Search results for: multi-layer neural networks
2034 Normalized P-Laplacian: From Stochastic Game to Image Processing
Authors: Abderrahim Elmoataz
Abstract:
More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems
Procedia PDF Downloads 5122033 Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL
Authors: S. H. Kazmi, T. Ahmed, K. Javed, A. Ghani
Abstract:
In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated.Keywords: islanding, under-frequency load shedding, frequency rate of change, static UFLS
Procedia PDF Downloads 4852032 Decision-Making Under Uncertainty in Obsessive-Compulsive Disorder
Authors: Helen Pushkarskaya, David Tolin, Lital Ruderman, Ariel Kirshenbaum, J. MacLaren Kelly, Christopher Pittenger, Ifat Levy
Abstract:
Obsessive-Compulsive Disorder (OCD) produces profound morbidity. Difficulties with decision making and intolerance of uncertainty are prominent clinical features of OCD. The nature and etiology of these deficits are poorly understood. We used a well-validated choice task, grounded in behavioral economic theory, to investigate differences in valuation and value-based choice during decision making under uncertainty in 20 unmedicated participants with OCD and 20 matched healthy controls. Participants’ choices were used to assess individual decision-making characteristics. Compared to controls, individuals with OCD were less consistent in their choices and less able to identify options that were unambiguously preferable. These differences correlated with symptom severity. OCD participants did not differ from controls in how they valued uncertain options when outcome probabilities were known (risk) but were more likely than controls to avoid uncertain options when these probabilities were imprecisely specified (ambiguity). These results suggest that the underlying neural mechanisms of valuation and value-based choices during decision-making are abnormal in OCD. Individuals with OCD show elevated intolerance of uncertainty, but only when outcome probabilities are themselves uncertain. Future research focused on the neural valuation network, which is implicated in value-based computations, may provide new neurocognitive insights into the pathophysiology of OCD. Deficits in decision-making processes may represent a target for therapeutic intervention.Keywords: obsessive compulsive disorder, decision-making, uncertainty intolerance, risk aversion, ambiguity aversion, valuation
Procedia PDF Downloads 6142031 Finding the Optimal Meeting Point Based on Travel Plans in Road Networks
Authors: Mohammad H. Ahmadi, Vahid Haghighatdoost
Abstract:
Given a set of source locations for a group of friends, and a set of trip plans for each group member as a sequence of Categories-of-Interests (COIs) (e.g., restaurant), and finally a specific COI as a common destination that all group members will gather together, in Meeting Point Based on Trip Plans (MPTPs) queries our goal is to find a Point-of-Interest (POI) from different COIs, such that the aggregate travel distance for the group is minimized. In this work, we considered two cases for aggregate function as Sum and Max. For solving this query, we propose an efficient pruning technique for shrinking the search space. Our approach contains three steps. In the first step, it prunes the search space around the source locations. In the second step, it prunes the search space around the centroid of source locations. Finally, we compute the intersection of all pruned areas as the final refined search space. We prove that the POIs beyond the refined area cannot be part of optimal answer set. The paper also covers an extensive performance study of the proposed technique.Keywords: meeting point, trip plans, road networks, spatial databases
Procedia PDF Downloads 1842030 Mesoporous Nanocomposites for Sustained Release Applications
Authors: Daniela Istrati, Alina Morosan, Maria Stanca, Bogdan Purcareanu, Adrian Fudulu, Laura Olariu, Alice Buteica, Ion Mindrila, Rodica Cristescu, Dan Eduard Mihaiescu
Abstract:
Our present work is related to the synthesis, characterization and applications of new nanocomposite materials based on silica mesoporous nanocompozites systems. The nanocomposite support was obtained by using a specific step–by–step multilayer structure buildup synthetic route, characterized by XRD (X-Ray Difraction), TEM (Transmission Electron Microscopy), FT-IR (Fourier Transform-Infra Red Spectrometry), BET (Brunauer–Emmett–Teller method) and loaded with Salvia officinalis plant extract obtained by a hydro-alcoholic extraction route. The sustained release of the target compounds was studied by a modified LC method, proving low release profiles, as expected for the high specific surface area support. The obtained results were further correlated with the in vitro / in vivo behavior of the nanocomposite material and recommending the silica mesoporous nanocomposites as good candidates for biomedical applications. Acknowledgements: This study has been funded by the Research Project PN-III-P2-2.1-PTE-2016-0160, 49-PTE / 2016 (PROZECHIMED) and Project Number PN-III-P4-ID-PCE-2016-0884 / 2017.Keywords: biomedical, mesoporous, nanocomposites, natural products, sustained release
Procedia PDF Downloads 2152029 Using the Weakest Precondition to Achieve Self-Stabilization in Critical Networks
Authors: Antonio Pizzarello, Oris Friesen
Abstract:
Networks, such as the electric power grid, must demonstrate exemplary performance and integrity. Integrity depends on the quality of both the system design model and the deployed software. Integrity of the deployed software is key, for both the original versions and the many that occur throughout numerous maintenance activity. Current software engineering technology and practice do not produce adequate integrity. Distributed systems utilize networks where each node is an independent computer system. The connections between them is realized via a network that is normally redundantly connected to guarantee the presence of a path between two nodes in the case of failure of some branch. Furthermore, at each node, there is software which may fail. Self-stabilizing protocols are usually present that recognize failure in the network and perform a repair action that will bring the node back to a correct state. These protocols first introduced by E. W. Dijkstra are currently present in almost all Ethernets. Super stabilization protocols capable of reacting to a change in the network topology due to the removal or addition of a branch in the network are less common but are theoretically defined and available. This paper describes how to use the Software Integrity Assessment (SIA) methodology to analyze self-stabilizing software. SIA is based on the UNITY formalism for parallel and distributed programming, which allows the analysis of code for verifying the progress property p leads-to q that describes the progress of all computations starting in a state satisfying p to a state satisfying q via the execution of one or more system modules. As opposed to demonstrably inadequate test and evaluation methods SIA allows the analysis and verification of any network self-stabilizing software as well as any other software that is designed to recover from failure without external intervention of maintenance personnel. The model to be analyzed is obtained by automatic translation of the system code to a transition system that is based on the use of the weakest precondition.Keywords: network, power grid, self-stabilization, software integrity assessment, UNITY, weakest precondition
Procedia PDF Downloads 2232028 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates
Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai
Abstract:
GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.Keywords: Q460GJ structural steel, residual stresses, sectioning method, welded medium-walled I-shaped sections
Procedia PDF Downloads 3162027 Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders
Authors: Hediyeh Talebi, Shokoofeh Ghiam, Changiz Eslahchi
Abstract:
Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets.Keywords: alzheimer's disease, single-cell RNA-seq, neural networks, blood biomarkers
Procedia PDF Downloads 652026 Synchronization of Two Mobile Robots
Authors: R. M. López-Gutiérrez, J. A. Michel-Macarty, H. Cervantes-De Avila, J. I. Nieto-Hipólito, C. Cruz-Hernández, L. Cardoza-Avendaño, S. Cortiant-Velez
Abstract:
It is well know that mankind benefits from the application of robot control by virtual handlers in industrial environments. In recent years, great interest has emerged in the control of multiple robots in order to carry out collective tasks. One main trend is to copy the natural organization that some organisms have, such as, ants, bees, school of fish, birds’ migration, etc. Surely, this collaborative work, results in better outcomes than those obtain in an isolated or individual effort. This topic has a great drive because collaboration between several robots has the potential capability of carrying out more complicated tasks, doing so, with better efficiency, resiliency and fault tolerance, in cases such as: coordinate navigation towards a target, terrain exploration, and search-rescue operations. In this work, synchronization of multiple autonomous robots is shown over a variety of coupling topologies: star, ring, chain, and global. In all cases, collective synchronous behavior is achieved, in the complex networks formed with mobile robots. Nodes of these networks are modeled by a mass using Matlab to simulate them.Keywords: robots, synchronization, bidirectional, coordinate navigation
Procedia PDF Downloads 3552025 Ultra Reliable Communication: Availability Analysis in 5G Cellular Networks
Authors: Yosra Benchaabene, Noureddine Boujnah, Faouzi Zarai
Abstract:
To meet the growing demand of users, the fifth generation (5G) will continue to provide services to higher data rates with higher carrier frequencies and wider bandwidths. As part of the 5G communication paradigm, Ultra Reliable Communication (URC) is envisaged as an important technology pillar for providing anywhere and anytime services to end users. Ultra Reliable Communication (URC) is considered an important technology that why it has become an active research topic. In this work, we analyze the availability of a service in the space domain. We characterize spatially available areas consisting of all locations that meet a performance requirement with confidence, and we define cell availability and system availability, individual user availability, and user-oriented system availability. Poisson point process (PPP) and Voronoi tessellation are adopted to model the spatial characteristics of a cell deployment in heterogeneous networks. Numerical results are presented, also highlighting the effect of different system parameters on the achievable link availability.Keywords: URC, dependability and availability, space domain analysis, Poisson point process, Voronoi Tessellation
Procedia PDF Downloads 1222024 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.Keywords: visual search, deep learning, convolutional neural network, machine learning
Procedia PDF Downloads 2142023 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 162022 Monitoring Cellular Networks Performance Using Crowd Sourced IoT System: My Operator Coverage (MOC)
Authors: Bassem Boshra Thabet, Mohammed Ibrahim Elsabagh, Mohammad Adly Talaat
Abstract:
The number of cellular mobile phone users has increased enormously worldwide over the last two decades. Consequently, the monitoring of the performance of the Mobile Network Operators (MNOs) in terms of network coverage and broadband signal strength has become vital for both of the MNOs and regulators. This monitoring helps telecommunications operators and regulators keeping the market playing fair and most beneficial for users. However, the adopted methodologies to facilitate this continuous monitoring process are still problematic regarding cost, effort, and reliability. This paper introduces My Operator Coverage (MOC) system that is using Internet of Things (IoT) concepts and tools to monitor the MNOs performance using a crowd-sourced real-time methodology. MOC produces robust and reliable geographical maps for the user-perceived quality of the MNOs performance. MOC is also meant to enrich the telecommunications regulators with concrete, and up-to-date information that allows for adequate mobile market management strategies as well as appropriate decision making.Keywords: mobile performance monitoring, crowd-sourced applications, mobile broadband performance, cellular networks monitoring
Procedia PDF Downloads 3962021 Epoxomicin Affects Proliferating Neural Progenitor Cells of Rat
Authors: Bahaa Eldin A. Fouda, Khaled N. Yossef, Mohamed Elhosseny, Ahmed Lotfy, Mohamed Salama, Mohamed Sobh
Abstract:
Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on the brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have their maximum effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS e.g. lead, however; most of the agents cannot be identified with certainty due the defective nature of predictive toxicology models used. A novel alternative method that can overcome most of the limitations of conventional techniques is the use of 3D neurospheres system. This in-vitro system can recapitulate most of the changes during the period of brain development making it an ideal model for predicting neurotoxic effects. In the present study, we verified the possible DNT of epoxomicin which is a naturally occurring selective proteasome inhibitor with anti-inflammatory activity. Rat neural progenitor cells were isolated from rat embryos (E14) extracted from placental tissue. The cortices were aseptically dissected out from the brains of the fetuses and the tissues were triturated by repeated passage through a fire-polished constricted Pasteur pipette. The dispersed tissues were allowed to settle for 3 min. The supernatant was, then, transferred to a fresh tube and centrifuged at 1,000 g for 5 min. The pellet was placed in Hank’s balanced salt solution cultured as free-floating neurospheres in proliferation medium. Two doses of epoxomicin (1µM and 10µM) were used in cultured neuropsheres for a period of 14 days. For proliferation analysis, spheres were cultured in proliferation medium. After 0, 4, 5, 11, and 14 days, sphere size was determined by software analyses. The diameter of each neurosphere was measured and exported to excel file further to statistical analysis. For viability analysis, trypsin-EDTA solution were added to neurospheres for 3 min to dissociate them into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Epoxomicin was found to affect proliferation and viability of neuropsheres, these effects were positively correlated to doses and progress of time. This study confirms the DNT effects of epoxomicin on 3D neurospheres model. The effects on proliferation suggest possible gross morphologic changes while the decrease in viability propose possible focal lesion on exposure to epoxomicin during early childhood.Keywords: neural progentor cells, epoxomicin, neurosphere, medical and health sciences
Procedia PDF Downloads 4252020 A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands
Authors: Ilham S. M. Elsayed
Abstract:
The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.Keywords: Alahsa Governorate, population density, Urban Heat Island, weather station
Procedia PDF Downloads 2492019 Hansen Solubility Parameter from Surface Measurements
Authors: Neveen AlQasas, Daniel Johnson
Abstract:
Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied filmsKeywords: surface characterization, hansen solubility parameter estimation, contact angle measurements, artificial neural network model, surface measurements
Procedia PDF Downloads 922018 Disaster Management Using Wireless Sensor Networks
Authors: Akila Murali, Prithika Manivel
Abstract:
Disasters are defined as a serious disruption of the functioning of a community or a society, which involves widespread human, material, economic or environmental impacts. The number of people suffering food crisis as a result of natural disasters has tripled in the last thirty years. The economic losses due to natural disasters have shown an increase with a factor of eight over the past four decades, caused by the increased vulnerability of the global society, and also due to an increase in the number of weather-related disasters. Efficient disaster detection and alerting systems could reduce the loss of life and properties. In the event of a disaster, another important issue is a good search and rescue system with high levels of precision, timeliness and safety for both the victims and the rescuers. Wireless Sensor Networks technology has the capability of quick capturing, processing, and transmission of critical data in real-time with high resolution. This paper studies the capacity of sensors and a Wireless Sensor Network to collect, collate and analyze valuable and worthwhile data, in an ordered manner to help with disaster management.Keywords: alerting systems, disaster detection, Ad Hoc network, WSN technology
Procedia PDF Downloads 4042017 Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks
Authors: Mohanad Alhabo, Naveed Nawaz, Mahmoud Al-Faris
Abstract:
The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.Keywords: energy efficiency, handover, HetNets, MADM, small cells
Procedia PDF Downloads 1152016 A Theoretical Framework on International Voluntary Health Networks
Authors: Benet Reid, Nina Laurie, Matt Baillie-Smith
Abstract:
Trans-national and tropical medicine, historically associated with colonial power and missionary activity, is now central to discourses of global health and development, thrust into mainstream media by events like the 2014 Ebola crisis and enshrined in the Sustainable Development Goals. Research in this area remains primarily the province of health professional disciplines, and tends to be framed within a simple North-to-South model of development. The continued role of voluntary work in this field is bound up with a rhetoric of partnering and partnership. We propose, instead, the idea of International Voluntary Health Networks (IVHNs) as a means to de-centre global-North institutions in these debates. Drawing on our empirical work with IVHNs in countries both North and South, we explore geographical and sociological theories for mapping the multiple spatial and conceptual dynamics of power manifested in these phenomena. We make a radical break from conventional views of health as a de-politicised symptom or corollary of social development. In studying health work as it crosses between cultures and contexts, we demonstrate the inextricably political nature of health and health work everywhere.Keywords: development, global health, power, volunteering
Procedia PDF Downloads 3232015 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 242014 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 1022013 An Eco-Translatology Approach to the Translation of Spanish Tourism Advertising in Digital Communication in Chinese
Authors: Mingshu Liu, Laura Santamaria, Xavier Carmaniu Mainadé
Abstract:
As one of the sectors most affected by the COVID-19 pandemic, tourism is facing challenges in revitalizing the industry. But at the same time, it would be a good opportunity to take advantage of digital communication as an effective tool for tourism promotion. Our proposal aims to verify the linguistic operations on online platforms in China. The research is carried out based on the theory of Eco-traductology put forward by Gengshen Hu, whose contribution focuses on the translator's adaptation to the ecosystem environment and the three elaborated parameters (linguistic, cultural and communicative). We also relate it to Even-Zohar's and Toury's theoretical postulates on the Polysystem to elaborate on interdisciplinary methodology. Such a methodology allows us to analyze personal treatments and phraseology in the target text. As for the corpus, we adopt the official Spanish-language website of Turismo de España as the source text and the postings on the two major social networks in China, Weibo and Wechat, in 2019. Through qualitative analysis, we conclude that, in the tourism advertising campaign on Chinese social networks, chengyu (Chinese phraseology) and honorific titles are used very frequently.Keywords: digital communication, eco-traductology, polysystem theory, tourism advertising
Procedia PDF Downloads 2272012 Impact of Increasing Distributed Solar PV Systems on Distribution Networks in South Africa
Authors: Aradhna Pandarum
Abstract:
South Africa is experiencing an exponential growth of distributed solar PV installations. This is due to various factors with the predominant one being increasing electricity tariffs along with decreasing installation costs, resulting in attractive business cases to some end-users. Despite there being a variety of economic and environmental advantages associated with the installation of PV, their potential impact on distribution grids has yet to be thoroughly investigated. This is especially true since the locations of these units cannot be controlled by Network Service Providers (NSPs) and their output power is stochastic and non-dispatchable. This report details two case studies that were completed to determine the possible voltage and technical losses impact of increasing PV penetration in the Northern Cape of South Africa. Some major impacts considered for the simulations were ramping of PV generation due to intermittency caused by moving clouds, the size and overall hosting capacity and the location of the systems. The main finding is that the technical impact is different on a constrained feeder vs a non-constrained feeder. The acceptable PV penetration level is much lower for a constrained feeder than a non-constrained feeder, depending on where the systems are located.Keywords: medium voltage networks, power system losses, power system voltage, solar photovoltaic
Procedia PDF Downloads 1532011 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach
Authors: Utkarsh A. Mishra, Ankit Bansal
Abstract:
At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks
Procedia PDF Downloads 2232010 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms
Authors: Abdul Rehman, Bo Liu
Abstract:
Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization
Procedia PDF Downloads 2242009 Social Networks in Business: The Complex Concept of Wasta and the Impact of Islam on the Perception of This Practice
Authors: Sa'ad Ali
Abstract:
This study explores wasta as an example of a social network and how it impacts business practice in the Arab Middle East, drawing links with social network impact in different regions of the world. In doing so, particular attention will be paid to the socio-economic and cultural influences on business practice. In exploring relationships in business, concepts such as social network analysis, social capital and group identity are used to explore the different forms of social networks and how they influence business decisions and practices in the regions and countries where they prevail. The use of social networks to achieve objectives is known as guanxi in China, wasta in the Arab Middle East and blat in ex-Soviet countries. Wasta can be defined as favouritism based on tribal and family affiliation and is a widespread practice that has a substantial impact on political, social and business interactions in the Arab Middle East. Within the business context, it is used in several ways, such as to secure a job or promotion or to cut through bureaucracy in government interactions. The little research available is fragmented, and most studies reveal a negative attitude towards its usage in business. Paradoxically, while wasta is widely practised, people from the Arab Middle East often deny its influence. Moreover, despite the regular exhibition of a negative opinion on the practice of wasta, it can also be a source of great pride. This paper addresses this paradox by conducting a positional literature review, exploring the current literature on wasta and identifying how the identified paradox can be explained. The findings highlight how wasta, to a large extent, has been treated as an umbrella concept, whilst it is a highly complex practice which has evolved from intermediary wasta to intercessory wasta and therefore from bonding social capital relationships to more bridging social capital relationships. In addition, the research found that Islam, as the predominant religion in the region and the main source of ethical guidance for the majority of people from the region, plays a substantial role in this paradox. Specifically, it is submitted that wasta can be viewed positively in Islam when it is practised to aid others without breaking Islamic ethical guidelines, whilst it can be viewed negatively when it is used in contradiction with the teachings of Islam. As such, the unique contribution to knowledge of this study is that it ties together the fragmented literature on wasta, highlighting and helping us understand its complexity. In addition, it sheds light on the role of Islam in wasta practices, aiding our understanding of the paradoxical nature of the practice.Keywords: Islamic ethics, social capital, social networks, Wasta
Procedia PDF Downloads 1452008 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm
Authors: P. Senthil Kumari
Abstract:
Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.Keywords: text mining, data classification, community network, learning algorithm
Procedia PDF Downloads 5082007 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System
Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu
Abstract:
The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter
Procedia PDF Downloads 2502006 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection
Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young
Abstract:
Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving
Procedia PDF Downloads 2492005 Air Quality Assessment for a Hot-Spot Station by Neural Network Modelling of the near-Traffic Emission-Immission Interaction
Authors: Tim Steinhaus, Christian Beidl
Abstract:
Urban air quality and climate protection are two major challenges for future mobility systems. Despite the steady reduction of pollutant emissions from vehicles over past decades, local immission load within cities partially still reaches heights, which are considered hazardous to human health. Although traffic-related emissions account for a major part of the overall urban pollution, modeling the exact interaction remains challenging. In this paper, a novel approach for the determination of the emission-immission interaction on the basis of neural network modeling for traffic induced NO2-immission load within a near-traffic hot-spot scenario is presented. In a detailed sensitivity analysis, the significance of relevant influencing variables on the prevailing NO2 concentration is initially analyzed. Based on this, the generation process of the model is described, in which not only environmental influences but also the vehicle fleet composition including its associated segment- and certification-specific real driving emission factors are derived and used as input quantities. The validity of this approach, which has been presented in the past, is re-examined in this paper using updated data on vehicle emissions and recent immission measurement data. Within the framework of a final scenario analysis, the future development of the immission load is forecast for different developments in the vehicle fleet composition. It is shown that immission levels of less than half of today’s yearly average limit values are technically feasible in hot-spot situations.Keywords: air quality, emission, emission-immission-interaction, immission, NO2, zero impact
Procedia PDF Downloads 125