Search results for: light gradient boosting model (LGBM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20544

Search results for: light gradient boosting model (LGBM)

18714 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor

Procedia PDF Downloads 345
18713 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.

Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables

Procedia PDF Downloads 334
18712 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran

Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi

Abstract:

Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.

Keywords: watershed simulation, WetSpa, stream flow, flood prediction

Procedia PDF Downloads 244
18711 Reinforcement Learning for Self Driving Racing Car Games

Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh

Abstract:

This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.

Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming

Procedia PDF Downloads 46
18710 Developing a Sustainable Business Model for Platform-Based Applications in Small and Medium-Sized Enterprise Sawmills: A Systematic Approach

Authors: Franziska Mais, Till Gramberg

Abstract:

The paper presents the development of a sustainable business model for a platform-based application tailored for sawing companies in small and medium-sized enterprises (SMEs). The focus is on the integration of sustainability principles into the design of the business model to ensure a technologically advanced, legally sound, and economically efficient solution. Easy2IoT is a research project that aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements, and potential solutions for smart services are derived. The structuring of the business ecosystem within the application plays a central role, whereby the roles of the partners, the management of the IT infrastructure and services, as well as the design of a sustainable operator model are considered. The business model is developed using the value proposition canvas, whereby a detailed analysis of the requirements for the business model is carried out, taking sustainability into account. This includes coordination with the business model patterns, according to Gassmann, and integration into a business model canvas for the Easy2IoT product. Potential obstacles and problems are identified and evaluated in order to formulate a comprehensive and sustainable business model. In addition, sustainable payment models and distribution channels are developed. In summary, the article offers a well-founded insight into the systematic development of a sustainable business model for platform-based applications in SME sawmills, with a particular focus on the synergy of ecological responsibility and economic efficiency.

Keywords: business model, sustainable business model, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 81
18709 Two-Warehouse Inventory Model for Deteriorating Items with Inventory-Level-Dependent Demand under Two Dispatching Policies

Authors: Lei Zhao, Zhe Yuan, Wenyue Kuang

Abstract:

This paper studies two-warehouse inventory models for a deteriorating item considering that the demand is influenced by inventory levels. The problem mainly focuses on the optimal order policy and the optimal order cycle with inventory-level-dependent demand in two-warehouse system for retailers. It considers the different deterioration rates and the inventory holding costs in owned warehouse (OW) and rented warehouse (RW), and the conditions of transportation cost, allowed shortage and partial backlogging. Two inventory models are formulated: last-in first-out (LIFO) model and first-in-first-out (FIFO) model based on the policy choices of LIFO and FIFO, and a comparative analysis of LIFO model and FIFO model is made. The study finds that the FIFO policy is more in line with realistic operating conditions. Especially when the inventory holding cost of OW is high, and there is no difference or big difference between deterioration rates of OW and RW, the FIFO policy has better applicability. Meanwhile, this paper considers the differences between the effects of warehouse and shelf inventory levels on demand, and then builds retailers’ inventory decision model and studies the factors of the optimal order quantity, the optimal order cycle and the average inventory cost per unit time. To minimize the average total cost, the optimal dispatching policies are provided for retailers’ decisions.

Keywords: FIFO model, inventory-level-dependent, LIFO model, two-warehouse inventory

Procedia PDF Downloads 279
18708 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage

Procedia PDF Downloads 393
18707 Motor Controller Implementation Using Model Based Design

Authors: Cau Tran, Tu Nguyen, Tien Pham

Abstract:

Model-based design (MBD) is a mathematical and visual technique for addressing design issues in the fields of communications, signal processing, and complicated control systems. It is utilized in several automotive, aerospace, industrial, and motion control applications. Virtual models are at the center of the software development process with model based design. A method used in the creation of embedded software is model-based design. In this study, the LAT motor is modeled in a simulation environment, and the LAT motor control is designed with a cascade structure, a speed and current control loop, and a controller that is used in the next part. A PID structure serves as this controller. Based on techniques and motor parameters that match the design goals, the PID controller is created for the model using traditional design principles. The MBD approach will be used to build embedded software for motor control. The paper will be divided into three distinct sections. The first section will introduce the design process and the benefits and drawbacks of the MBD technique. The design of control software for LAT motors will be the main topic of the next section. The experiment's results are the subject of the last section.

Keywords: model based design, limited angle torque, intellectual property core, hardware description language, controller area network, user datagram protocol

Procedia PDF Downloads 94
18706 Gender Based of Sustainable Food Self-Resilience for Village Using Dynamic System Model

Authors: Kholil, Laksanto Utomo

Abstract:

The food needs of the Indonesian people will continue increase year to year due to the increase of population growth. For ensuring food securityand and resilience, the government has developed a program food self-resilience village since 2006. Food resilience is a complex system, consisting of subsystem availability, distribution and consumption of the sufficiency of food consumed both in quantity and quality. Low access, and limited assets to food sources is the dominant factor vulnerable of food. Women have a major role in supporting the productive activities of the family to meet food sufficiency and resilience. The purpose of this paper is to discuss the model of food self-resilience village wich gender responsive by using a dynamic system model. Model will be developed into 3 level: family, vilage, and regency in accordance with the concept of village food resilience model wich has been developed by ministry of agriculture. Model development based on the results of experts discussion and field study. By some scenarios and simulation models we will able to develop appropriate policy strategies for family food resilience. The result of study show that food resilience was influenced by many factors: goverment policies, technology, human resource, and in the same time it will be a feed back for goverment policies and number of poor family.

Keywords: food availability, food sufficiency, gender, model dynamic, law enfrocement

Procedia PDF Downloads 534
18705 A Model of Knowledge Management Culture Change

Authors: Reza Davoodi, Hamid Abbasi, Heidar Norouzi, Gholamabbas Alipourian

Abstract:

A dynamic model shaping a process of knowledge management (KM) culture change is suggested. It is aimed at providing effective KM of employees for obtaining desired results in an organization. The essential requirements for obtaining KM culture change are determined. The proposed model realizes these requirements. Dynamics of the model are expressed by a change of its parameters. It is adjusted to the dynamic process of KM culture change. Building the model includes elaboration and integration of interconnected components. The “Result” is a central component of the model. This component determines a desired organizational goal and possible directions of its attainment. The “Confront” component engenders constructive confrontation in an organization. For this reason, the employees are prompted toward KM culture change with the purpose of attaining the desired result. The “Assess” component realizes complex assessments of employee proposals by management and peers. The proposals are directed towards attaining the desired result in an organization. The “Reward” component sets the order of assigning rewards to employees based on the assessments of their proposals.

Keywords: knowledge management, organizational culture change, employee, result

Procedia PDF Downloads 407
18704 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling

Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas

Abstract:

Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.

Keywords: flood forecasting, machine learning, multilayer perceptron network, regression

Procedia PDF Downloads 172
18703 A Research Agenda for Learner Models for Adaptive Educational Digital Learning Environments

Authors: Felix Böck

Abstract:

Nowadays, data about learners and their digital activities are collected, which could help educational institutions to better understand learning processes, improve them and be able to provide better learning assistance. In this research project, custom knowledge- and data-driven recommendation algorithms will be used to offer students in higher education integrated learning assistance. The pre-requisite for this is a learner model that is as comprehensive as possible, which should first be created and then kept up-to-date largely automatically for being able to individualize and personalize the learning experience. In order to create such a learner model, a roadmap is presented that describes the individual phases up to the creation and evaluation of the finished model. The methodological process for the research project is disclosed, and the research question of how learners can be supported in their learning with personalized, customized learning recommendations is explored.

Keywords: research agenda, user model, learner model, higher education, adaptive educational digital learning environments, personalized learning paths, recommendation system, adaptation, personalization

Procedia PDF Downloads 16
18702 Continuous and Discontinuos Modeling of Wellbore Instability in Anisotropic Rocks

Authors: C. Deangeli, P. Obentaku Obenebot, O. Omwanghe

Abstract:

The study focuses on the analysis of wellbore instability in rock masses affected by weakness planes. The occurrence of failure in such a type of rocks can occur in the rock matrix and/ or along the weakness planes, in relation to the mud weight gradient. In this case the simple Kirsch solution coupled with a failure criterion cannot supply a suitable scenario for borehole instabilities. Two different numerical approaches have been used in order to investigate the onset of local failure at the wall of a borehole. For each type of approach the influence of the inclination of weakness planes has been investigates, by considering joint sets at 0°, 35° and 90° to the horizontal. The first set of models have been carried out with FLAC 2D (Fast Lagrangian Analysis of Continua) by considering the rock material as a continuous medium, with a Mohr Coulomb criterion for the rock matrix and using the ubiquitous joint model for accounting for the presence of the weakness planes. In this model yield may occur in either the solid or along the weak plane, or both, depending on the stress state, the orientation of the weak plane and the material properties of the solid and weak plane. The second set of models have been performed with PFC2D (Particle Flow code). This code is based on the Discrete Element Method and considers the rock material as an assembly of grains bonded by cement-like materials, and pore spaces. The presence of weakness planes is simulated by the degradation of the bonds between grains along given directions. In general the results of the two approaches are in agreement. However the discrete approach seems to capture more complex phenomena related to local failure in the form of grain detachment at wall of the borehole. In fact the presence of weakness planes in the discontinuous medium leads to local instability along the weak planes also in conditions not predicted from the continuous solution. In general slip failure locations and directions do not follow the conventional wellbore breakout direction but depend upon the internal friction angle and the orientation of the bedding planes. When weakness plane is at 0° and 90° the behaviour are similar to that of a continuous rock material, but borehole instability is more severe when weakness planes are inclined at an angle between 0° and 90° to the horizontal. In conclusion, the results of the numerical simulations show that the prediction of local failure at the wall of the wellbore cannot disregard the presence of weakness planes and consequently the higher mud weight required for stability for any specific inclination of the joints. Despite the discrete approach can simulate smaller areas because of the large number of particles required for the generation of the rock material, however it seems to investigate more correctly the occurrence of failure at the miscroscale and eventually the propagation of the failed zone to a large portion of rock around the wellbore.

Keywords: continuous- discontinuous, numerical modelling, weakness planes wellbore, FLAC 2D

Procedia PDF Downloads 499
18701 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 59
18700 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis

Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera

Abstract:

Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.

Keywords: log-linear model, multi spectral, residuals, spatial error model

Procedia PDF Downloads 297
18699 Sustainable Drinking Water Treatment Method Using Solar Light

Authors: Ayushi Arora

Abstract:

Solar photocatalysis has the potential to treat drinking water in a sustainable and cost effective manner. According to WHO, there should not be any colony forming units (CFU) per 100 mL present in drinking water, and as per the Central Pollution Control Board (CPCB) of India, the bathing water should have less than 500 CFU/100 mL and the maximum permissible limit is 2500 CFU/100 mL. In this study, 8 water sources near our collaborators, Indian Institute of Technology, Kharagpur, India, were analysed, and it was found that 6 out of 8 sources of water had significant coliform count in them. Two of them were chosen to be treated by solar photocatalysis a) well water which had a count of 4800 CFU/100 mL for total coliforms and was used by people for drinking purposes, and b) pond water which had a count of 92000 CFU/100 mL for total coliforms and 3000 CFU/mL for E.Coli and was used by people for washing and bathing purposes. In this study, a semiconductor-semiconductor, composite BTO-TiO2-RMSG & TiO2-SiO2 were tested for their ability to be activated under solar light and to reduce Total Coliforms and E.Coli bacteria in real world contaminated water, and it was found that both catalysts were both able to reduce the total coliform count in water by 99.7% and 98.2 % in 2 hrs respectively. They have also shown promising results in reusability tests. This study demonstrates the ability of solar photocatalysis to be used in real world drinking water treatment and will promote future advancements in this field.

Keywords: sustainable water treatment, waterpurification technologies, water policies, water pollution and environmental engineering

Procedia PDF Downloads 81
18698 A Low Order Thermal Envelope Model for Heat Transfer Characteristics of Low-Rise Residential Buildings

Authors: Nadish Anand, Richard D. Gould

Abstract:

A simplistic model is introduced for determining the thermal characteristics of a Low-rise Residential (LRR) building and then predicts the energy usage by its Heating Ventilation & Air Conditioning (HVAC) system according to changes in weather conditions which are reflected in the Ambient Temperature (Outside Air Temperature). The LRR buildings are treated as a simple lump for solving the heat transfer problem and the model is derived using the lumped capacitance model of transient conduction heat transfer from bodies. Since most contemporary HVAC systems have a thermostat control which will have an offset temperature and user defined set point temperatures which define when the HVAC system will switch on and off. The aim is to predict without any error the Body Temperature (i.e. the Inside Air Temperature) which will estimate the switching on and off of the HVAC system. To validate the mathematical model derived from lumped capacitance we have used EnergyPlus simulation engine, which simulates Buildings with considerable accuracy. We have predicted through the low order model the Inside Air Temperature of a single house kept in three different climate zones (Detroit, Raleigh & Austin) and different orientations for summer and winter seasons. The prediction error from the model for the same day as that of model parameter calculation has showed an error of < 10% in winter for almost all the orientations and climate zones. Whereas the prediction error is only <10% for all the orientations in the summer season for climate zone at higher latitudes (Raleigh & Detroit). Possible factors responsible for the large variations are also noted in the work, paving way for future research.

Keywords: building energy, energy consumption, energy+, HVAC, low order model, lumped capacitance

Procedia PDF Downloads 266
18697 Generating 3D Anisotropic Centroidal Voronoi Tessellations

Authors: Alexandre Marin, Alexandra Bac, Laurent Astart

Abstract:

New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Elements Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular, polyhedral meshes have many advantages. One way to build such meshes consists of constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, e.g., elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: First, we introduce a new gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.

Keywords: anisotropic Voronoi diagrams, meshes for numerical simulations, optimisation, volumic polyhedral meshing

Procedia PDF Downloads 116
18696 Piled Critical Size Bone-Biomimetic and Biominerizable Nanocomposites: Formation of Bioreactor-Induced Stem Cell Gradients under Perfusion and Compression

Authors: W. Baumgartner, M. Welti, N. Hild, S. C. Hess, W. J. Stark, G. Meier Bürgisser, P. Giovanoli, J. Buschmann

Abstract:

Perfusion bioreactors are used to solve problems in tissue engineering in terms of sufficient nutrient and oxygen supply. Such problems especially occur in critical size grafts because vascularization is often too slow after implantation ending up in necrotic cores. Biominerizable and biocompatible nanocomposite materials are attractive and suitable scaffold materials for bone tissue engineering because they offer mineral components in organic carriers – mimicking natural bone tissue. In addition, human adipose derived stem cells (ASCs) can potentially be used to increase bone healing as they are capable of differentiating towards osteoblasts or endothelial cells among others. In the present study, electrospun nanocomposite disks of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/a-CaP) were seeded with human ASCs and eight disks were stacked in a bioreactor running with normal culture medium (no differentiation supplements). Under continuous perfusion and uniaxial cyclic compression, load-displacement curves as a function of time were assessed. Stiffness and energy dissipation were recorded. Moreover, stem cell densities in the layers of the piled scaffold were determined as well as their morphologies and differentiation status (endothelial cell differentiation, chondrogenesis and osteogenesis). While the stiffness of the cell free constructs increased over time caused by the transformation of the a-CaP nanoparticles into flake-like apatite, ASC-seeded constructs showed a constant stiffness. Stem cell density gradients were histologically determined with a linear increase in the flow direction from the bottom to the top of the 3.5 mm high pile (r2 > 0.95). Cell morphology was influenced by the flow rate, with stem cells getting more roundish at higher flow rates. Less than 1 % osteogenesis was found upon osteopontin immunostaining at the end of the experiment (9 days), while no endothelial cell differentiation and no chondrogenesis was triggered under these conditions. All ASCs had mainly remained in their original pluripotent status within this time frame. In summary, we have fabricated a critical size bone graft based on a biominerizable bone-biomimetic nanocomposite with preserved stiffness when seeded with human ASCs. The special feature of this bone graft was that ASC densities inside the piled construct varied with a linear gradient, which is a good starting point for tissue engineering interfaces such as bone-cartilage where the bone tissue is cell rich while the cartilage exhibits low cell densities. As such, this tissue-engineered graft may act as a bone-cartilage interface after the corresponding differentiation of the ASCs.

Keywords: bioreactor, bone, cartilage, nanocomposite, stem cell gradient

Procedia PDF Downloads 308
18695 Effects Induced by Dispersion-Promoting Cylinder on Fiber-Concentration Distributions in Pulp Suspension Flows

Authors: M. Sumida, T. Fujimoto

Abstract:

Fiber-concentration distributions in pulp liquid flows behind dispersion promoters were experimentally investigated to explore the feasibility of improving operational performance of hydraulic headboxes in papermaking machines. The proposed research was performed in the form of a basic test conducted on a screen-type model comprising a circular cylinder inserted within a channel. Tests were performed using pulp liquid possessing fiber concentrations ranging from 0.3-1.0 wt% under different flow velocities of 0.016-0.74 m/s. Fiber-concentration distributions were measured using the transmitted light attenuation method. Obtained test results were analyzed, and the influence of the flow velocities on wake characteristics behind the cylinder has been investigated with reference to findings of our preceding studies concerning pulp liquid flows in straight channels. Changes in fiber-concentration distribution along the flow direction were observed to be substantially large in the section from the cylinder to four times its diameter downstream of its centerline. Findings of this study provide useful information concerning the development of hydraulic headboxes.

Keywords: dispersion promoter, fiber-concentration distribution, hydraulic headbox, pulp liquid flow

Procedia PDF Downloads 346
18694 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door

Authors: Zainab Fadhil Al Toki, Nader Ghareeb

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 51
18693 Value Co-Creation Model for Relationships Management

Authors: Kolesnik Nadezda A.

Abstract:

The research aims to elaborate inter-organizational network relationships management model to maximize value co-creation. We propose a network management framework that requires evaluation of network partners with respect to their position and role in network; and elaboration of appropriate relationship development strategy with partners in network. Empirical research and approval is based on the case study method, including structured in-depth interviews with the companies from b2b market.

Keywords: inter-organizational networks, value co-creation, model, B2B market

Procedia PDF Downloads 456
18692 Photocatalytic Degradation of Phenolic Compounds in Wastewater Using Magnetically Recoverable Catalyst

Authors: Ahmed K. Sharaby, Ahmed S. El-Gendy

Abstract:

Phenolic compounds (PCs) exist in the wastewater effluents of some industries such as oil refinery, pharmaceutical and cosmetics. Phenolic compounds are extremely hazardous pollutants that can cause severe problems to the aquatic life and human beings if disposed of without treatment. One of the most efficient treatment methods of PCs is photocatalytic degradation. The current work studies the performance of composite nanomaterial of titanium dioxide with magnetite as a photo-catalyst in the degradation of PCs. The current work aims at optimizing the synthesized photocatalyst dosage and contact time as part of the operational parameters at different initial concentrations of PCs and pH values in the wastewater. The study was performed in a lab-scale batch reactor under fixed conditions of light intensity and aeration rate. The initial concentrations of PCs and the pH values were in the range of (10-200 mg/l) and (3-9), respectively. Results of the study indicate that the dosage of the catalyst and contact time for total mineralization is proportional to the initial concentrations of PCs, while the optimum pH conditions for highly efficient degradation is at pH 3. Exceeding the concentration levels of the catalyst beyond certain limits leads to the decrease in the degradation efficiency due to the dissipation of light. The performance of the catalyst for degradation was also investigated in comparison to the pure TiO2 Degussa (P-25). The dosage required for the synthesized catalyst for photocatalytic degradation was approximately 1.5 times that needed from the pure titania.

Keywords: industrial, optimization, phenolic compounds, photocatalysis, wastewater

Procedia PDF Downloads 316
18691 Photocrosslinkable Nanocomposite Ink for Printing of Strong, Biodegradable and Bioactive Bone Graft

Authors: Xin Zhao

Abstract:

3D printing is used in creating bone grafts of various architectures by printing materials in a layer-by-layer manner. Traditionally, to make materials printable, heating up or dissolving materials in organic solvents have been used, compromising their capability in loading biomolecules. Photocrosslinkable materials which are initially liquid and printable, and solidified upon light exposure are therefore developed. However, the existing photocrosslinkable materials are either too soft to bear load or non-degradable with potential long-term biocompatibility problems. Here, photocrosslinkable nanocomposite ink is developed composed of poly (lactide-co-propylene glycol-co-lactide) dimethacrylate (PmLnDMA) and hydroxyethyl methacrylate-functionalized hydroxyapatite nanoparticles (nHAMA) mimicking the hairy setae of gecko that can strongly interact with its surroundings to bear high load. Incorporation of nHAMA into PmLnDMA endows the nanocomposite ink with several advantages in (1) improved organic/inorganic interfacial compatibility to increase mechanical strength, (2) readily modulated rheological behaviors, wettability, and biodegradation, (3) enhanced osteoconductivity and osteoinductivity. Moreover, the ink can be rapidly crosslinked upon light exposure, load, and long-term release growth factors, and be printed into 3D bone scaffolds of various shapes and structures according to the patients’ needs. Altogether, this innovation will benefit patients all over the world who suffer from bone fractures, tumors, infections.

Keywords: photocrosslinkable nanocomposite, 3D printing, bone ink, personalized medicine

Procedia PDF Downloads 115
18690 A Data-Driven Agent Based Model for the Italian Economy

Authors: Michele Catalano, Jacopo Di Domenico, Luca Riccetti, Andrea Teglio

Abstract:

We develop a data-driven agent based model (ABM) for the Italian economy. We calibrate the model for the initial condition and parameters. As a preliminary step, we replicate the Monte-Carlo simulation for the Austrian economy. Then, we evaluate the dynamic properties of the model: the long-run equilibrium and the allocative efficiency in terms of disequilibrium patterns arising in the search and matching process for final goods, capital, intermediate goods, and credit markets. In this perspective, we use a randomized initial condition approach. We perform a robustness analysis perturbing the system for different parameter setups. We explore the empirical properties of the model using a rolling window forecast exercise from 2010 to 2022 to observe the model’s forecasting ability in the wake of the COVID-19 pandemic. We perform an analysis of the properties of the model with a different number of agents, that is, with different scales of the model compared to the real economy. The model generally displays transient dynamics that properly fit macroeconomic data regarding forecasting ability. We stress the model with a large set of shocks, namely interest policy, fiscal policy, and exogenous factors, such as external foreign demand for export. In this way, we can explore the most exposed sectors of the economy. Finally, we modify the technology mix of the various sectors and, consequently, the underlying input-output sectoral interdependence to stress the economy and observe the long-run projections. In this way, we can include in the model the generation of endogenous crisis due to the implied structural change, technological unemployment, and potential lack of aggregate demand creating the condition for cyclical endogenous crises reproduced in this artificial economy.

Keywords: agent-based models, behavioral macro, macroeconomic forecasting, micro data

Procedia PDF Downloads 69
18689 Active Power Control of PEM Fuel Cell System Power Generation Using Adaptive Neuro-Fuzzy Controller

Authors: Khaled Mammar

Abstract:

This paper presents an application of adaptive neuro-fuzzy controller for PEM fuel cell system. The model proposed for control include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore, a Fuzzy Logic (FLC) and adaptive neuro-fuzzy controllers are used to control the active power of PEM fuel cell system. The controllers modify the hydrogen flow feedback from the terminal load. The validity of the controller is verified when the fuel cell system model is used in conjunction with the ANFIS controller to predict the response of the active power. Simulation results confirmed the high-performance capability of the neuo-fuzzy to control power generation.

Keywords: fuel cell, PEMFC, modeling, simulation, Fuzzy Logic Controller, FLC, adaptive neuro-fuzzy controller, ANFIS

Procedia PDF Downloads 459
18688 The Regulation of Vaccine-Related Intellectual Property Rights in Light of the Areas of Divergence between the Agreement on Trade-Related Aspects of Intellectual Property Rights and Investment Treaties in the Kingdom of Saudi Arabia and Australia

Authors: Abdulrahman Fahim M. Alsulami

Abstract:

The current research seeks to explore the regulation of vaccine-related IP rights in light of the areas of divergence between the Trade-Related Aspects of Intellectual Property Rights (TRIPS) Agreement and investment treaties. The study is conducted in the context of the COVID-19 pandemic; therefore, it seems natural that a specific chapter is devoted to the examination of vaccine arrangements related to vaccine supplies. The chapter starts with the examination of a typical vaccine from the perspective of IP rights. It presents the distinctive features of vaccines as pharmaceutical products and investments, reviews the basics of their patent protection, reviews vaccines’ components, and discusses IPR protection of different components of vaccines. The subsection that focuses on vaccine development and licensing reviews vaccine development stages investigates differences between vaccine licensing in different countries and presents barriers to vaccine licensing. The third subsection, at the same time, introduces the existing arrangements related to COVID-19 vaccine supplies, including COVAX arrangements, international organizations’ assistance, and direct negotiations between governments and vaccine manufacturers.

Keywords: bilateral investment treaties, COVID-19 vaccine, IP rights, TRIPs agreement

Procedia PDF Downloads 183
18687 Transboundary Pollution after Natural Disasters: Scenario Analyses for Uranium at Kyrgyzstan-Uzbekistan Border

Authors: Fengqing Li, Petra Schneider

Abstract:

Failure of tailings management facilities (TMF) of radioactive residues is an enormous challenge worldwide and can result in major catastrophes. Particularly in transboundary regions, such failure is most likely to lead to international conflict. This risk occurs in Kyrgyzstan and Uzbekistan, where the current major challenge is the quantification of impacts due to pollution from uranium legacy sites and especially the impact on river basins after natural hazards (i.e., landslides). By means of GoldSim, a probabilistic simulation model, the amount of tailing material that flows into the river networks of Mailuu Suu in Kyrgyzstan after pond failure was simulated for three scenarios, namely 10%, 20%, and 30% of material inputs. Based on Muskingum-Cunge flood routing procedure, the peak value of uranium flood wave along the river network was simulated. Among the 23 TMF, 19 ponds are close to the river networks. The spatiotemporal distributions of uranium along the river networks were then simulated for all the 19 ponds under three scenarios. Taking the TP7 which is 30 km far from the Kyrgyzstan-Uzbekistan border as one example, the uranium concentration decreased continuously along the longitudinal gradient of the river network, the concentration of uranium was observed at the border after 45 min of the pond failure and the highest value was detected after 69 min. The highest concentration of uranium at the border were 16.5, 33, and 47.5 mg/L under scenarios of 10%, 20%, and 30% of material inputs, respectively. In comparison to the guideline value of uranium in drinking water (i.e., 30 µg/L) provided by the World Health Organization, the observed concentrations of uranium at the border were 550‒1583 times higher. In order to mitigate the transboundary impact of a radioactive pollutant release, an integrated framework consisting of three major strategies were proposed. Among, the short-term strategy can be used in case of emergency event, the medium-term strategy allows both countries handling the TMF efficiently based on the benefit-sharing concept, and the long-term strategy intends to rehabilitate the site through the relocation of all TMF.

Keywords: Central Asia, contaminant transport modelling, radioactive residue, transboundary conflict

Procedia PDF Downloads 118
18686 Numerical Investigation of Wastewater ‎Rheological Characteristics on Flow Field ‎Inside a Sewage Network

Authors: Seyed-Mohammad-Kazem Emami, Behrang Saki, Majid Mohammadian

Abstract:

The wastewater flow field inside a sewage network including pipe and ‎manhole was investigated using a Computational Fluid Dynamics ‎‎(CFD) model. The numerical model is developed by incorporating a ‎rheological model to calculate the viscosity of wastewater fluid by ‎means of open source toolbox OpenFOAM. The rheological ‎properties of prepared wastewater fluid suspensions are first measured ‎using a BrookField LVDVII Pro+ viscometer with an enhanced UL ‎adapter and then correlated the suitable rheological viscosity model ‎values from the measured rheological properties. The results show the ‎significant effects of rheological characteristics of wastewater fluid on ‎the flow domain of sewer system. Results were compared and ‎discussed with the commonly used Newtonian model to evaluate the ‎differences for velocity profile, pressure and shear stress. ‎

Keywords: Non-Newtonian flows, Wastewater, Numerical simulation, Rheology, Sewage Network

Procedia PDF Downloads 131
18685 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction

Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso

Abstract:

The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.

Keywords: LiDAR, OBIA, remote sensing, local scale

Procedia PDF Downloads 282