Search results for: four-level output voltage
1237 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller
Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou
Abstract:
This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.Keywords: wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller
Procedia PDF Downloads 4171236 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems
Authors: Ramdan B. A. Koad, Ahmed F. Zobaa
Abstract:
Since the output characteristics of Photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum Power Point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a Maximum Power Point Tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), and Particle Swarm Optimization (PSO) algorithm for (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.Keywords: photovoltaic systems, maximum power point tracking, perturb and observe method, incremental conductance, methods and practical swarm optimization algorithm
Procedia PDF Downloads 3591235 Potential Micro Hydro at Irrigation Canal in the Gorontalo Province and Modeling Setling Basin for Reduction of Sedimentation Effect
Authors: Arifin Matoka, Nadjamuddin Harun, Salama Manjang, M. Arsyad Thaha
Abstract:
Along irrigation canals in certain areas falling water level height is have potential for micro hydro power plant (MHP), which generally MHP potential valley away from society consumer of electricity and needed a long conductor cable, so that with the MHP Irrigation is ideal are typical with an Open Flume type turbines. This study is divided into two phases research phase of the potential power that exist in irrigation channels at the Gorontalo Province and stages solution sedimentation effects. The total power generated in the irrigation channel of the results of this study at 781.83 Kw, it is quite significant for the 1737 rural households on average consumes 450 watt per household. In the field of observation, sedimentation lifting effect on the quality of electric power, at which time the turbid sediment concentrations occur significant voltage fluctuations causing damage to some household electrical appliances such as electronic equipment and lighting. This problem is solution by modeling the sedimentation tub (setling basin) to reduce sedimentation thus olso can reduce the regulation load control equipment which can minimize the cost of investment and maintenance.Keywords: irrigation canals, microhydro powerplant, sedimentation, Gorontalo Province
Procedia PDF Downloads 5811234 Immuno-field Effect Transistor Using Carbon Nanotubes Network – Based for Human Serum Albumin Highly Sensitive Detection
Authors: Muhamad Azuddin Hassan, Siti Shafura Karim, Ambri Mohamed, Iskandar Yahya
Abstract:
Human serum albumin plays a significant part in the physiological functions of the human body system (HSA).HSA level monitoring is critical for early detection of HSA-related illnesses. The goal of this study is to show that a field effect transistor (FET)-based immunosensor can assess HSA using high aspect ratio carbon nanotubes network (CNT) as a transducer. The CNT network were deposited using air brush technique, and the FET device was made using a shadow mask process. Field emission scanning electron microscopy and a current-voltage measurement system were used to examine the morphology and electrical properties of the CNT network, respectively. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to confirm the surface alteration of the CNT. The detection process is based on covalent binding interactions between an antibody and an HSA target, which resulted in a change in the manufactured biosensor's drain current (Id).In a linear range between 1 ng/ml and 10zg/ml, the biosensor has a high sensitivity of 0.826 mA (g/ml)-1 and a LOD value of 1.9zg/ml.HSA was also identified in a genuine serum despite interference from other biomolecules, demonstrating the CNT-FET immunosensor's ability to quantify HSA in a complex biological environment.Keywords: carbon nanotubes network, biosensor, human serum albumin
Procedia PDF Downloads 1371233 Quantification of Effects of Shape of Basement Topography below the Circular Basin on the Ground Motion Characteristics and Engineering Implications
Authors: Kamal, Dinesh Kumar, J. P. Narayan, Komal Rani
Abstract:
This paper presents the effects of shape of basement topography on the characteristics of the basin-generated surface (BGS) waves and associated average spectral amplification (ASA) in the 3D basins having circular surface area. Seismic responses were computed using a recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on parsimonious staggered-grid approximation of 3D viscoelastic wave equations. An increase of amplitude amplification and ASA towards the centre of different considered basins was obtained. Further, it may be concluded that ASA in basin very much depends on the impedance contrast, exposure area of basement to the incident wave front, edge-slope, focusing of the BGS-waves and sediment-damping. There is an urgent need of incorporation of a map of differential ground motion (DGM) caused by the BGS-waves as one of the output maps of the seismic microzonation.Keywords: 3D viscoelastic simulation, basin-generated surface waves, maximum displacement, average spectral amplification
Procedia PDF Downloads 2981232 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.Keywords: sound detection, impulsive signal, background noise, neural network
Procedia PDF Downloads 3221231 Rejuvenate: Face and Body Retouching Using Image Inpainting
Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny
Abstract:
In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery
Procedia PDF Downloads 771230 Design and Analysis of 1.4 MW Hybrid Saps System for Rural Electrification in Off-Grid Applications
Authors: Arpan Dwivedi, Yogesh Pahariya
Abstract:
In this paper, optimal design of hybrid standalone power supply system (SAPS) is done for off grid applications in remote areas where transmission of power is difficult. The hybrid SAPS system uses two primary energy sources, wind and solar, and in addition to these diesel generator is also connected to meet the load demand in case of failure of wind and solar system. This paper presents mathematical modeling of 1.4 MW hybrid SAPS system for rural electrification. This paper firstly focuses on mathematical modeling of PV module connected in a string, secondly focuses on modeling of permanent magnet wind turbine generator (PMWTG). The hybrid controller is also designed for selection of power from the source available as per the load demand. The power output of hybrid SAPS system is analyzed for meeting load demands at urban as well as for rural areas.Keywords: SAPS, DG, PMWTG, rural area, off-grid, PV module
Procedia PDF Downloads 2491229 Subband Coding and Glottal Closure Instant (GCI) Using SEDREAMS Algorithm
Authors: Harisudha Kuresan, Dhanalakshmi Samiappan, T. Rama Rao
Abstract:
In modern telecommunication applications, Glottal Closure Instants location finding is important and is directly evaluated from the speech waveform. Here, we study the GCI using Speech Event Detection using Residual Excitation and the Mean Based Signal (SEDREAMS) algorithm. Speech coding uses parameter estimation using audio signal processing techniques to model the speech signal combined with generic data compression algorithms to represent the resulting modeled in a compact bit stream. This paper proposes a sub-band coder SBC, which is a type of transform coding and its performance for GCI detection using SEDREAMS are evaluated. In SBCs code in the speech signal is divided into two or more frequency bands and each of these sub-band signal is coded individually. The sub-bands after being processed are recombined to form the output signal, whose bandwidth covers the whole frequency spectrum. Then the signal is decomposed into low and high-frequency components and decimation and interpolation in frequency domain are performed. The proposed structure significantly reduces error, and precise locations of Glottal Closure Instants (GCIs) are found using SEDREAMS algorithm.Keywords: SEDREAMS, GCI, SBC, GOI
Procedia PDF Downloads 3581228 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology
Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen
Abstract:
Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.Keywords: absorption chillers (AC), turbine inlet air cooling (TIC), power purchase agreement (PPA), multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution (CDDE)
Procedia PDF Downloads 3121227 Dynamic Background Updating for Lightweight Moving Object Detection
Authors: Kelemewerk Destalem, Joongjae Cho, Jaeseong Lee, Ju H. Park, Joonhyuk Yoo
Abstract:
Background subtraction and temporal difference are often used for moving object detection in video. Both approaches are computationally simple and easy to be deployed in real-time image processing. However, while the background subtraction is highly sensitive to dynamic background and illumination changes, the temporal difference approach is poor at extracting relevant pixels of the moving object and at detecting the stopped or slowly moving objects in the scene. In this paper, we propose a moving object detection scheme based on adaptive background subtraction and temporal difference exploiting dynamic background updates. The proposed technique consists of a histogram equalization, a linear combination of background and temporal difference, followed by the novel frame-based and pixel-based background updating techniques. Finally, morphological operations are applied to the output images. Experimental results show that the proposed algorithm can solve the drawbacks of both background subtraction and temporal difference methods and can provide better performance than that of each method.Keywords: background subtraction, background updating, real time, light weight algorithm, temporal difference
Procedia PDF Downloads 3421226 Wind Farm Power Performance Verification Using Non-Parametric Statistical Inference
Authors: M. Celeska, K. Najdenkoski, V. Dimchev, V. Stoilkov
Abstract:
Accurate determination of wind turbine performance is necessary for economic operation of a wind farm. At present, the procedure to carry out the power performance verification of wind turbines is based on a standard of the International Electrotechnical Commission (IEC). In this paper, nonparametric statistical inference is applied to designing a simple, inexpensive method of verifying the power performance of a wind turbine. A statistical test is explained, examined, and the adequacy is tested over real data. The methods use the information that is collected by the SCADA system (Supervisory Control and Data Acquisition) from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. The study has used data on the monthly output of wind farm in the Republic of Macedonia, and the time measuring interval was from January 1, 2016, to December 31, 2016. At the end, it is concluded whether the power performance of a wind turbine differed significantly from what would be expected. The results of the implementation of the proposed methods showed that the power performance of the specific wind farm under assessment was acceptable.Keywords: canonical correlation analysis, power curve, power performance, wind energy
Procedia PDF Downloads 3361225 Advanced Digital Manufacturing: Case Study
Authors: Abdelrahman Abdelazim
Abstract:
Most industries are looking for technologies that are easy to use, efficient and fast to accomplish. To implement these, factories tend to use advanced systems that could alter complicity to simplicity and rudimentary to advancement. Cloud Manufacturing is a new movement that aims to mirror and integrate cloud computing into manufacturing. Amongst cloud manufacturing various advantages are decreasing the human involvements and increasing the dependency on automated machines, which in turns decreases human errors and increases efficiency. A reliable and extraordinary performance processes with minimum errors are highly desired factors of today’s manufacturers. At the glance it seems to be the best alternative, however, the implementation of a cloud system can be very challenging. This work investigates cloud manufacturing in details, it outlines its advantages and disadvantages by converting a local factory in Kuwait to a cloud-ready system. Initially the flow of the factory’s manufacturing process has been analyzed identifying the bottlenecks and illustrating how cloud manufacturing can eliminate them. Following this an automation process has been analyzed and implemented. A comparison between the process before and after the adaptation has been carried out showing the effects on the cost, the output and the efficiency of the process.Keywords: cloud manufacturing, automation, Kuwait industrial sector, advanced digital manufacturing
Procedia PDF Downloads 7711224 Treatment and Characterization of Cadmium Metal From Textile Factory Wastewater by Electrochemical Process Using Aluminum Plate Electrode
Authors: Dessie Tibebe, Yeshifana Ayenew, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare, Hailu Sheferaw Ayele
Abstract:
Electrochemical treatment technology is a technique used for wastewater treatment due to its ability to eliminate impurities that are not easily removed by chemical processes. The objective of the study is the treatment and characterization of textile wastewater by an electrochemical process. The results obtained at various operational parameters indicated that at 20 minutes of electrochemical process at ( pH =7), initial concentration 10 mg/L, current density 37.5 mA/cm², voltage 9 v and temperature 25⁰C the highest removal efficiency was achieved. The kinetics of removal of selected metal by electrochemical treatment has been successfully described by the first-order rate equation. The results of microscopic techniques using SEM for the scarified electrode before treatment were uniform and smooth, but after the electrochemical process, the morphology was completely changed. This is due to the detection of the adsorbed aluminum hydroxide coming from adsorption of the conducting electrolyte, chemicals used in the experiments, alloying and the scrap impurities of the anode and cathode. The FTIR spectroscopic analysis broad bands at 3450 cm-¹ representing O-H functional groups, while the presence of H-O-H and Al-H groups are indicated by the bands at 2850-2750 cm-¹ and 1099 representing C-H functional groups.Keywords: electrochemical, treatment, textile wastewater, kinetics, removal efficiency
Procedia PDF Downloads 981223 Modeling and Simulation of Organic Solar Cells Based on P3HT:PCBM using SCAPS 1-D (Influence of Defects and Temperature on the Performance of the Solar Cell)
Authors: Souhila Boukli Hacene, Djamila Kherbouche, Abdelhak Chikhaoui
Abstract:
In this work, we elucidate theoretically the effect of defects and temperature on the performance of the organic bulk heterojunction solar cell (BHJ) P3HT: PCBM. We have studied the influence of their parameters on cell characteristics. For this purpose, we used the effective medium model and the solar cell simulator (SCAPS) to model the characteristics of the solar cell. We also explore the transport of charge carriers in the device. It was assumed that the mixture is lightly p-type doped and that the band gap contains acceptor defects near the HOMO level with a Gaussian distribution of energy states at 100 and 50 meV. We varied defects density between 1012-1017 cm-3, from 1016 cm-3, a total decrease of the photovoltaic characteristics due to the increase of the non-radiative recombination can be noticed. Then we studied the effect of variation of the electron and the hole capture cross-section on the cell’s performance, we noticed that the cell obtains a better efficiency of about 3.6% for an electron capture cross section ≤ 10-15 cm2 and a hole capture cross section ≤ 10-19 cm2. On the other hand, we also varied the temperature between 120K and 400K. We observed that the temperature of the solar cell induces a noticeable effect on its voltage. While the effect of temperature on the solar cell current is negligible.Keywords: organic solar cell, P3HT:PCBM, defects, temperature, SCAPS
Procedia PDF Downloads 921222 Modelling and Simulation of Single Mode Optical Fiber Directional Coupler for Medical Application
Authors: Shilpa Kulkarni, Sujata Patrikar
Abstract:
A single-mode fiber directional coupler is modeled and simulated for its application in medical field. Various fiber devices based on evanescent field absorption, interferometry, couplers, resonators, tip coated fibers, etc, have been developed so far, suitable for medical application. This work focuses on the possibility of sensing by single mode fiber directional coupler. In the preset work, a fiber directional coupler is modeled to detect the changes taking place in the surrounding medium optoelectronically. In this work, waveguiding characteristics of the fiber are studied in depth. The sensor is modeled and simulated by finding photocurrent, sensitivity and detection limit by varying various parameters of the directional coupler. The device is optimized for the best possible output. It is found that the directional coupler shows measurable photocurrents and good sensitivity with coupling length in micrometers. It is thus a miniature device, hence, suitable for medical applications.Keywords: single mode fiber directional coupler, modeling and simulation of fiber directional coupler sensor, biomolecular sensing, medical sensor device
Procedia PDF Downloads 2751221 Silicon Carbide (SiC) Crystallization Obtained as a Side Effect of SF6 Etching Process
Authors: N. K. A. M. Galvão, A. Godoy Jr., A. L. J. Pereira, G. V. Martins, R. S. Pessoa, H. S. Maciel, M. A. Fraga
Abstract:
Silicon carbide (SiC) is a wide band-gap semiconductor material with very attractive properties, such as high breakdown voltage, chemical inertness, and high thermal and electrical stability, which makes it a promising candidate for several applications, including microelectromechanical systems (MEMS) and electronic devices. In MEMS manufacturing, the etching process is an important step. It has been proved that wet etching of SiC is not feasible due to its high bond strength and high chemical inertness. In view of this difficulty, the plasma etching technique has been applied with paramount success. However, in most of these studies, only the determination of the etching rate and/or morphological characterization of SiC, as well as the analysis of the reactive ions present in the plasma, are lowly explored. There is a lack of results in the literature on the chemical and structural properties of SiC after the etching process [4]. In this work, we investigated the etching process of sputtered amorphous SiC thin films on Si substrates in a reactive ion etching (RIE) system using sulfur hexafluoride (SF6) gas under different RF power. The results of the chemical and structural analyses of the etched films revealed that, for all conditions, a SiC crystallization occurred, in addition to fluoride contamination. In conclusion, we observed that SiC crystallization is a side effect promoted by structural, morphological and chemical changes caused by RIE SF6 etching process.Keywords: plasma etching, plasma deposition, Silicon Carbide, microelectromechanical systems
Procedia PDF Downloads 761220 Low Power CMOS Amplifier Design for Wearable Electrocardiogram Sensor
Authors: Ow Tze Weng, Suhaila Isaak, Yusmeeraz Yusof
Abstract:
The trend of health care screening devices in the world is increasingly towards the favor of portability and wearability, especially in the most common electrocardiogram (ECG) monitoring system. This is because these wearable screening devices are not restricting the patient’s freedom and daily activities. While the demand of low power and low cost biomedical system on chip (SoC) is increasing in exponential way, the front end ECG sensors are still suffering from flicker noise for low frequency cardiac signal acquisition, 50 Hz power line electromagnetic interference, and the large unstable input offsets due to the electrode-skin interface is not attached properly. In this paper, a high performance CMOS amplifier for ECG sensors that suitable for low power wearable cardiac screening is proposed. The amplifier adopts the highly stable folded cascode topology and later being implemented into RC feedback circuit for low frequency DC offset cancellation. By using 0.13 µm CMOS technology from Silterra, the simulation results show that this front end circuit can achieve a very low input referred noise of 1 pV/√Hz and high common mode rejection ratio (CMRR) of 174.05 dB. It also gives voltage gain of 75.45 dB with good power supply rejection ratio (PSSR) of 92.12 dB. The total power consumption is only 3 µW and thus suitable to be implemented with further signal processing and classification back end for low power biomedical SoC.Keywords: CMOS, ECG, amplifier, low power
Procedia PDF Downloads 2481219 Comparison between Radiocarbon and Dendrochronology Ages Obtained on a 700 Years Tree-Ring Sequence from Northern Romania
Authors: G. Sava, I. Popa, T. Sava, A. Ion, M. Ilie, C. Manailescu, A. Robu
Abstract:
At the RoAMS laboratory in Bucharest we have looked for a head-to-head meeting between AMS radiocarbon dating and dendrochronology dating, aiming to point out and explain any differences or similarities that might appear between their output results. As a subject of this investigation, we have fixed our attention on a sequence of tree rings spanning on a period of 700 years, starting with 1000 AD. The samples were collected from the northern Romanian territory within Moldavia region, and were provided by the ‘Marin Dracea - National Institute for Research and Development in Forestry’. All the 23 single ring wood samples were radiocarbon dated using alpha-cellulose extraction, followed by graphitization in an AGE3 installation. A wiggle matching procedure was applied to reduce the radiocarbon uncertainties for the calibrated ages. The results showed a good agreement on 3 out of 4 wood cores, the age-shifting of one of the wood cores being interpreted as an uncertain dendrochronology matching, which was further corrected.Keywords: wiggle matching, tree-ring radiocarbon dating, dendrochronology, AMS radiocarbon dating, radiocarbon dating in Romania
Procedia PDF Downloads 1831218 Exploring the Factors Affecting the Intention of Using Mobile Phone E-Book by TAM and IDT
Authors: Yen-Ku Kuo, Chie-Bein Chen, Jyh-Yi Shih, Kuang-Yi Lin, Chien-Han Peng
Abstract:
This study is primarily concerned with exploring what factors affect the consumer’s intention of using mobile phone e-book. In developing research structure, we adopted technology acceptance model (TAM) and Innovation Diffusion Theory (IDT) as a foundation. The analysis method of structural equation model (SEM) was used to carry out this study. Subjects were 261 users who are using or used the mobile phone e-book. The findings can be summed up as follows: (1) The subjective norm and job relevance has non-significant and positive influence to the perceived usefulness. This represents now the user are still in a small number and most of them used it in non-work related purpose. (2) The output quality, result demonstrability and perceived ease of use were confirmed to have positive and significant influence to the perceived usefulness. (3) The moderator “innovative diffusion” affects the relationship between the attitude and behavior intention. These findings could be a reference for the practice and future study to make further exploration.Keywords: mobile phone e-book, technology acceptance model (TAM), innovation diffusion theory (IDT), structural equation model (SEM)
Procedia PDF Downloads 5121217 Development of Imprinting and Replica Molding of Soft Mold Curved Surface
Authors: Yung-Jin Weng, Chia-Chi Chang, Chun-Yu Tsai
Abstract:
This paper is focused on the research of imprinting and replica molding of quasi-grey scale soft mold curved surface microstructure mold. In this paper, a magnetic photocuring forming system is first developed and built independently, then the magnetic curved surface microstructure soft mode is created; moreover, the magnetic performance of the magnetic curved surface at different heights is tested and recorded, and through experimentation and simulation, the magnetic curved surface microstructure soft mold is used in the research of quasi-grey scale soft mold curved surface microstructure imprinting and replica molding. The experimental results show that, under different surface curvatures and voltage control conditions, different quasi-grey scale array microstructures take shape. In addition, this paper conducts research on the imprinting and replica molding of photoresist composite magnetic powder in order to discuss the forming performance of magnetic photoresist, and finally, the experimental result is compared with the simulation to obtain more accurate prediction and results. This research is predicted to provide microstructure component preparation technology with heterogeneity and controllability, and is a kind of valid shaping quasi-grey scale microstructure manufacturing technology method.Keywords: soft mold, magnetic, microstructure, curved surface
Procedia PDF Downloads 3261216 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures
Authors: José Luis Carrillo-Medina, Roberto Latorre
Abstract:
Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network
Procedia PDF Downloads 4931215 Signal Processing of Barkhausen Noise Signal for Assessment of Increasing Down Feed in Surface Ground Components with Poor Micro-Magnetic Response
Authors: Tanmaya Kumar Dash, Tarun Karamshetty, Soumitra Paul
Abstract:
The Barkhausen Noise Analysis (BNA) technique has been utilized to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal with Fast Fourier transforms while Wavelet transforms has been used to remove noise from the BN signal, with judicious choice of the ‘threshold’ value, when the micro-magnetic response of the work material is poor. In the present study, the effect of down feed induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with an ultrasonically cleaned, wet polished and a sample ground with spark out technique for benchmarking. Moreover, the FFT analysis has been established, at different sets of applied voltages and applied frequency and the pattern of the BN signal in the frequency domain is analyzed. The study also depicts the wavelet transforms technique with different levels of decomposition and different mother wavelets, which has been used to reduce the noise value in BN signal of materials with poor micro-magnetic response, in order to standardize the procedure for all BN signals depending on the frequency of the applied voltage.Keywords: barkhausen noise analysis, grinding, magnetic properties, signal processing, micro-magnetic response
Procedia PDF Downloads 6681214 Component Based Testing Using Clustering and Support Vector Machine
Authors: Iqbaldeep Kaur, Amarjeet Kaur
Abstract:
Software Reusability is important part of software development. So component based software development in case of software testing has gained a lot of practical importance in the field of software engineering from academic researcher and also from software development industry perspective. Finding test cases for efficient reuse of test cases is one of the important problems aimed by researcher. Clustering reduce the search space, reuse test cases by grouping similar entities according to requirements ensuring reduced time complexity as it reduce the search time for retrieval the test cases. In this research paper we proposed approach for re-usability of test cases by unsupervised approach. In unsupervised learning we proposed k-mean and Support Vector Machine. We have designed the algorithm for requirement and test case document clustering according to its tf-idf vector space and the output is set of highly cohesive pattern groups.Keywords: software testing, reusability, clustering, k-mean, SVM
Procedia PDF Downloads 4311213 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network
Authors: Sharad Shrivastava, Arun Jalan
Abstract:
In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network
Procedia PDF Downloads 4371212 Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization
Authors: Hassan Naseh, Javad Roozgard
Abstract:
This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods.Keywords: ANFIS methodology, artificial intelligent, liquid propellant engine, optimization
Procedia PDF Downloads 5901211 Wheat Cluster Farming Approach: Challenges and Prospects for Smallholder Farmers in Ethiopia
Authors: Hanna Mamo Ergando
Abstract:
Climate change is already having a severe influence on agriculture, affecting crop yields, the nutritional content of main grains, and livestock productivity. Significant adaptation investments will be necessary to sustain existing yields and enhance production and food quality to fulfill demand. Climate-smart agriculture (CSA) provides numerous potentials in this regard, combining a focus on enhancing agricultural output and incomes while also strengthening resilience and responding to climate change. To improve agriculture production and productivity, the Ethiopian government has adopted and implemented a series of strategies, including the recent agricultural cluster farming that is practiced as an effort to change, improve, and transform subsistence farming to modern, productive, market-oriented, and climate-smart approach through farmers production cluster. Besides, greater attention and focus have been given to wheat production and productivity by the government, and wheat is the major crop grown in cluster farming. Therefore, the objective of this assessment was to examine various opportunities and challenges farmers face in a cluster farming system. A qualitative research approach was used to generate primary and secondary data. Respondents were chosen using the purposeful sampling technique. Accordingly, experts from the Federal Ministry of Agriculture, the Ethiopian Agricultural Transformation Institute, the Ethiopian Agricultural Research Institute, and the Ethiopian Environment Protection Authority were interviewed. The assessment result revealed that farming in clusters is an economically viable technique for sustaining small, resource-limited, and socially disadvantaged farmers' agricultural businesses. The method assists farmers in consolidating their products and delivering them in bulk to save on transportation costs while increasing income. Smallholders' negotiating power has improved as a result of cluster membership, as has knowledge and information spillover. The key challenges, on the other hand, were identified as a lack of timely provision of modern inputs, insufficient access to credit services, conflict of interest in crop selection, and a lack of output market for agro-processing firms. Furthermore, farmers in the cluster farming approach grow wheat year after year without crop rotation or diversification techniques. Mono-cropping has disadvantages because it raises the likelihood of disease and insect outbreaks. This practice may result in long-term consequences, including soil degradation, reduced biodiversity, and economic risk for farmers. Therefore, the government must devote more resources to addressing the issue of environmental sustainability. Farmers' access to complementary services that promote production and marketing efficiencies through infrastructure and institutional services has to be improved. In general, the assessment begins with some hint that leads to a deeper study into the efficiency of the strategy implementation, upholding existing policy, and scaling up good practices in a sustainable and environmentally viable manner.Keywords: cluster farming, smallholder farmers, wheat, challenges, opportunities
Procedia PDF Downloads 2271210 Evaluation of the Effectiveness of the Argon Plasma Jet on Healing Process of the Wagner Grade 2 Diabetic Foot Ulcer
Authors: M. Khaledi Pour, P. Akbartehrani, M. Amini, M. Khani, M. Mohajeri Tehrani, R. Radi, B. Shokri
Abstract:
Diabetic Foot Ulcer (DFU) is one of the costly severe complications of diabetes. Neuropathy and Peripheral Arterial Disease (PAD) due to diabetes are significant causes of this complication. In 10 years the patients with DFUs are twice as likely to die as patients without DFUs. Cold Atmospheric Plasma (CAP) is a promising tool for medical purposes. CAP generate reactive species at room temperature and are effective in killing bacteria and fibroblast proliferation. These CAP-based tools produce NO, which has bactericidal and angiogenesis properties. It also showed promising effects in the DFUs surface reduction and the time to wound closure. In this paper, we evaluated the effect of the Argon Plasma Jet (APJ) on the healing process of the Wagner Grade 2 DFUs in a randomized clinical trial. The 20 kHz sinusoidal voltage frequency derives the APJ. Patients (n=20) were randomly double-blinded assigned into two groups. These groups receive the standard care (SC, n=10) and the standard care with APJ treatment (SC+APJ, n=10) for five sessions in four weeks. The results showed that the APJ treatment along standard care could reduce the wound surface by 20 percent more than the standard care. Also, It showed a more influential role in controlling wound infection.Keywords: argon plasma jet, cold atmospheric plasma, diabetes, diabetic foot ulcer
Procedia PDF Downloads 2021209 AGEs-Aggravating Renal Lesions in C57BL/6J Mice, STZ-Induced Diabetes Nephropathy Model
Authors: Xing Lv, Hui-Qin Xu
Abstract:
The present study aimed to reveal the mechanism in aggravating STZ induced diabetic nephropathy (DN) by AGEs (advanced glycation end products). At the eighth day, 20 diabetic mice were randomly divided into STZ group and combination (combine AGEs with STZ) group. Simultaneously, AGEs group and normal group were set. Only mice in AGEs group, combination group were fed with high-AGEs diets. Mice diabetic conventional indicators, biochemical analysis were measured. Among the indictors, food consumptions, water intake, urine output, blood glucose, urine protein, urine creatinine, serum urea nitrogen were increased significantly in STZ, combination groups. The AGEs levels in combination group increased significantly when compared with STZ group. Weights and insulin levels in the STZ, combination groups were decreased significantly when compared with normal group, and the difference was significantly between AGEs group and STZ group. As a conclusion, AGEs play an important role in the DN development, inducing kidney damages.Keywords: AGEs, diabetic nephropathy, serum urea nitrogen, urine protein
Procedia PDF Downloads 4441208 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 341