Search results for: machine failures
1475 Experimental Study of Various Sandwich Composites
Authors: R. Naveen, E. Vanitha, S. Gayathri
Abstract:
The use of Sandwich composite materials in aerospace and civil infrastructure application has been increasing especially due to their enormously low weight that leads to a reduction in the total weight and fuel consumption, high flexural and transverse shear stiffness, and corrosion resistance. The essential properties of sandwich materials vary according to the application area of the structure. The objectives of this study are to identify the mechanical behaviour and failure mechanisms of sandwich structures made of bamboo, V- board and metal (Aluminium as face sheet and Foam as Core material). The three-point bending test and UTM (Universal testing machine) experimental tests are done for three specimens for each type of sandwich composites. From the experiment results of three sandwich composites, bamboo shows high Young’s modulus of elasticity and low density.Keywords: bamboo sandwich composite, metal sandwich composite, sandwich composite, v-board sandwich composite
Procedia PDF Downloads 2571474 Material Concepts and Processing Methods for Electrical Insulation
Authors: R. Sekula
Abstract:
Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.Keywords: curing, epoxy insulation, numerical simulations, recycling
Procedia PDF Downloads 2781473 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1461472 Outcomes of the Gastrocnemius Flap Performed by Orthopaedic Surgeons in Salvage Revision Knee Arthroplasty: A Retrospective Study at a Tertiary Orthopaedic Centre
Authors: Amirul Adlan, Robert McCulloch, Scott Evans, Michael Parry, Jonathan Stevenson, Lee Jeys
Abstract:
Background and Objectives: The gastrocnemius myofascial flap is used to manage soft-tissue defects over the anterior aspect of the knee in the context of a patient presenting with a sinus and periprosthetic joint infection (PJI) or extensor mechanism failure. The aim of this study was twofold: firstly, to evaluate the outcomes of gastrocnemius flaps performed by appropriately trained orthopaedic surgeons in the context of PJI and, secondly, to evaluate the infection-free survival of this patient group. Methods: We retrospectively reviewed 30 patients who underwent gastrocnemius flap reconstruction during staged revision total knee arthroplasty for prosthetic joint infection (PJI). All flaps were performed by an orthopaedic surgeon with orthoplastics training. Patients had a mean age of 68.9 years (range 50–84) and were followed up for a mean of 50.4 months (range 2–128 months). A total of 29 patients (97 %) were categorized into Musculoskeletal Infection Society (MSIS) local extremity grade 3 (greater than two compromising factors), and 52 % of PJIs were polymicrobial. The primary outcome measure was flap failure, and the secondary outcome measure was a recurrent infection. Results: Flap survival was 100% with no failures or early returns to theatre for flap problems such as necrosis or haematoma. Overall infection-free survival during the study period was 48% (13 of 27 infected cases). Using limb salvage as the outcome, 77% (23 of 30 patients) retained the limb. Infection recurrence occurred in 48% (10 patients) in the type B3 cohort and 67% (4 patients) in the type C3 cohort (p = 0.65). Conclusion: The surgical technique for a gastrocnemius myofascial flap is reliable and reproducible when performed by appropriately trained orthopaedic surgeons, even in high-risk groups. However, the risks of recurrent infection and amputation remain high within our series due to poor host and extremity factors.Keywords: gastrocnemius flap, limb salvage, revision arthroplasty, outcomes
Procedia PDF Downloads 1111471 Protection and Immune Responses of DNA Vaccines Targeting Virulence Factors of Streptococcus iniae in Nile Tilapia (Oreochromis niloticus)
Authors: Pattanapon Kayansamruaj, Ha Thanh Dong, Nopadon Pirarat, Channarong Rodkhum
Abstract:
Streptococcus iniae (SI) is a devastating pathogenic bacteria causing heavy mortality in farmed fish. The application of commercialized bacterin vaccine has been reported failures as the outbreaks of the new serotype of SI were emerged in farms after vaccination and subsequently caused severe losses. In the present study, we attempted to develop effective DNA vaccines against SI infection using Nile tilapia (Oreochromis niloticus) as an animal model. Two monovalent DNA vaccines were constructed by the insertion of coding sequences of cell wall-associated virulence factors-encoding genes, comprised of eno (α-enolase) and mtsB (hydrophobic membrane protein), into cytomegalovirus expression vector (pCI-neo). In the animal trial, 30-g Nile tilapia were injected intramuscularly with 15 µg of each vaccine (mock vaccine group was injected by naked pCI-neo) and maintained for 35 days prior challenging with pathogenic SI at the dosage of 107 CFU/fish. At 13 days post-challenge, the relative percent survival of pEno, pMtsB and mock vaccine were 57%, 45% and 27%, respectively. The expression levels of immune responses-associated genes, namely, IL1β, TNF-α, TGF-β, COX2, IL-6, IL-12 and IL-13, were investigated from the spleen of experimental animal at 7 days post-vaccination (PV) and 7 days post-challenge (PC) using quantitative RT-PCR technique. Generally, at 7 days PV, the pEno vaccinated group exhibited highest level of up-regulation (1.7 to 2.9 folds) of every gene, but TGF-β, comparing to pMtsB and mock vaccine groups. However, at 7 days PC, pEno group showed significant up-regulation (1.4 to 8.5 folds) of immune-related genes as similar as mock vaccine group, while pMtsB group had lowest level of up-regulation (0.7 to 3.3 folds). Summarily, this study indicated that the pEno and pMtsB vaccines could elicit the immune responses of the fish and the magnitude of gene expression at 7 days PV was also consistent with the protection level conferred by the vaccine.Keywords: gene expression, DNA vaccine, Nile tilapia, Streptococcus iniae
Procedia PDF Downloads 3291470 Turbulent Boundary Layer over 3D Sinusoidal Roughness
Authors: Misarah Abdelaziz, L Djenidi, Mergen H. Ghayesh, Rey Chin
Abstract:
Measurements of a turbulent boundary layer over 3D sinusoidal roughness are performed for friction Reynolds numbers ranging from 650 < Reτ < 2700. This surface was fabricated by a Multicam CNC Router machine of an acrylic sheet to have an amplitude of k/2 = 0.8 mm and an equal wavelength of 8k in both streamwise and spanwise directions, a 0.6 mm stepover and 12 mm ball nose cutter was used. Single hotwire anemometry measurements are done at one location x=1.5 m downstream at different freestream velocities under zero-pressure gradient conditions. As expected, the roughness causes a downward shift on the wall-unit normalised streamwise mean velocity profile when compared to the smooth wall profile. The shift is increasing with increasing Reτ, 1.8 < ∆U+ < 6.2. The coefficient of friction is almost constant at all cases Cf = 0.0042 ± 0.0002. The results show a gradual reduction in the inner peak of profiles with increasing Reτ until fully destruction at Reτ of 2700.Keywords: hotwire, roughness, TBL, ZPG
Procedia PDF Downloads 2221469 Motor Gear Fault Diagnosis by Measurement of Current, Noise and Vibration on AC Machine
Authors: Sun-Ki Hong, Ki-Seok Kim, Yong-Ho Jo
Abstract:
Lots of motors have been being used in industry. Therefore many researchers have studied about the failure diagnosis of motors. In this paper, the effect of measuring environment for diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. For bad and good environment, the diagnosis results are compared. From these, it is shown that the bad measuring environment may not be able to detect exactly the motor gear fault. Therefore it is emphasized that the measuring environment should be carefully prepared.Keywords: motor fault, diagnosis, FFT, vibration, noise, q-axis current, measuring environment
Procedia PDF Downloads 5581468 A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials
Authors: Marc Sader, Michiel Stock, Bernard De Baets
Abstract:
Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported.Keywords: adsorption, predictive modeling, QSAR, random forest
Procedia PDF Downloads 2271467 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets
Authors: Debjit Ray
Abstract:
Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.Keywords: genomics, pathogens, genome assembly, superbugs
Procedia PDF Downloads 1971466 Evaluating Classification with Efficacy Metrics
Authors: Guofan Shao, Lina Tang, Hao Zhang
Abstract:
The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty
Procedia PDF Downloads 2111465 Efficient Passenger Counting in Public Transport Based on Machine Learning
Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa
Abstract:
Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.Keywords: computer vision, object detection, passenger counting, public transportation
Procedia PDF Downloads 1541464 Ethical, Legal and Societal Aspects of Unmanned Aircraft in Defence
Authors: Henning Lahmann, Benjamyn I. Scott, Bart Custers
Abstract:
Suboptimal adoption of AI in defence organisations carries risks for the protection of the freedom, safety, and security of society. Despite the vast opportunities that defence AI-technology presents, there are also a variety of ethical, legal, and societal concerns. To ensure the successful use of AI technology by the military, ethical, legal, and societal aspects (ELSA) need to be considered, and their concerns continuously addressed at all levels. This includes ELSA considerations during the design, manufacturing and maintenance of AI-based systems, as well as its utilisation via appropriate military doctrine and training. This raises the question how defence organisations can remain strategically competitive and at the edge of military innovation, while respecting the values of its citizens. This paper will explain the set-up and share preliminary results of a 4-year research project commissioned by the National Research Council in the Netherlands on the ethical, legal, and societal aspects of AI in defence. The project plans to develop a future-proof, independent, and consultative ecosystem for the responsible use of AI in the defence domain. In order to achieve this, the lab shall devise a context-dependent methodology that focuses on the ‘analysis’, ‘design’ and ‘evaluation’ of ELSA of AI-based applications within the military context, which include inter alia unmanned aircraft. This is bolstered as the Lab also recognises and complements the existing methods in regards to human-machine teaming, explainable algorithms, and value-sensitive design. Such methods will be modified for the military context and applied to pertinent case-studies. These case-studies include, among others, the application of autonomous robots (incl. semi- autonomous) and AI-based methods against cognitive warfare. As the perception of the application of AI in the military context, by both society and defence personnel, is important, the Lab will study how these perceptions evolve and vary in different contexts. Furthermore, the Lab will monitor – as they may influence people’s perception – developments in the global technological, military and societal spheres. Although the emphasis of the research project is on different forms of AI in defence, it focuses on several case studies. One of these case studies is on unmanned aircraft, which will also be the focus of the paper. Hence, ethical, legal, and societal aspects of unmanned aircraft in the defence domain will be discussed in detail, including but not limited to privacy issues. Typical other issues concern security (for people, objects, data or other aircraft), privacy (sensitive data, hindrance, annoyance, data collection, function creep), chilling effects, PlayStation mentality, and PTSD.Keywords: autonomous weapon systems, unmanned aircraft, human-machine teaming, meaningful human control, value-sensitive design
Procedia PDF Downloads 931463 Design and Implementation of a Wearable Artificial Kidney Prototype for Home Dialysis
Authors: R. A. Qawasma, F. M. Haddad, H. O. Salhab
Abstract:
Hemodialysis is a life-preserving treatment for a number of patients with kidney failure. The standard procedure of hemodialysis is three times a week during the hemodialysis procedure, the patient usually suffering from many inconvenient, exhausting feeling and effect on the heart and cardiovascular system are the most common signs. This paper provides a solution to reduce the previous problems by designing a wearable artificial kidney (WAK) taking in consideration a minimization the size of the dialysis machine. The WAK system consists of two circuits: blood circuit and dialysate circuit. The blood from the patient is filtered in the dialyzer before returning back to the patient. Several parameters using an advanced microcontroller and array of sensors. WAK equipped with visible and audible alarm system to aware the patients if there is any problem.Keywords: artificial kidney, home dialysis, renal failure, wearable kidney
Procedia PDF Downloads 2351462 Texture-Based Image Forensics from Video Frame
Authors: Li Zhou, Yanmei Fang
Abstract:
With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment.Keywords: multimedia forensics, video frame, LBP, MTP, SVM
Procedia PDF Downloads 4271461 The Urgenda and Juliana Cases: Redefining the Notion of Environmental Democracy
Authors: Valentina Dotto
Abstract:
Climate change cases used to take the form of statutory disputes rather than constitutional or common law disputes. This changed in 2015, with the Urgenda Climate case in the Netherlands (Urgenda Foundation v. The State of the Netherlands, C/09/456689/HAZA 13-1396) and, the Juliana case in the U.S. (United States v. U.S. District Court for District of Oregon, 17-71692, 9th Cir.). The two cases represent a new type of climate litigation, the claims brought against the federal government were in fact grounded in constitutional rights. The complaints used the Doctrine of Public Trust as a cornerstone for the lawsuits asserting that government's actions against climate change failed to protect essential public trust resources; thus, violating a generation's constitutional rights to life, liberty, and property. The Public Trust Doctrine –a quintessentially American legal concept-, reserved to the States by virtue of the 9th and 10th amendment of the federal Constitution, gives them considerable jurisdiction over natural resources and has been refined by a number of Supreme Court rulings. The Juliana case exemplifies the Doctrine’s evolutionary nature because it attempts to apply it to the federal government, and establish a right to a climate system capable of sustaining human life as a fundamental right protected by a substantive due process. Furthermore, the flexibility of the Doctrine makes it permissible to be applied to a variety of different legal systems as in the Urgenda case. At the very heart of the lawsuits stands the question of who owns the Earth resources and, to what extent the general public can claim the services that the Earth provides as common property. By employing the widest possible definition of the Doctrine of Public Trust these lawsuits tried to redefine environmental resources as a collective right of all people. By doing case analysis, the paper explores how these cases can contribute to widening the public access to information and broadening the public voice in decision making as well as providing a precedent to equal access in seeking justice and redress from environmental failures.Keywords: climate change, doctrine of public trust, environmental democracy, Juliana case, Urgenda climate case
Procedia PDF Downloads 1741460 A Molding Surface Auto-inspection System
Authors: Ssu-Han Chen, Der-Baau Perng
Abstract:
Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded, defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.Keywords: molding surface, machine vision, statistical texture, discrete Fourier transformation
Procedia PDF Downloads 4311459 Multimodal Employee Attendance Management System
Authors: Khaled Mohammed
Abstract:
This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio
Procedia PDF Downloads 1551458 Integrating Wearable Devices in Real-Time Computer Applications of Petrochemical Systems
Authors: Paul B Stone, Subhashini Ganapathy, Mary E. Fendley, Layla Akilan
Abstract:
As notifications become more common through mobile devices, it is important to understand the impact of wearable devices on the improved user experience of man-machine interfaces. This study examined the use of a wearable device for a real-time system using a computer-simulated petrochemical system. The key research question was to determine how using the information provided by the wearable device can improve human performance through measures of situational awareness and decision making. Results indicate that there was a reduction in response time when using the watch, and there was no difference in situational awareness. Perception of using the watch was positive, with 83% of users finding value in using the watch and receiving haptic feedback.Keywords: computer applications, haptic feedback, petrochemical systems, situational awareness, wearable technology
Procedia PDF Downloads 2001457 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module
Procedia PDF Downloads 3431456 Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm
Authors: Tomasz Robert Kuczerski
Abstract:
The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method.Keywords: algorithm analysis, autonomous system, quantum optimization, tandem detonator
Procedia PDF Downloads 921455 A Multi-Agent Urban Traffic Simulator for Generating Autonomous Driving Training Data
Authors: Florin Leon
Abstract:
This paper describes a simulator of traffic scenarios tailored to facilitate autonomous driving model training for urban environments. With the rising prominence of self-driving vehicles, the need for diverse datasets is very important. The proposed simulator provides a flexible framework that allows the generation of custom scenarios needed for the validation and enhancement of trajectory prediction algorithms. Its controlled yet dynamic environment addresses the challenges associated with real-world data acquisition and ensures adaptability to diverse driving scenarios. By providing an adaptable solution for scenario creation and algorithm testing, this tool proves to be a valuable resource for advancing autonomous driving technology that aims to ensure safe and efficient self-driving vehicles.Keywords: autonomous driving, car simulator, machine learning, model training, urban simulation environment
Procedia PDF Downloads 591454 Conception of a Predictive Maintenance System for Forest Harvesters from Multiple Data Sources
Authors: Lazlo Fauth, Andreas Ligocki
Abstract:
For cost-effective use of harvesters, expensive repairs and unplanned downtimes must be reduced as far as possible. The predictive detection of failing systems and the calculation of intelligent service intervals, necessary to avoid these factors, require in-depth knowledge of the machines' behavior. Such know-how needs permanent monitoring of the machine state from different technical perspectives. In this paper, three approaches will be presented as they are currently pursued in the publicly funded project PreForst at Ostfalia University of Applied Sciences. These include the intelligent linking of workshop and service data, sensors on the harvester, and a special online hydraulic oil condition monitoring system. Furthermore the paper shows potentials as well as challenges for the use of these data in the conception of a predictive maintenance system.Keywords: predictive maintenance, condition monitoring, forest harvesting, forest engineering, oil data, hydraulic data
Procedia PDF Downloads 1451453 Reusing of HSS Hacksaw Blades as Rough Machining Tool
Authors: Raja V., Chokkalingam B.
Abstract:
For rough cutting, in many industries and educational institutions using carbon steels or HSS single point cutting tools in center lathe machine. In power hacksaw blades, only the cutter teeth region used to parting off the given material. The portions other than the teeth can be used as a single point cutting tool for rough turning and facing on soft materials. The hardness and Tensile strength of this used Power hacksaw blade is almost same as conventional cutting tools. In this paper, the effect of power hacksaw blades over conventional tool has been compared. Thickness of the blade (1.6 mm) is very small compared to its length and width. Hence, a special tool holding device is designed to hold the tool.Keywords: hardness, high speed steels, power hacksaw blade, tensile strength
Procedia PDF Downloads 4571452 Green Thumb Engineering - Explainable Artificial Intelligence for Managing IoT Enabled Houseplants
Authors: Antti Nurminen, Avleen Malhi
Abstract:
Significant progress in intelligent systems in combination with exceedingly wide application domains having machine learning as the core technology are usually opaque, non-intuitive, and commonly complex for human users. We use innovative IoT technology which monitors and analyzes moisture, humidity, luminosity and temperature levels to assist end users for optimization of environmental conditions for their houseplants. For plant health monitoring, we construct a system yielding the Normalized Difference Vegetation Index (NDVI), supported by visual validation by users. We run the system for a selected plant, basil, in varying environmental conditions to cater for typical home conditions, and bootstrap our AI with the acquired data. For end users, we implement a web based user interface which provides both instructions and explanations.Keywords: explainable artificial intelligence, intelligent agent, IoT, NDVI
Procedia PDF Downloads 1631451 Spatial Heterogeneity of Urban Land Use in the Yangtze River Economic Belt Based on DMSP/OLS Data
Authors: Liang Zhou, Qinke Sun
Abstract:
Taking the Yangtze River Economic Belt as an example, using long-term nighttime lighting data from DMSP/OLS from 1992 to 2012, support vector machine classification (SVM) was used to quantitatively extract urban built-up areas of economic belts, and spatial analysis of expansion intensity index, standard deviation ellipse, etc. was introduced. The model conducts detailed and in-depth discussions on the strength, direction, and type of the expansion of the middle and lower reaches of the economic belt and the key node cities. The results show that: (1) From 1992 to 2012, the built-up areas of the major cities in the Yangtze River Valley showed a rapid expansion trend. The built-up area expanded by 60,392 km², and the average annual expansion rate was 31%, that is, from 9615 km² in 1992 to 70007 km² in 2012. The spatial gradient analysis of the watershed shows that the expansion of urban built-up areas in the middle and lower reaches of the river basin takes Shanghai as the leading force, and the 'bottom-up' model shows an expanding pattern of 'upstream-downstream-middle-range' declines. The average annual rate of expansion is 36% and 35%, respectively. 17% of which the midstream expansion rate is about 50% of the upstream and downstream. (2) The analysis of expansion intensity shows that the urban expansion intensity in the Yangtze River Basin has generally shown an upward trend, the downstream region has continued to rise, and the upper and middle reaches have experienced different amplitude fluctuations. To further analyze the strength of urban expansion at key nodes, Chengdu, Chongqing, and Wuhan in the upper and middle reaches maintain a high degree of consistency with the intensity of regional expansion. Node cities with Shanghai as the core downstream continue to maintain a high level of expansion. (3) The standard deviation ellipse analysis shows that the overall center of gravity of the Yangtze River basin city is located in Anqing City, Anhui Province, and it showed a phenomenon of reciprocating movement from 1992 to 2012. The nighttime standard deviation ellipse distribution range increased from 61.96 km² to 76.52 km². The growth of the major axis of the ellipse was significantly larger than that of the minor axis. It had obvious east-west axiality, in which the nighttime lights in the downstream area occupied in the entire luminosity scale urban system leading position.Keywords: urban space, support vector machine, spatial characteristics, night lights, Yangtze River Economic Belt
Procedia PDF Downloads 1141450 Off-Line Parameter Estimation for the Induction Motor Drive System
Authors: Han-Woong Ahn, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
It is important to accurately identify machine parameters for direct vector control. To obtain the parameter values, traditional methods can be used such as no-load and rotor locked tests. However, there are many differences between values obtained from the traditional tests and actual values. In addition, there are drawbacks that additional equipment and cost are required for the experiment. Therefore, it is hard to temporary operation to estimate induction motor parameters. Therefore, this paper deals with the estimation algorithm of induction motor parameters without a motor operation and the measurement from additional equipment such as sensors and dynamometer. The validity and usefulness of the estimation algorithm considering inverter nonlinearity is verified by comparing the conventional method with the proposed method.Keywords: induction motor, parameter, off-line estimation, inverter nonlinearity
Procedia PDF Downloads 5291449 Effectiveness of Adrenal Venous Sampling in the Management of Primary Aldosteronism: Single Centered Cohort Study at a Tertiary Care Hospital in Sri Lanka
Authors: Balasooriya B. M. C. M., Sujeeva N., Thowfeek Z., Siddiqa Omo, Liyanagunawardana J. E., Jayawardana Saiu, Manathunga S. S., Katulanda G. W.
Abstract:
Introduction and objectives: Adrenal venous sampling (AVS) is the gold standard to discriminate unilateral primary aldosteronism (UPA) from bilateral disease (BPA). AVS is technically demanding and only performed in a limited number of centers worldwide. To the best of our knowledge, Except for one study conducted in India, no other research studies on this area have been conducted in South Asia. This study aimed to evaluate the effectiveness of AVS in the management of primary aldosteronism. Methods: A total of 32 patients who underwent AVS at the National Hospital of Sri Lanka from April 2021 to April 2023 were enrolled. Demographic, clinical and laboratory data were obtained retrospectively. A procedure was considered successful when adequate cannulation of both adrenal veins was demonstrated. Cortisol gradient across the adrenal vein (AV) and the peripheral vein was used to establish the success of venous cannulation. Lateralization was determined by the aldosterone gradient between the two sides. Continuous and categorical variables were summarized with mean, SD, and proportions, respectively. The mean and standard deviation of the contralateral suppression index (CSI) were estimated with an intercept-only Bayesian inference model. Results: Of the 32 patients, the average age was 52.47 +26.14 and 19 (59.4%) were males. Both AVs were successfully cannulated in 12 (37.5%). Among them, lateralization was demonstrated in 11(91.7%), and one was diagnosed as a bilateral disease. There were no total failures. Right AV cannulation was unsuccessful in 18 (56.25%), of which lateralization was demonstrated in 9 (50%), and others were inconclusive. Left AV cannulation was unsuccessful only in 2 (6.25%); one was lateralized, and the other remained inconclusive. The estimated mean of the CSI was 0.33 (89% credible interval 0.11-0.86). Seven patients underwent unilateral adrenalectomy and demonstrated significant improvement in blood pressure during follow-up. Two patients await surgery. Others were treated medically. Conclusions: Despite failure due to procedural difficulties, AVS remained useful in the management of patients with PA. Moreover, the success of the procedure needs experienced hands and advanced equipment to achieve optimal outcomes in PA.Keywords: adrenal venous sampling, lateralization, contralateral suppression index, primary aldosteronism
Procedia PDF Downloads 651448 Evaluating the Performance of Offensive Lineman in the National Football League
Authors: Nikhil Byanna, Abdolghani Ebrahimi, Diego Klabjan
Abstract:
How does one objectively measure the performance of an individual offensive lineman in the NFL? The existing literature proposes various measures that rely on subjective assessments of game film, but has yet to develop an objective methodology to evaluate performance. Using a variety of statistics related to an offensive lineman’s performance, we develop a framework to objectively analyze the overall performance of an individual offensive lineman and determine specific linemen who are overvalued or undervalued relative to their salary. We identify eight players across the 2013-2014 and 2014-2015 NFL seasons that are considered to be overvalued or undervalued and corroborate the results with existing metrics that are based on subjective evaluation. To the best of our knowledge, the techniques set forth in this work have not been utilized in previous works to evaluate the performance of NFL players at any position, including offensive linemen.Keywords: offensive lineman, player performance, NFL, machine learning
Procedia PDF Downloads 1441447 MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-Independent and Identically Distributed Distribution
Authors: Akash Amalan, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, Kaitai Liang
Abstract:
Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled General Adversarial Networks (GANs) to benefit from the rich distributed training data while preserving privacy. However, in a non-IID setting, current federated GAN architectures are unstable, struggling to learn the distinct features, and vulnerable to mode collapse. In this paper, we propose an architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse, and instability for non-IID datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e., high inception score) on average over 20 clients compared to baseline FLGAN.Keywords: federated learning, generative adversarial network, inference attack, non-IID data distribution
Procedia PDF Downloads 1581446 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG
Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat
Abstract:
Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy
Procedia PDF Downloads 520