technology selection for process water preparation and industrial waste water treatment plant in a thermal power plant project located in Tufanbeyli, Adana Province in Turkey. Thermal power plant is fired with indigenous lignite coal extracted from adjacent lignite reserves. This paper addresses all above-mentioned factors affecting the thermal power plant water treatment facilities (demineralization + waste water treatment) design and describes the ultimate design of Tufanbeyli Thermal Power Plant Water Treatment Plant.Keywords: thermal power plant, lignite coal, pretreatment, demineralization, electrodialysis, recycling, ash dampening
Procedia PDF Downloads 48013371 Mechanisms Involved in Biological Control of Fusarium Wilt
Authors: Bensaid Fatiha
Abstract:
The objective of our present work is the description of the antagonistic capacities of one strain of Pseudomonas fluorescens and the nonpathogenic fungic isolate Fusarium oxysporum against phytopathogenic agent Fusarium oxysporum F. Sp. lycopersici. This work has been achieved in two main parts: the first is interested on the in vitro antagonistic activities; the second was interested to study the soil receptiveness of fusarium wilt tomato. The use of strain of fluorescent Pseudomonas and a non-pathogenic strain of F. oxysporum in the different antagonism tests, has allowed assuring a certain bio-protection from the plants of tomatoes opposite to F. oxysporum F. Sp. lycopersici, agent of a wilt of tomato. These antagonistic have shown a substantial in vitro antagonistic activity on the three mediums (KB, PDA, KB+PDA) against F. oxysporum F. Sp. lycopersici, by inhibiting its growth mycelium with rate of inhibition going until 80 % with non-pathogen of Fusarium oxysporum and 60 % with strain of fluorescens Pseudomonas. Soil microbial balance, between the antagonistic population and that of pathogenic, can be modulated through microbiological variations or abiotic additives influencing directly or indirectly the metabolic behavior microbial. In this experiment, addition of glucose or EDTA, could increase or decrease the resistance of soil by activation of pathogenic or antagonists, as a result of modification and modulation in their metabolic activities.Keywords: fluorescents, nonpathogenic, fusarium oxysporum, fusarium wilt, antagonism, biological control, soil receptivity
Procedia PDF Downloads 45713370 Geospatial and Statistical Evidences of Non-Engineered Landfill Leachate Effects on Groundwater Quality in a Highly Urbanised Area of Nigeria
Authors: David A. Olasehinde, Peter I. Olasehinde, Segun M. A. Adelana, Dapo O. Olasehinde
Abstract:
An investigation was carried out on underground water system dynamics within Ilorin metropolis to monitor the subsurface flow and its corresponding pollution. Africa population growth rate is the highest among the regions of the world, especially in urban areas. A corresponding increase in waste generation and a change in waste composition from predominantly organic to non-organic waste has also been observed. Percolation of leachate from non-engineered landfills, the chief means of waste disposal in many of its cities, constitutes a threat to the underground water bodies. Ilorin city, a transboundary town in southwestern Nigeria, is a ready microcosm of Africa’s unique challenge. In spite of the fact that groundwater is naturally protected from common contaminants such as bacteria as the subsurface provides natural attenuation process, groundwater samples have been noted to however possesses relatively higher dissolved chemical contaminants such as bicarbonate, sodium, and chloride which poses a great threat to environmental receptors and human consumption. The Geographic Information System (GIS) was used as a tool to illustrate, subsurface dynamics and the corresponding pollutant indicators. Forty-four sampling points were selected around known groundwater pollutant, major old dumpsites without landfill liners. The results of the groundwater flow directions and the corresponding contaminant transport were presented using expert geospatial software. The experimental results were subjected to four descriptive statistical analyses, namely: principal component analysis, Pearson correlation analysis, scree plot analysis, and Ward cluster analysis. Regression model was also developed aimed at finding functional relationships that can adequately relate or describe the behaviour of water qualities and the hypothetical factors landfill characteristics that may influence them namely; distance of source of water body from dumpsites, static water level of groundwater, subsurface permeability (inferred from hydraulic gradient), and soil infiltration. The regression equations developed were validated using the graphical approach. Underground water seems to flow from the northern portion of Ilorin metropolis down southwards transporting contaminants. Pollution pattern in the study area generally assumed a bimodal pattern with the major concentration of the chemical pollutants in the underground watershed and the recharge. The correlation between contaminant concentrations and the spread of pollution indicates that areas of lower subsurface permeability display a higher concentration of dissolved chemical content. The principal component analysis showed that conductivity, suspended solids, calcium hardness, total dissolved solids, total coliforms, and coliforms were the chief contaminant indicators in the underground water system in the study area. Pearson correlation revealed a high correlation of electrical conductivity for many parameters analyzed. In the same vein, the regression models suggest that the heavier the molecular weight of a chemical contaminant of a pollutant from a point source, the greater the pollution of the underground water system at a short distance. The study concludes that the associative properties of landfill have a significant effect on groundwater quality in the study area.Keywords: dumpsite, leachate, groundwater pollution, linear regression, principal component
Procedia PDF Downloads 11513369 Adverse Impacts of Poor Wastewater Management Practices on Water Quality in Gebeng Industrial Area, Pahang, Malaysia
Authors: I. M. Sujaul, M. A. Sobahan, A. A. Edriyana, F. M. Yahaya, R. M. Yunus
Abstract:
This study was carried out to investigate the adverse effect of industrial waste water on surface water quality in Gebeng industrial estate, Pahang, Malaysia. Surface water was collected from 6 sampling stations. Physico-chemical parameters were characterized based on in-situ and ex-situ analysis according to standard methods by American Public Health Association (APHA). Selected heavy metals were determined by using Inductively Coupled Plasma Mass Spectrometry (ICP MS). The result reveled that the concentration of heavy metals such as Pb, Cu, Cd, Cr and Hg were high in samples. The result showed that the value of Pb and Hg were higher in the wet season in comparison to dry season. According to Malaysia National Water Quality Standard (NWQS) and Water Quality Index (WQI) all the sampling station were categorized as class IV (highly polluted). The present study reveled that the adverse effects of careless disposal of wastes and directly discharge of effluents affected on surface water quality. Therefore, the authorities should implement the laws to ensure the proper practices of waste water management for environmental sustainability around the study area.Keywords: water, heavy metals, water quality index, Gebeng
Procedia PDF Downloads 37713368 Application of Dissolved Air Flotation for Removal of Oil from Wastewater
Authors: Talat Ghomashchi, Zahra Akbari, Shirin Malekpour, Marjan Alimirzaee
Abstract:
Mixing the waste water of industries with natural water has caused environmental pollution. So researcher try to obtain methods and optimum conditions for waste water treatment. One of important stage in waste water treatment is dissolved air flotation. DAF is used for the removal of suspended solids and oils from waste water. In this paper, the effect of several parameters on flotation efficiency with Cationic polyacrylamide as flocculant, was examined, namely, (a) concentration of cationic flocculants, (b) pH (c) fast mixing time, (d) fast mixing speed,(e) slow mixing time,(f) retention time and temperature. After design of experiment, in each trial turbidity of waste water was measured by spectrophotometer. Results show that contribution of pH and concentration of flocculant on flotation efficiency are 75% and 9% respectively. Cationic polyacrylamide led to a significant increase in the settling speed and effect of temperature is negligible. In the optimum condition, the outcome of the DAF unit is increased and amount of suspended solid and oil in waste water is decreased effectively.Keywords: dissolved air flotation, oil industry, waste water, treatment
Procedia PDF Downloads 52813367 Solar Heating System to Promote the Disinfection of Water
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
It presents a heating system using low cost alternative solar collectors to promote the disinfection of water in low income communities that take water contaminated by bacteria. The system consists of two solar collectors, with total area of 4 m² and was built using PET bottles and cans of beer and soft drinks. Each collector is made up of 8 PVC tubes, connected in series and work in continuous flow. It will determine the flux the most appropriate to generate the temperature to promote the disinfection. It will be presented results of the efficiency and thermal loss of system and results of analysis of water after undergoing the process of heating.Keywords: Disinfection of water, solar heating system, poor communities, bioinformatics, biomedicine
Procedia PDF Downloads 48313366 Impact of Microbial Pathogen on Aquatic Environment
Authors: Muhammad Younis Laghari
Abstract:
Global climate change has had many effects on the aquatic environment, and the major issue is pollution. Along with the other pollutants, there are a significant number of human microbial pathogens that pollute the water bodies. Another concern about the water quality is that the major aquatic resources bring water-borne pathogens and other related diseases. These resources include industrial effluent, untreated domestic sewage, acid mine drainage, etc. However, these water discharges through various routes may have treatment to eliminate the pathogenic microbes. Therefore, it is essential to control the leakage from sewer systems, residential discharge, and agricultural run-off. These pathogenic microbes have been implicated in the lives of water health (fishes), which is harmful and causes diseases. Mostly, the mortality of aquatic species results because of catastrophic floods due to poor water waste treatment and sanitation that introduce pathogenic bacteria into rivers. Pathogens survive in rivers and remain poorly known but essential to control water-borne diseases. The presence of bacteria in watercourses is diverse and constitutes a complicated subject. Many species are autochthonous and play an important role in aquatic ecosystems, while many others arise from untreated or poorly treated waste from industrial and domestic sources. Further, more investigation is required to know the induction of water-borne pathogens in various water resources and the potential impacts of water resource development on pathogen contamination.Keywords: microbial pathogens, contamination, water resources, river water body
Procedia PDF Downloads 7313365 Investigating Willingness to Pay for Water Services in a Newly Established Municipality in Malamulele, Vhembe District Municipality, South Africa
Authors: D. T. Chabalala
Abstract:
Currently South Africa is facing a triple challenge of poverty, unemployment and inequality. As such, communities have limited access to basic municipal services such as water, sanitation and electricity. Citizens such as those residing at Malamulele Township will be responsible to pay for the cost of water services that they consume instead of having the costs subsidised by the newly formed Municipality. The question on whether Malamulele residents would be willing to pay for water services provided for them need to be investigated. This study was conducted in Malamulele Township and surrounding villages. The article is based on a survey of 500 randomly selected households from township and villages surrounding Malamulele. The study uses the contingent valuation method to determine households’ willingness to pay for water services as well as the consequences they possibly will encounter in case their response is negative. The obtained results can be used by the Municipality and other Government Departments in order to better identify the affordable rates and the quantity of water service to be provided. Thus, it will make Municipality water supply services stable and sustainable. It will also be used as a tool to provide inform decisions about a range of infrastructure to enhance water supply systems.Keywords: willingness to pay, contingent valuation method, water supply systems, Malamulele
Procedia PDF Downloads 22613364 A Descriptive Study of the Mineral Content of Conserved Forage Fed to Horses in the United Kingdom, Ireland, and France
Authors: Louise Jones, Rafael De Andrade Moral, John C. Stephens
Abstract:
Background: Minerals are an essential component of correct nutrition. Conserved hay/haylage is an important component of many horse's diets. Variations in the mineral content of conserved forage should be considered when assessing dietary intake. Objectives: This study describes the levels and differences in 15 commonly analysed minerals in conserved forage fed to horses in the United Kingdom (UK), Ireland (IRL), and France (FRA). Methods: Hay (FRA n=92, IRL n=168, UK n=152) and haylage samples (UK n=287, IRL n=49) were collected during 2017-2020. Mineral analysis was undertaken using inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis was performed using beta regression, Gaussian, or gamma models, depending on the nature of the response variable. Results: There are significant differences in the mineral content of the UK, IRL, and FRA conserved forage samples. FRA hay samples had a significantly higher (p < 0.05) levels of Sulphur (0.16 ± 0.0051 %), Calcium (0.56 ± 0.0342%), Magnesium (0.16 ± 0.0069 mg/ kg DM), Iron (194 ± 23.0 mg/kg DM), Cobalt (0.21 ± 0.0244 mg/kg DM) and Copper (4.94 ± 0.196 mg/kg DM) content compared to hay from the other two countries. UK hay samples had significantly less (p < 0.05) Selenium (0.07 ± 0.0084 mg/kg DM), whilst IRL hay samples were significantly (p < 0.05) higher in Chloride (0.9 ± 0.026mg/kg DM) compared to hay from the other two countries. IRL haylage samples were significantly (p < 0.05) higher in Phosphorus (0.26 ± 0.0102 %), Sulphur (0.17 ± 0.0052 %), Chloride (1.01 ± 0.0519 %), Calcium (0.54 ± 0.0257 %), Selenium (0.17 ± 0.0322 mg/kg DM) and Molybdenum (1.47 ± 0.137 mg/kg DM) compared to haylage from the UK. Main Limitations: Forage samples were obtained from professional yards and may not be reflective of forages fed by most horse owners. Information regarding soil type, species of grass, fertiliser treatment, harvest, or storage conditions were not included in this study. Conclusions: At a DM intake of 2% body weight, conserved forage as sampled in this study will be insufficient to meet Zinc, Iodine, and Copper NRC maintenance requirements, and Se intake will also be insufficient for horses fed the UK conserved forage. Many horses receive hay/haylage as the main component of their diet; this study highlights the need to consider forage analysis when making dietary recommendations.Keywords: conserved forage, hay, haylage, minerals
Procedia PDF Downloads 22613363 Effect of Bored Pile Diameter in Sand on Friction Resistance
Authors: Ashraf Mohammed M. Eid, Hossam El Badry
Abstract:
The bored pile friction resistance may be affected by many factors such as the method of construction, pile length and diameter, the soil properties, as well as the depth below ground level. These factors can be represented analytically to study the influence of diameter on the unit skin friction. In this research, the Egyptian Code of soil mechanics is used to assess the skin friction capacity for either the ordinary pile diameter as well as for the large pile diameter. The later is presented in the code and through the work of some researchers based on the results of investigations adopted for a sufficient number of field tests. The comparative results of these researchers with respect to the Egyptian Code are used to check the adequacy of both methods. Based on the results of this study, the traditional static formula adopted for piles of diameter less than 60 cm may be continually used for larger piles by correlating the analyzed formulae. Accordingly, the corresponding modified angle of internal friction is concluded demonstrating a reduction of shear strength due to soil disturbance along the pile shaft. Based on this research the difference between driven piles and bored piles constructed in same soil can be assessed and a better understanding can be evaluated for the effect of different factors on pile skin friction capacity.Keywords: large piles, static formula, friction piles, sandy soils
Procedia PDF Downloads 49913362 Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins of North Gaza Emergency Sewage Treatment Plant as Case Study
Authors: Sadi Ali, Yaser Kishawi
Abstract:
As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l, and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load.Keywords: soil aquifer treatment, recovery and reuse scheme, infiltration basins, North Gaza
Procedia PDF Downloads 24613361 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils
Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa
Abstract:
Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress
Procedia PDF Downloads 35913360 Voluntary Water Intake of Flavored Water in Euhydrated Horses
Authors: Brianna M. Soule, Jesslyn A. Bryk-Lucy, Linda M. Ritchie
Abstract:
Colic, defined as abdominal pain in the horse, has several known predisposing factors. Decreased water intake has been shown to predispose equines to impaction colic. The objective of this study was to determine if offering flavored water (sweet feed or banana extract) would increase voluntary water intake in horses to serve as an assessable, noninvasive method for farm managers, veterinarians, or owners to decrease the risk of impaction colic. An a priori power analysis, which was conducted using G*Power version 3.1.9.7, indicated that the minimum sample size required to achieve 80% power for detecting a large effect at a significance level of α = .05 was 19 horses for a one-way repeated measures ANOVA with three treatment levels and assuming a non-sphericity correction of ε=0.5. After a three-day control period, 21 horses were randomly divided into two sequences and offered either banana or sweet feed flavored water. Horses always had a bucket of unflavored water available. A repeated measure study design was used to measure water consumption of each horse over a 62-hour period. A one-way repeated measures ANOVA was conducted to determine whether there were statistically significant differences among the means for the three-day average water intake (ml/kg). Although not statistically significant (F(2, 38) = 1.28, p = .290, partial η2 = .063), the three-day average water intake was largest for banana flavored water (M = 53.51, SD = 9.25 ml/kg), followed by sweet feed (M = 52.93, SD = 11.99 ml/kg), and, finally, unflavored water (M = 50.40, SD = 10.82 ml/kg). Paired-samples t-tests were used to determine whether there was a statistically significant difference between the three-day average water intake (ml/kg) for flavored versus unflavored water. The average unflavored water intake (M = 29.3 ml/kg, SD = 8.9) over the measurement period was greater than the banana flavored water (M = 27.7 ml/kg, SD = 9.8), but the average consumption of the sweet feed flavored water (M = 30.4 ml/kg, SD = 14.6) was greater than unflavored water (M = 24.3 ml/kg, SD = 11.4). None of these differences in average intake were statistically significant (p > .244). Future research is warranted to determine if other flavors significantly increase voluntary water intake in horses.Keywords: colic, equine, equine science, water intake, flavored water, horses, equine management, equine health, horse health, horse health care management, colic prevention
Procedia PDF Downloads 14313359 Impact of Climate Change on Water Resources in Morocco
Authors: Abdelghani Qadem, Zouhair Qadem
Abstract:
Like the countries of the Mediterranean region, Morocco is likely to be at high risk of water scarcity due to climate change. Morocco, which is the subject of this study, is located between two climatic zones, temperate in the North tropical in the South, Morocco is distinguished by four types of climate: humid, sub-humid, semi-arid, and arid. The last decades attest to the progression of the semi-arid climate towards the North of the country. The IPCC projections, which have been made in this direction, show that there is an overall downward trend in rainfall contributions varying on average between 10% and 30% depending on the scenario selected and the region considered, they also show an upward trend in average annual temperatures. These trends will have a real impact on water resources, which will result in a drop in the volume of water resources varying between 7.6% and 40.6%. The present study aims to describe the meteorological conditions of Morocco in order to answer the problem dealing with the effect of climatic fluctuations on water resources and to assess water vulnerability in the face of climate change.Keywords: morocco, climate change, water resources, impact, water scarcity
Procedia PDF Downloads 8513358 Comprehensive Critical Review for Static and Dynamic Soil-Structure Interaction Between Winkler, Pasternak and Three-Dimensional Method of Buried Pipelines
Abstract:
Pipeline infrastructure are a valuable asset to the country that help in transporting fluid and gas from one place to another and contribute in keeping the country functioning both physically and economically. During seismic activity, additional loads are acted on the buried pipelines becoming a salient parameter to be studied in soil pipe interaction. Winkler Beam Theory is a commonly used approach for design of underground buried structures however this theory does not take into account shear and dynamic loading parameters in consideration. Shear can be addressed in Pasternak Theory – an improved model of Winkler Theory. However dynamic loading condition and horizontal displacement is not considered in either method. A comprehensive critical review between Winkler Beam Method, Pasternak Method and Three-Dimensional Method in finite element analysis is to be done in this paper for seismic forces. Study of the influence of depth and displacement of soil in correspondence to stiffness value and influence of horizontal displacement for design of underground structures is considered.Keywords: finite element, pasternak theory, seismic, soil-structure interaction, three-dimensional theory, winkler theory
Procedia PDF Downloads 72