Search results for: slice thickness accuracy
3431 Recognizing Human Actions by Multi-Layer Growing Grid Architecture
Authors: Z. Gharaee
Abstract:
Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance
Procedia PDF Downloads 1583430 Modified Surface Morphology, Structure and Enhanced Weathering Performance of Polyester-Urethane/Organoclay Nanocomposite Coatings
Authors: Gaurav Verma
Abstract:
Organoclay loaded (0-5 weight %) polyester-urethane (PU) coatings were prepared with a branched hydroxyl-bearing polyester and an aliphatic poly-isocyanate. TEM micrographs show partial exfoliation and intercalation of clay platelets in organoclay-polyester dispersions. AFM surface images reveals that the PU hard domains tend to regularise and also self-organise into spherical shapes of sizes 50 nm (0 wt %), 60 nm (2 wt %) and 190 nm (4 wt %) respectively. IR analysis shows that PU chains have increasing tendency to interact with exfoliated clay platelets through hydrogen bonding. This interaction strengthens inter-chain linkages in PU matrix and hence improves anti-ageing properties. 1000 hours of accelerated weathering was evaluated by ATR spectroscopy, while yellowing and overall discoloration was quantified by the Δb* and ΔE* values of the CIELab colour scale. Post-weathering surface properties also showed improvement as the loss of thickness and reduction in gloss in neat PU was 25% and 42%; while it was just 3.5% and 14% respectively for the 2 wt% nanocomposite coating. This work highlights the importance of modifying surface and bulk properties of PU coatings at nanoscale, which led to improved performance in accelerated weathering conditions.Keywords: coatings, AFM, ageing, spectroscopy
Procedia PDF Downloads 4573429 Evaluating the Accuracy of Biologically Relevant Variables Generated by ClimateAP
Authors: Jing Jiang, Wenhuan XU, Lei Zhang, Shiyi Zhang, Tongli Wang
Abstract:
Climate data quality significantly affects the reliability of ecological modeling. In the Asia Pacific (AP) region, low-quality climate data hinders ecological modeling. ClimateAP, a software developed in 2017, generates high-quality climate data for the AP region, benefiting researchers in forestry and agriculture. However, its adoption remains limited. This study aims to confirm the validity of biologically relevant variable data generated by ClimateAP during the normal climate period through comparison with the currently available gridded data. Climate data from 2,366 weather stations were used to evaluate the prediction accuracy of ClimateAP in comparison with the commonly used gridded data from WorldClim1.4. Univariate regressions were applied to 48 monthly biologically relevant variables, and the relationship between the observational data and the predictions made by ClimateAP and WorldClim was evaluated using Adjusted R-Squared and Root Mean Squared Error (RMSE). Locations were categorized into mountainous and flat landforms, considering elevation, slope, ruggedness, and Topographic Position Index. Univariate regressions were then applied to all biologically relevant variables for each landform category. Random Forest (RF) models were implemented for the climatic niche modeling of Cunninghamia lanceolata. A comparative analysis of the prediction accuracies of RF models constructed with distinct climate data sources was conducted to evaluate their relative effectiveness. Biologically relevant variables were obtained from three unpublished Chinese meteorological datasets. ClimateAPv3.0 and WorldClim predictions were obtained from weather station coordinates and WorldClim1.4 rasters, respectively, for the normal climate period of 1961-1990. Occurrence data for Cunninghamia lanceolata came from integrated biodiversity databases with 3,745 unique points. ClimateAP explains a minimum of 94.74%, 97.77%, 96.89%, and 94.40% of monthly maximum, minimum, average temperature, and precipitation variances, respectively. It outperforms WorldClim in 37 biologically relevant variables with lower RMSE values. ClimateAP achieves higher R-squared values for the 12 monthly minimum temperature variables and consistently higher Adjusted R-squared values across all landforms for precipitation. ClimateAP's temperature data yields lower Adjusted R-squared values than gridded data in high-elevation, rugged, and mountainous areas but achieves higher values in mid-slope drainages, plains, open slopes, and upper slopes. Using ClimateAP improves the prediction accuracy of tree occurrence from 77.90% to 82.77%. The biologically relevant climate data produced by ClimateAP is validated based on evaluations using observations from weather stations. The use of ClimateAP leads to an improvement in data quality, especially in non-mountainous regions. The results also suggest that using biologically relevant variables generated by ClimateAP can slightly enhance climatic niche modeling for tree species, offering a better understanding of tree species adaptation and resilience compared to using gridded data.Keywords: climate data validation, data quality, Asia pacific climate, climatic niche modeling, random forest models, tree species
Procedia PDF Downloads 693428 Flicker Detection with Motion Tolerance for Embedded Camera
Authors: Jianrong Wu, Xuan Fu, Akihiro Higashi, Zhiming Tan
Abstract:
CMOS image sensors with a rolling shutter are used broadly in the digital cameras embedded in mobile devices. The rolling shutter suffers the flicker artifacts from the fluorescent lamp, and it could be observed easily. In this paper, the characteristics of illumination flicker in motion case were analyzed, and two efficient detection methods based on matching fragment selection were proposed. According to the experimental results, our methods could achieve as high as 100% accuracy in static scene, and at least 97% in motion scene.Keywords: illumination flicker, embedded camera, rolling shutter, detection
Procedia PDF Downloads 4243427 Experimental and Numerical Investigation of “Machining Induced Residual Stresses” during Orthogonal Machining of Alloy Steel AISI 4340
Authors: Theena Thayalan, K. N. Ramesh Babu
Abstract:
Machining induced residual stress (RS) is one of the most important surface integrity parameters that characterize the near surface layer of a mechanical component, which plays a crucial role in controlling the performance, especially its fatigue life. Since experimental determination of RS is expensive and time consuming, it would be of great benefit if they could be predicted. In such case, it would be possible to select the cutting parameters required to produce a favorable RS profile. In the present study, an effort has been made to develop a 'two dimensional finite element model (FEM)' to simulate orthogonal cutting process and to predict surface and sub-surface RS using the commercial FEA software DEFORM-2D. The developed finite element model has been validated through experimental investigation of RS. In the experimentation, the orthogonal cutting tests were carried out on AISI 4340 by varying the cutting speed (VC) and uncut chip thickness (f) at three levels and the surface & sub-surface RS has been measured using XRD and Electro polishing techniques. The comparison showed that the RS obtained using developed numerical model is in reasonable agreement with that of experimental data.Keywords: FEM, machining, residual stress, XRF
Procedia PDF Downloads 3493426 The Characteristcs and Amino Acid Profile of Edible Coating Extracted from Pigskin Gelatin
Authors: Meity Sompie, Agnes Triasih, Wisje Ponto
Abstract:
Edible coating is thin layers that act as a barrier to the external factors and protect the food products. The addition of the plasticizer to the edible coating is required to overcome film caused by extensive intermolecular forces. The potential development of pigskin with different ages as a raw material for the manufacture of edible films had not been widely publicized. This research was aimed to determine the influence of gelatin concentration and different type of plasticizer on the edible coating characteristics extracted from pigskin gelatin. This study used Completely Randomized Design (CRD) with two factors and three replicates of treatments. The first factor was consisted of pigskin gelatin concentration ( 10, 20, and 30 %) and the second factor was different type of plasticizer (glycerol, sorbitol and PEG). The results show that the interaction between the use of gelatin concentrations and type of plasticizer had significant effect (P< 0.05) on the thickness, tensile strength, elongation, water vapor transmission rate (WVTR), water content and amino acid profile of edible coating. It was concluded that the edible coating from pigskin gelatin with plasticizer gliserol had the best film characteristics, and it can be applied as an edible coating.Keywords: edible coating, edible film, pigskin gelatin, plasticizer
Procedia PDF Downloads 2173425 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers
Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta
Abstract:
The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation
Procedia PDF Downloads 673424 Cost Effective Real-Time Image Processing Based Optical Mark Reader
Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar
Abstract:
In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding
Procedia PDF Downloads 1773423 Effect of Heat Treatment on the Hardness and Abrasiveness of Almandine and Pyrope Garnet for Water-Cutting of Marble
Authors: Mahmoud Rabh
Abstract:
Garnet has been used for decades as an abrasive in water jet cutting and sand blasting because of its superior physical properties. When added to use in water-cutting process of marble. A standard commercial sample of the mineral was tested in terms of the hardness and abrasiveness properties. The sample was sized to 4 fractions having the size of < 60 um, > 60 < 100 um, > 100 < 180 um > 1280 < 250 and 250 um designated the symbols, FF, MF, MC and C respectively. Each sample was separately heated in controlled conditions at temperatures up to 1000 °C at a heating rate of 10°C/min in an electrically heated chamber furnace. Soaking time at the maximum temperature was up to 6 h. Hardness and abrasiveness properties of the heat treated samples were tested to cut marble having a thickness of 25 mm. Results revealed that H/A of the natural garnet mineral increased by heating at temperatures up to 600°C and exhibited pronounced decrease with higher temperatures up to 1000 °C. Results were explained in the light of a structural irreversible dislocation (SD) of the crystals of garnet almandine Fe2+3Al2Si3O12 and pyrope Mg3Al2Si3O12. Characterization of the mineral was carried out with the help of XRD, SEM and FT-IR measurements.Keywords: garnet abrasive, heat treatment, water jet cutting, hardness abrasiveness
Procedia PDF Downloads 3383422 Mechanistic Study of Composite Pavement Behavior in Heavy Duty Area
Authors: Makara Rith, Young Kyu Kim, Seung Woo Lee
Abstract:
In heavy duty areas, asphalt pavement constructed as entrance roadway may expose distresses such as cracking and rutting during service life. To mitigate these problems, composite pavement with a roller-compacted concrete base may be a good alternative; however, it should be initially investigated. Structural performances such as fatigue cracking and rut depth may be changed due to variation of some design factors. Therefore, this study focuses on the variation effect of material modulus, layer thickness and loading on composite pavement performances. Stress and strain at the critical location are determined and used as the input of transfer function for corresponding distresses to evaluate the pavement performance. Also, composite pavement satisfying the design criteria may be selected as a design section for heavy duty areas. Consequently, this investigation indicates that composite pavement has the ability to eliminate fatigue cracking in asphalt surfaces and significantly reduce rut depth. In addition, a thick or strong rigid base can significantly reduce rut depth and prolong fatigue life of this layer.Keywords: composite pavement, ports, cracking, rutting
Procedia PDF Downloads 2143421 Proportionally Damped Finite Element State-Space Model of Composite Laminated Plate with Localized Interface Degeneration
Authors: Shi Qi Koo, Ahmad Beng Hong Kueh
Abstract:
In the present work, the finite element formulation for the investigation of the effects of a localized interfacial degeneration on the dynamic behavior of the [90˚/0˚] laminated composite plate employing the state-space technique is performed. The stiffness of the laminate is determined by assembling the stiffnesses of sub-elements. This includes an introduction of an interface layer adopting the virtually zero-thickness formulation to model the interfacial degeneration. Also, the kinematically consistent mass matrix and proportional damping have been formulated to complete the free vibration governing expression. To simulate the interfacial degeneration of the laminate, the degenerated areas are defined from the center propagating outwards in a localized manner. It is found that the natural frequency, damped frequency and damping ratio of the plate decreases as the degenerated area of the interface increases. On the contrary, the loss factor increases correspondingly.Keywords: dynamic finite element, localized interface degeneration, proportional damping, state-space modeling
Procedia PDF Downloads 3003420 Performance Demonstration of Extendable NSPO Space-Borne GPS Receiver
Authors: Hung-Yuan Chang, Wen-Lung Chiang, Kuo-Liang Wu, Chen-Tsung Lin
Abstract:
National Space Organization (NSPO) has completed in 2014 the development of a space-borne GPS receiver, including design, manufacture, comprehensive functional test, environmental qualification test and so on. The main performance of this receiver include 8-meter positioning accuracy, 0.05 m/sec speed-accuracy, the longest 90 seconds of cold start time, and up to 15g high dynamic scenario. The receiver will be integrated in the autonomous FORMOSAT-7 NSPO-Built satellite scheduled to be launched in 2019 to execute pre-defined scientific missions. The flight model of this receiver manufactured in early 2015 will pass comprehensive functional tests and environmental acceptance tests, etc., which are expected to be completed by the end of 2015. The space-borne GPS receiver is a pure software design in which all GPS baseband signal processing are executed by a digital signal processor (DSP), currently only 50% of its throughput being used. In response to the booming global navigation satellite systems, NSPO will gradually expand this receiver to become a multi-mode, multi-band, high-precision navigation receiver, and even a science payload, such as the reflectometry receiver of a global navigation satellite system. The fundamental purpose of this extension study is to port some software algorithms such as signal acquisition and correlation, reused code and large amount of computation load to the FPGA whose processor is responsible for operational control, navigation solution, and orbit propagation and so on. Due to the development and evolution of the FPGA is pretty fast, the new system architecture upgraded via an FPGA should be able to achieve the goal of being a multi-mode, multi-band high-precision navigation receiver, or scientific receiver. Finally, the results of tests show that the new system architecture not only retains the original overall performance, but also sets aside more resources available for future expansion possibility. This paper will explain the detailed DSP/FPGA architecture, development, test results, and the goals of next development stage of this receiver.Keywords: space-borne, GPS receiver, DSP, FPGA, multi-mode multi-band
Procedia PDF Downloads 3733419 Development and Structural Performance Evaluation on Slit Circular Shear Panel Damper
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of slit circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. The main parameters considered are: diameter-to-thickness (D/t) ratio and slit length-to-width ratio (l/w). Depending on these parameters three different buckling modes and hysteretic behaviors were found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation, and yielding with buckling and strength degradation which forms pinching at initial displacement. The susceptible location at which the possible crack is initiated is also identified for selected specimens using rupture index.Keywords: slit circular shear panel damper, hysteresis characteristics, slip length-to-width ratio, D/t ratio, FE analysis
Procedia PDF Downloads 4053418 Non-Linear Behavior of Granular Materials in Pavement Design
Authors: Mounir Tichamakdj, Khaled Sandjak, Boualem Tiliouine
Abstract:
The design of flexible pavements is currently carried out using a multilayer elastic theory. However, for thin-surface pavements subject to light or medium traffic volumes, the importance of the non-linear stress-strain behavior of unbound granular materials requires the use of more sophisticated numerical models for the structural design of these pavements. The simplified analysis of the nonlinear behavior of granular materials in pavement design will be developed in this study. To achieve this objective, an equivalent linear model derived from a volumetric shear stress model is used to simulate the nonlinear elastic behavior of two unlinked local granular materials often used in pavements. This model is included here to adequately incorporate material non-linearity due to stress dependence and stiffness of the granular layers in the flexible pavement analysis. The sensitivity of the pavement design criteria to the likely variations in asphalt layer thickness and the mineralogical nature of unbound granular materials commonly used in pavement structures are also evaluated.Keywords: granular materials, linear equivalent model, non-linear behavior, pavement design, shear volumetric strain model
Procedia PDF Downloads 1803417 Reactive Sputter Deposition of Titanium Nitride on Silicon Using a Magnetized Sheet Plasma Source
Authors: Janella Salamania, Marcedon Fernandez, Matthew Villanueva Henry Ramos
Abstract:
Titanium nitrite (TiN) a popular functional and decorative coating because of its golden yellow color, high hardness and superior wear resistance. It is also being studied as a diffusion barrier in integrated circuits due to its known chemical stability and low resistivity. While there have been numerous deposition methods done for TiN, most required the heating of substrates at high temperatures. In this work, TiN films are deposited on silicon (111) and (100) substrates without substrate heating using a patented magnetized sheet plasma source. Films were successfully deposited without substrate heating at various target bias, while maintaining a constant 25% N2 to Ar ratio, and deposition of time of 30 minutes. The resulting films exhibited a golden yellow color which is characteristic of TiN. X-ray diffraction patterns show the formation of TiN predominantly oriented in the (111) direction regardless of substrate used. EDX data also confirms the 1:1 stoichiometry of titanium an nitrogen. Ellipsometry measurements estimate the thickness to range from 28 nm to 33 nm. SEM images were also taken to observe the morphology of the film.Keywords: coatings, nitrides, coatings, reactive magnetron sputtering, thin films
Procedia PDF Downloads 3433416 BERT-Based Chinese Coreference Resolution
Authors: Li Xiaoge, Wang Chaodong
Abstract:
We introduce the first Chinese Coreference Resolution Model based on BERT (CCRM-BERT) and show that it significantly outperforms all previous work. The key idea is to consider the features of the mention, such as part of speech, width of spans, distance between spans, etc. And the influence of each features on the model is analyzed. The model computes mention embeddings that combine BERT with features. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the Chinese OntoNotes benchmark.Keywords: BERT, coreference resolution, deep learning, nature language processing
Procedia PDF Downloads 2213415 An Accurate Prediction of Surface Temperature History in a Supersonic Flight
Authors: A. M. Tahsini, S. A. Hosseini
Abstract:
In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux. The one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.Keywords: aerodynamic heating, heat conduction, numerical simulation, supersonic flight, launch vehicle
Procedia PDF Downloads 4573414 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration
Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger
Abstract:
Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration
Procedia PDF Downloads 553413 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows
Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham
Abstract:
In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis
Procedia PDF Downloads 703412 Study of Electrical Properties of An-Fl Based Organic Semiconducting Thin Film
Authors: A.G. S. Aldajani, N. Smida, M. G. Althobaiti, B. Zaidi
Abstract:
In order to exploit the good electrical properties of anthracene and the excellent properties of fluorescein, new hybrid material has been synthesized (An-Fl). Current-voltage measurements were done on a new single-layer ITO/An-FL/Al device of typically 100 nm thickness. Atypical diode behavior is observed with a turn-on voltage of 4.4 V, a dynamic resistance of 74.07 KΩ and a rectification ratio of 2.02 due to unbalanced transport. Results show also that the current-voltage characteristics present three different regimes of the power-law (J~Vᵐ) for which the conduction mechanism is well described with space-charge-limited current conduction mechanism (SCLC) with a charge carrier mobility of 2.38.10⁻⁵cm2V⁻¹S⁻¹. Moreover, the electrical transport properties of this device have been carried out using a dependent frequency study in the range (50 Hz–1.4 MHz) for different applied biases (from 0 to 6 V). At lower frequency, the σdc values increase with bias voltage rising, supporting that the mobile ion can hop successfully to its nearest vacant site. From σac and impedance measurements, the equivalent electrical circuit is evidenced, where the conductivity process is coherent with an exponential trap distribution caused by structural defects and/or chemical impurities.Keywords: semiconducting polymer, conductivity, SCLC, impedance spectroscopy
Procedia PDF Downloads 1843411 Effect of Powder Shape on Physical Properties of Porous Coatings
Authors: M. Moayeri, A. Kaflou
Abstract:
Decreasing the size of heat exchangers in industries is favorable due to a reduction in the initial costs and maintenance. This can be achieved generally by increasing the heat transfer coefficient, which can be done by increasing tube surface by passive methods named “porous coat”. Since these coatings are often in contact with the fluid, mechanical strength of coatings should be considered as main concept beside permeability and porosity in design, especially in high velocity services. Powder shape affected mechanical property more than other factors. So in this study, the Copper powder with three different shapes (spherical, dendritic and irregular) was coated on Cu-Ni base metal with thickness of ~300µm in a reduction atmosphere (5% H2-N2) and programmable furnace. The morphology and physical properties of coatings, such as porosity, permeability and mechanical strength were investigated. Results show although irregular particle have maximum porosity and permeability but strength level close to spherical powder, in addition, mentioned particle has low production cost, so for creating porous coats in high velocity services these powder recommended.Keywords: porous coat, permeability, mechanical strength, porosity
Procedia PDF Downloads 3583410 Effect of Incorporation of Seaweed Extract in Gelatin Based Film on Physic-Chemical and Bioactive Properties of Film
Authors: Shekhar U. Kadam, S. K. Pankaj, Brijesh K. Tiwari, P. J. Cullen, Colm P. O’Donnell
Abstract:
Brown seaweed L. hyperborea is a rich source of phenolic compounds with antioxidant and antimicrobial properties. The aim of this work was to study the effect of incorporation of L. hyperborea extract to bovine gelatin film on the physicochemical and antioxidant properties of film. Films with fraction of 25% by weight of bovine gelatin sample were cast with addition of glycerol as a plasticizer. The total phenolic content and antioxidant activity of the films showed higher levels with addition of seaweed extract. Also film appearance properties such as film thickness, color and light transparency were evaluated. Film appearance was slightly modified whereas microstructure of films showed rough patches at 50% level of extract in the film. Hydrophilicity and glass transition temperature of the films also increased with increased level of seaweed extract. It was found that seaweed extract can be incorporated within gelatin and casein for development of biofunctional films.Keywords: Laminaria hyperborea, ultrasound, seaweed extract, bovine gelatin film, antioxidant, phenolic compounds
Procedia PDF Downloads 5223409 Dynamic Degradation Mechanism of SiC VDMOS under Proton Irradiation
Authors: Junhong Feng, Wenyu Lu, Xinhong Cheng, Li Zheng, Yuehui Yu
Abstract:
The effects of proton irradiation on the properties of gate oxide were evaluated by monitoring the static parameters (such as threshold voltage and on-resistance) and dynamic parameters (Miller plateau time) of 1700V SiC VDMOS before and after proton irradiation. The incident proton energy was 3MeV, and the doses were 5 × 10¹² P / cm², 1 × 10¹³ P / cm², respectively. The results show that the threshold voltage of MOS exhibits negative drift under proton irradiation, and the near-interface traps in the gate oxide layer are occupied by holes generated by the ionization effect of irradiation, thus forming more positive charges. The basis for selecting TMiller is that the change time of Vgs is the time when Vds just shows an upward trend until it rises to a stable value. The degradation of the turn-off time of the Miller platform verifies that the capacitance Cgd becomes larger, reflecting that the gate oxide layer is introduced into the trap by the displacement effect caused by proton irradiation, and the interface state deteriorates. As a more sensitive area in the irradiation process, the gate oxide layer will be optimized for its parameters (such as thickness, type, etc.) in subsequent studies.Keywords: SiC VDMOS, proton radiation, Miller time, gate oxide
Procedia PDF Downloads 953408 Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications
Authors: Xiao-Li Liu, Ling-Yun Zhao, Xing-Jie Liang, Hai-Ming Fan
Abstract:
Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent.Keywords: magnetic nanoparticles, magnetic hyperthermia, magnetic resonance imaging, surface modification
Procedia PDF Downloads 5153407 Discharge Estimation in a Two Flow Braided Channel Based on Energy Concept
Authors: Amiya Kumar Pati, Spandan Sahu, Kishanjit Kumar Khatua
Abstract:
River is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. A river flow consisting of small and shallow channels sometimes divide and recombine numerous times because of the slow water flow or the built up sediments. The pattern formed during this process resembles the strands of a braid. Braided streams form where the sediment load is so heavy that some of the sediments are deposited as shifting islands. Braided rivers often exist near the mountainous regions and typically carry coarse-grained and heterogeneous sediments down a fairly steep gradient. In this paper, the apparent shear stress formulae were suitably modified, and the Energy Concept Method (ECM) was applied for the prediction of discharges at the junction of a two-flow braided compound channel. The Energy Concept Method has not been applied for estimating the discharges in the braided channels. The energy loss in the channels is analyzed based on mechanical analysis. The cross-section of channel is divided into two sub-areas, namely the main-channel below the bank-full level and region above the bank-full level for estimating the total discharge. The experimental data are compared with a wide range of theoretical data available in the published literature to verify this model. The accuracy of this approach is also compared with Divided Channel Method (DCM). From error analysis of this method, it is observed that the relative error is less for the data-sets having smooth floodplains when compared to rough floodplains. Comparisons with other models indicate that the present method has reasonable accuracy for engineering purposes.Keywords: critical flow, energy concept, open channel flow, sediment, two-flow braided compound channel
Procedia PDF Downloads 1283406 Gel-Based Autologous Chondrocyte Implantation (GACI) in the Knee: Multicentric Short Term Study
Authors: Shaival Dalal, Nilesh Shah, Dinshaw Pardiwala, David Rajan, Satyen Sanghavi, Charul Bhanji
Abstract:
Autologous Chondrocyte Implantation (ACI) is used worldwide since 1998 to treat cartilage defect. GEL based ACI is a new tissue-engineering technique to treat full thickness cartilage defect with fibrin and thrombin as scaffold for chondrocytes. Purpose of this study is to see safety and efficacy of gel based ACI for knee cartilage defect in multiple centres with different surgeons. Gel-based Autologous Chondrocyte Implantation (GACI) has shown effectiveness in treating isolated cartilage defect of knee joint. Long term results are still needed to be studied. This study was followed-up up to two years and showed benefit to patients. All enrolled patients with a mean age of 28.5 years had an average defect size of3 square centimeters, and were grade IV as per ICRS grading. All patients were followed up several times and at several intervals at 6th week, 8th week, 11th week, 17th week, 29th week, 57th week after surgery. The outcomes were measured based on the IKDC (subjective and objective) and MOCART scores.Keywords: knee, chondrocyte, autologous chondrocyte implantation, fibrin gel based
Procedia PDF Downloads 3843405 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.Keywords: multi objective optimization, pareto front, composite patch, cracked pipe
Procedia PDF Downloads 3143404 Orthogonal Basis Extreme Learning Algorithm and Function Approximation
Abstract:
A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.Keywords: neural network, orthogonal basis extreme learning, function approximation
Procedia PDF Downloads 5393403 New Techniques to Decrease the Interfacial Stress in Steel Beams Strengthened With FRP Laminates
Authors: A. S. Bouchikhi, A. Megueni, S. Habibi
Abstract:
One major problem when using bonded Fiber Reinforced Polymer is the presence of high inter facial stresses near the end of the composite laminate which might govern the failure of the strengthening schedule. It is known that the decrease of FRP plate thickness and the fitness of adhesive reduce the stress concentration at plate ends. Another way is to use a plate with a non uniform section or tapered ends and softer adhesive at the edges. In this paper, a comprehensive finite element (FE) study has been conducted to investigate the effect of mixed adhesive joints (MAJ) and tapering plate on the inter facial stress distribution in the adhesive layer, this paper presents the results of a study of application of two adhesives with different stiffnesses (bi-adhesive) along the joint strength length between the CFRP-strengthened steel beam for tapered and untapered plate on the distribution of inter facial stresses. A stiff adhesive was applied in the middle portion of the joint strength, while a low modulus adhesive was applied towards the edges prone to stress concentrations.Keywords: FRP, mixed adhesive joints, stresses, tapered plate, retrofitted beams bonded
Procedia PDF Downloads 5013402 ANAC-id - Facial Recognition to Detect Fraud
Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira
Abstract:
This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision
Procedia PDF Downloads 161