Search results for: educational models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9617

Search results for: educational models

7787 Financial Inclusion and Modernization: Secure Energy Performance in Shanghai Cooperation Organization

Authors: Shama Urooj

Abstract:

The present work investigates the relationship among financial inclusion, modernization, and energy performance in SCO member countries during the years 2011–2021. PCA is used to create composite indexes of financial inclusion, modernization, and energy performance. We used panel regression models that are both reliable and heteroscedasticity-consistent to look at the relationship among variables. The findings indicate that financial inclusion (FI) and modernization, along with the increased FDI, all appear to contribute to the energy performance in the SCO member countries. However, per capita GDP has a negative impact on energy performance. These results are unbiased and consistent with the robust results obtained by applying different econometric models. Feasible Generalized Least Square (FGLS) estimation is also used for checking the uniformity of the main model results. This research work concludes that there has been no policy coherence in SCO member countries regarding the coordination of growing financial inclusion and modernization for energy sustainability in recent years. In order to improve energy performance with modern development, policies regarding financial inclusion and modernization need be integrated both at national as well as international levels.

Keywords: financial inclusion, energy performance, modernization, technological development, SCO.

Procedia PDF Downloads 75
7786 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies

Authors: Yuanjin Liu

Abstract:

Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.

Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model

Procedia PDF Downloads 74
7785 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot

Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan

Abstract:

Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.

Keywords: ADAS, home zone parking pilot, object detection, visual SLAM

Procedia PDF Downloads 67
7784 Interlingual Interference in Students’ Writing

Authors: Zakaria Khatraoui

Abstract:

Interlanguage has transcendentally capitalized its central role over a considerable metropolitan landscape. Either academically driven or pedagogically oriented, Interlanguage has principally floated as important than ever before. It academically probes theoretical and linguistic issues in the turf and further malleably flows from idea to reality to vindicate a bridging philosophy between theory and educational rehearsal. Characteristically, the present research grants a prolifically developed theoretical framework that is conversely sustained by empirical teaching practices, along with teasing apart the narrowly confined implementation. The focus of this interlingual study is placed stridently on syntactic errors projected in students’ writing as performance. To attain this endeavor, the paper appropriates qualitatively a plethora of focal methodological choices sponsored by a solid design. The steadily undeniable ipso facto to be examined is the creative sense of syntactic errors unequivocally endorsed by the tangible dominance of cognitively intralingual errors over linguistically interlingual ones. Subsequently, this paper attempts earnestly to highlight transferable implications worth indicating both theoretical and pedagogically professional principles. In particular, results are fundamentally relative to the scholarly community in a multidimensional sense to recommend actions of educational value.

Keywords: interlanguage, interference, error, writing

Procedia PDF Downloads 74
7783 A Pilot Study on Integration of Simulation in the Nursing Educational Program: Hybrid Simulation

Authors: Vesile Unver, Tulay Basak, Hatice Ayhan, Ilknur Cinar, Emine Iyigun, Nuran Tosun

Abstract:

The aim of this study is to analyze the effects of the hybrid simulation. In this simulation, types standardized patients and task trainers are employed simultaneously. For instance, in order to teach the IV activities standardized patients and IV arm models are used. The study was designed as a quasi-experimental research. Before the implementation an ethical permission was taken from the local ethical commission and administrative permission was granted from the nursing school. The universe of the study included second-grade nursing students (n=77). The participants were selected through simple random sample technique and total of 39 nursing students were included. The views of the participants were collected through a feedback form with 12 items. The form was developed by the authors and “Patient intervention self-confidence/competence scale”. Participants reported advantages of the hybrid simulation practice. Such advantages include the following: developing connections between the simulated scenario and real life situations in clinical conditions; recognition of the need for learning more about clinical practice. They all stated that the implementation was very useful for them. They also added three major gains; improvement of critical thinking skills (94.7%) and the skill of making decisions (97.3%); and feeling as if a nurse (92.1%). In regard to the mean scores of the participants in the patient intervention self-confidence/competence scale, it was found that the total mean score for the scale was 75.23±7.76. The findings obtained in the study suggest that the hybrid simulation has positive effects on the integration of theoretical and practical activities before clinical activities for the nursing students.

Keywords: hybrid simulation, clinical practice, nursing education, nursing students

Procedia PDF Downloads 293
7782 Mathematical Modeling of Bi-Substrate Enzymatic Reactions in the Presence of Different Types of Inhibitors

Authors: Rafayel Azizyan, Valeri Arakelyan, Aram Gevorgyan, Varduhi Balayan, Emil Gevorgyan

Abstract:

Currently, mathematical and computer modeling are widely used in different biological studies to predict or assess behavior of such complex systems as biological ones. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions, which play an important role in different biochemical pathways. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions in the presence of uncompetitive inhibitors, as well as to describe in details the inhibition effects. Four models of uncompetitive inhibition were designed using different software packages. Particularly, uncompetitive inhibitor to the first [ES1] and the second ([ES1S2]; [FS2]) enzyme-substrate complexes have been studied. The simulation, using the same kinetic parameters for all models allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of uncompetitive inhibition. Besides that shown, that uncompetitive inhibitors exhibit specific selectivity depending on mechanism of bi-substrate enzymatic reaction.

Keywords: mathematical modeling, bi-substrate enzymatic reactions, reversible inhibition

Procedia PDF Downloads 347
7781 Thin-Layer Drying Characteristics and Modelling of Instant Coffee Solution

Authors: Apolinar Picado, Ronald Solís, Rafael Gamero

Abstract:

The thin-layer drying characteristics of instant coffee solution were investigated in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (80, 100 and 120 °C) and an air velocity of 1.2 m/s. Drying experimental data obtained are fitted to six (6) thin-layer drying models using the non-linear least squares regression analysis. The acceptability of the thin-layer drying model has been based on a value of the correlation coefficient that should be close to one, and low values for root mean square error (RMSE) and chi-square (x²). According to this evaluation, the most suitable model for describing drying process of thin-layer instant coffee solution is the Page model. Further, the effective moisture diffusivity and the activation energy were computed employing the drying experimental data. The effective moisture diffusivity values varied from 1.6133 × 10⁻⁹ to 1.6224 × 10⁻⁹ m²/s over the temperature range studied and the activation energy was estimated to be 162.62 J/mol.

Keywords: activation energy, diffusivity, instant coffee, thin-layer models

Procedia PDF Downloads 262
7780 Comparing Business Excellence Models Using Quantitative Methods: A First Step

Authors: Mohammed Alanazi, Dimitrios Tsagdis

Abstract:

Established Business Excellence Models (BEMs), like the Malcolm Baldrige National Quality Award (MBNQA) model and the European Foundation for Quality Management (EFQM) model, have been adopted by firms all over the world. They exist alongside more recent country-specific BEMs; e.g. the Australian, Canadian, China, New Zealand, Singapore, and Taiwan quality awards that although not as widespread as MBNQA and EFQM have nonetheless strong national followings. Regardless of any differences in their following or prestige, the emergence and development of all BEMs have been shaped both by their local context (e.g. underlying socio-economic dynamics) as well as by global best practices. Besides such similarities, that render them into objects (i.e. models) of the same class (i.e. BEMs), BEMs exhibit non-trivial differences in their criteria, relations, and emphasis. Given the evolution of BEMs (e.g. the MBNQA underwent seven evolutions since its inception in 1987 while the EFQM five since 1993), it is unsurprising that comparative studies of their validity are few and far in between. This poses challenges for practitioners and policy makers alike; as it is not always clear which BEM is to be preferred or better fitting to a particular context. Especially, in contexts that differ substantially from the original context of BEM development. This paper aims to fill this gap by presenting a research design and measurement model for comparing BEMs using quantitative methods (e.g. structural equations). Three BEMs will be focused upon in particular for illustration purposes; the MBNQA, the EFQM, and the King Abdul Aziz Quality Award (KAQA) model. They have been selected so to reflect the two established and widely spread traditions as well as a more recent context-specific arrival promising a better fit.

Keywords: Baldrige, business excellence, European Foundation for Quality Management, Structural Equation Model, total quality management

Procedia PDF Downloads 238
7779 Why and When to Teach Definitions: Necessary and Unnecessary Discontinuities Resulting from the Definition of Mathematical Concepts

Authors: Josephine Shamash, Stuart Smith

Abstract:

We examine reasons for introducing definitions in teaching mathematics in a number of different cases. We try to determine if, where, and when to provide a definition, and which definition to choose. We characterize different types of definitions and the different purposes we may have for formulating them, and detail examples of each type. Giving a definition at a certain stage can sometimes be detrimental to the development of the concept image. In such a case, it is advisable to delay the precise definition to a later stage. We describe two models, the 'successive approximation model', and the 'model of the extending definition' that fit such situations. Detailed examples that fit the different models are given based on material taken from a number of textbooks, and analysis of the way the concept is introduced, and where and how its definition is given. Our conclusions, based on this analysis, is that some of the definitions given may cause discontinuities in the learning sequence and constitute obstacles and unnecessary cognitive conflicts in the formation of the concept definition. However, in other cases, the discontinuity in passing from definition to definition actually serves a didactic purpose, is unavoidable for the mathematical evolution of the concept image, and is essential for students to deepen their understanding.

Keywords: concept image, mathematical definitions, mathematics education, mathematics teaching

Procedia PDF Downloads 129
7778 Teaching English as a Second Language to Primary Students with Autism Spectrum Disorder

Authors: Puteri Zarina M. K., Haddi J. K., Zolkepli N., Shu M. H. B., Hosshan H., Saad M. A.

Abstract:

This paper provides an overview of the current state of ESL instruction for children with autism in Malaysia. Equal rights, independence, and active participation are guaranteed by the 2006 Convention on the Rights of Persons with Disabilities. Every child is entitled to receive education in an inclusive atmosphere that embraces diversity and ensures equal opportunity for all. The primary objective of the research was to investigate if English as a Second Language (ESL) teachers employ distinct instructional methods and strategies while teaching children diagnosed with autism. Moreover, the objective was to assess the similarities in the challenges faced by teachers when teaching ESL to children with autism in Malaysia. The study aimed to increase understanding of the challenges faced by ESL teachers in teaching autistic students. The study was structured as a qualitative research endeavour. A total of twelve (12) ESL teachers from selected primary schools in Malaysia were involved in this study. The research findings accurately depict the actual state of teaching ESL to autistic children. They confirm the imperative need for additional support in order to facilitate the successful integration of these children into the educational system.

Keywords: autism spectrum disorder, ESL, inclusion, Malaysia, special educational needs

Procedia PDF Downloads 64
7777 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: calibration model, monitoring, quality improvement, feature selection

Procedia PDF Downloads 356
7776 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity

Authors: Smail Tigani, Mohamed Ouzzif

Abstract:

This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.

Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation

Procedia PDF Downloads 498
7775 Urban Agriculture in a Scandinavian Context as a Tool for Climate Adaption and for Empowering Communities through Food Production

Authors: Signe Voltelen, Kristin Astrup Aas

Abstract:

In the Scandinavian cities, there is a raised focus on the potential of using urban agriculture in city development, both as a tool for handling challenges provoked by climate change and to develop new, and stronger social communities. During the last couple of years, Copenhagen has experienced an increase in extreme weather resulting in dramatical floods with huge humanitarian and economic consequences. As an approach for climate adaption and mitigation the government has made a strategy for changing a significant amount of the cities hard surfaces into green and absorbing surfaces. Including urban farms and gardens. In close collaboration with the municipality, it has been possible to implement citizen-run gardens under the different concepts climate adaption and food literacy. Like other European cities, Copenhagen has a historical tradition of small-scale farming for food security inside the city, and in the outskirts of the urban area. Lately, this tradition has gotten new relevance, and new initiatives are popping up. In addition to providing local food, the urban farm becomes a semi-public, semi-private room that invites to community and integration across ethnicity, social background, and age. The direct interaction in the process of farming creates a connection between the urban and the rural and are educational for people growing up and living their whole life in the dense city. In the paper, three local example models of urban agriculture are presented, and the experiences of their potential as tools for developing social and environmental sustainable cities is examined.

Keywords: city development, climate mitigation, community building, urban agriculture, urban- rural transition, food security

Procedia PDF Downloads 285
7774 Monitor Student Concentration Levels on Online Education Sessions

Authors: M. K. Wijayarathna, S. M. Buddika Harshanath

Abstract:

Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.

Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user

Procedia PDF Downloads 99
7773 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis

Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar

Abstract:

Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated.

Keywords: cement composite, mechanical properties, molecular dynamics, plasticizer additives

Procedia PDF Downloads 454
7772 Kou Jump Diffusion Model: An Application to the SP 500; Nasdaq 100 and Russell 2000 Index Options

Authors: Wajih Abbassi, Zouhaier Ben Khelifa

Abstract:

The present research points towards the empirical validation of three options valuation models, the ad-hoc Black-Scholes model as proposed by Berkowitz (2001), the constant elasticity of variance model of Cox and Ross (1976) and the Kou jump-diffusion model (2002). Our empirical analysis has been conducted on a sample of 26,974 options written on three indexes, the S&P 500, Nasdaq 100 and the Russell 2000 that were negotiated during the year 2007 just before the sub-prime crisis. We start by presenting the theoretical foundations of the models of interest. Then we use the technique of trust-region-reflective algorithm to estimate the structural parameters of these models from cross-section of option prices. The empirical analysis shows the superiority of the Kou jump-diffusion model. This superiority arises from the ability of this model to portray the behavior of market participants and to be closest to the true distribution that characterizes the evolution of these indices. Indeed the double-exponential distribution covers three interesting properties that are: the leptokurtic feature, the memory less property and the psychological aspect of market participants. Numerous empirical studies have shown that markets tend to have both overreaction and under reaction over good and bad news respectively. Despite of these advantages there are not many empirical studies based on this model partly because probability distribution and option valuation formula are rather complicated. This paper is the first to have used the technique of nonlinear curve-fitting through the trust-region-reflective algorithm and cross-section options to estimate the structural parameters of the Kou jump-diffusion model.

Keywords: jump-diffusion process, Kou model, Leptokurtic feature, trust-region-reflective algorithm, US index options

Procedia PDF Downloads 429
7771 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of artificial intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, interlaboratory comparison, data analysis, data reliability, measurement of bias impact on predictions, improvement of model accuracy and reliability

Procedia PDF Downloads 105
7770 Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China

Authors: Ayman Mutahar Alrassas, Shaoran Ren, Renyuan Ren, Hung Vo Thanh, Mohammed Hail Hakimi, Zhenliang Guan

Abstract:

The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368

Keywords: CO₂ storage capacity, 3D geological model, geological uncertainty, unconventional oil reservoir, block Nv32

Procedia PDF Downloads 179
7769 The Influence of Transformational Leadership on Knowledge Sharing in Iraq’s Public and Private Higher Education: A Comparison Study

Authors: Sawsan J. Al-Husseini

Abstract:

Transformational leadership (TL) has been found to have an important influence on knowledge and knowledge management (KM). It can contribute to organizational learning, employees’ creativity, encourage followers to participate in educational programs and develop the skills needed to achieve exceptional performance. This research sought to examine the impact of TL on knowledge donating and collecting and the differences between these impacts in public and private higher education institutes (HEIs) in Iraq. A mixed method approach was taken and 580 valid responses were collected to test the causal relationships between the factors, then 12 interviews were conducted with the leaders of HEIs to give more insight of the findings from quantitative stage. Employing structural equation modelling with AMOS v.24, the research found that TL would be ideal in an educational context, promoting knowledge sharing activities in both sectors. The interviews revealed differences between public and private HEIs in terms of the effects relationships. Guidelines are developed for academics as well as leaders and provided evidence to support the use of TL to encourage knowledge sharing activities within higher education in developing countries particularly Iraq.

Keywords: transformational leadership, knowledge sharing, higher education, multi-group

Procedia PDF Downloads 155
7768 An Assessment of Self-Perceived Health after the Death of a Spouse among the Elderly

Authors: Shu-Hsi Ho

Abstract:

The problems of aging and number of widowed peers gradually rise in Taiwan. It is worth to concern the related issues for elderly after the death of a spouse. Hence, this study is to examine the impact of spousal death on the surviving spouse’s self-perceived health and mental health for the elderly in Taiwan. A cross section data design and ordered logistic regression models are applied to investigate whether marriage is associated significantly to self-perceived health and mental health for the widowed older Taiwanese. The results indicate that widowed marriage shows significant negative effects on self-perceived health and mental health regardless of widows or widowers. Among them, widows might be more likely to show worse mental health than widowers. The belief confirms that marriage provides effective sources to promote self-perceived health and mental health, particularly for females. In addition, since the social welfare system is not perfect in Taiwan, the findings also suggest that family and social support reveal strongly association with the self-perceived health and mental health for the widows and widowers elderly.

Keywords: logistic regression models, self-perceived health, widow, widower

Procedia PDF Downloads 463
7767 Artificial Intelligence as a Policy Response to Teaching and Learning Issues in Education in Ghana

Authors: Joshua Osondu

Abstract:

This research explores how Artificial Intelligence (AI) can be utilized as a policy response to address teaching and learning (TL) issues in education in Ghana. The dual (AI and human) instructor model is used as a theoretical framework to examine how AI can be employed to improve teaching and learning processes and to equip learners with the necessary skills in the emerging AI society. A qualitative research design was employed to assess the impact of AI on various TL issues, such as teacher workloads, a lack of qualified educators, low academic performance, unequal access to education and educational resources, a lack of participation in learning, and poor access and participation based on gender, place of origin, and disability. The study concludes that AI can be an effective policy response to TL issues in Ghana, as it has the potential to increase students’ participation in learning, increase access to quality education, reduce teacher workloads, and provide more personalized instruction. The findings of this study are significant for filling in the gaps in AI research in Ghana and other developing countries and for motivating the government and educational institutions to implement AI in TL, as this would ensure quality, access, and participation in education and help Ghana industrialize.

Keywords: artificial intelligence, teacher, learner, students, policy response

Procedia PDF Downloads 92
7766 The Impact of Neuroscience Knowledge on the Field of Education

Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena

Abstract:

Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.

Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors

Procedia PDF Downloads 62
7765 Large Language Model Powered Chatbots Need End-to-End Benchmarks

Authors: Debarag Banerjee, Pooja Singh, Arjun Avadhanam, Saksham Srivastava

Abstract:

Autonomous conversational agents, i.e., chatbots, are becoming an increasingly common mechanism for enterprises to provide support to customers and partners. In order to rate chatbots, especially ones powered by Generative AI tools like Large Language Models (LLMs), we need to be able to accurately assess their performance. This is where chatbot benchmarking becomes important. In this paper, authors propose the use of a benchmark that they call the E2E (End to End) benchmark and show how the E2E benchmark can be used to evaluate the accuracy and usefulness of the answers provided by chatbots, especially ones powered by LLMs. The authors evaluate an example chatbot at different levels of sophistication based on both our E2E benchmark as well as other available metrics commonly used in the state of the art and observe that the proposed benchmark shows better results compared to others. In addition, while some metrics proved to be unpredictable, the metric associated with the E2E benchmark, which uses cosine similarity, performed well in evaluating chatbots. The performance of our best models shows that there are several benefits of using the cosine similarity score as a metric in the E2E benchmark.

Keywords: chatbot benchmarking, end-to-end (E2E) benchmarking, large language model, user centric evaluation.

Procedia PDF Downloads 67
7764 The Effectiveness of Multiphase Flow in Well- Control Operations

Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia

Abstract:

Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.

Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic

Procedia PDF Downloads 119
7763 A Mixed-Methods Design and Implementation Study of ‘the Attach Project’: An Attachment-Based Educational Intervention for Looked after Children in Northern Ireland

Authors: Hannah M. Russell

Abstract:

‘The Attach Project’ (TAP), is an educational intervention aimed at improving educational and socio-emotional outcomes for children who are looked after. TAP is underpinned by Attachment Theory and is adapted from Dyadic Developmental Psychotherapy (DDP), which is a treatment for children and young people impacted by complex trauma and disorders of attachment. TAP has been implemented in primary schools in Northern Ireland throughout the 2018/19 academic year. During this time, a design and implementation study has been conducted to assess the promise of effectiveness for the future dissemination and ‘scaling-up’ of the programme for a larger, randomised control trial. TAP has been designed specifically for implementation in a school setting and is comprised of a whole school element and a more individualised Key Adult-Key Child pairing. This design and implementation study utilises a mixed-methods research design consisting of quantitative, qualitative, and observational measures with stakeholder input and involvement being considered an integral component. The use of quantitative measures, such as self-report questionnaires prior to and eight months following the implementation of TAP, enabled the analysis of the strengths and direction of relations between the various components of the programme, as well as the influence of implementation factors. The use of qualitative measures, incorporating semi-structured interviews and focus groups, enabled the assessment of implementation factors, identification of implementation barriers, and potential methods of addressing these issues. Observational measures facilitated the continual development and improvement of ‘TAP training’ for school staff. Preliminary findings have provided evidence of promise for the effectiveness of TAP and indicate the potential benefits of introducing this type of attachment-based intervention across other educational settings. This type of intervention could benefit not only children who are looked after but all children who may be impacted by complex trauma or disorders of attachment. Furthermore, findings from this study demonstrate that it is possible for children to form a secondary attachment relationship with a significant adult in school. However, various implementation factors which should be addressed were identified throughout the study, such as the necessity of protected time being introduced to facilitate the development of a positive Key Adult- Key Child relationship. Furthermore, additional ‘re-cap’ training is required in future dissemination of the programme, to maximise ‘attachment friendly practice’ in the whole staff team. Qualitative findings have also indicated that there is a general opinion across school staff that this type of Key Adult- Key Child pairing could be more effective if it was introduced as soon as children begin primary school. This research has provided ample evidence for the need to introduce relationally based interventions in schools, to help to ensure that children who are looked after, or who are impacted by complex trauma or disorders of attachment, can thrive in the school environment. In addition, this research has facilitated the identification of important implementation factors and barriers to implementation, which can be addressed prior to the ‘scaling-up’ of TAP for a robust, randomised controlled trial.

Keywords: attachment, complex trauma, educational interventions, implementation

Procedia PDF Downloads 194
7762 The Impact of Steel Connections on the Fire Resistance of Composite Buildings

Authors: Shuyuan Lin, Zhaohui Huang, Mizi Fan

Abstract:

In the majority of previous research into modelling large scale composite floor subjected to fire, the beam-to-column and beam-to-beam connections were assumed to behave either as pinned or rigid for simplicity, and the vertical shear and axial tension failures of the connection were not taken into account. We have recently developed robust two-noded connection models for modeling endplate and partial endplate steel connections under fire conditions. The main objective of this research is to systematically investigate the impact of the connections of protected beams, on the tensile membrane actions of supported floor slabs in which the failures of the connections, such as, axial tension, vertical shear and bending are accounted for. The models developed have very good numerical stability under a static solver condition, and can be used for large scale modelling of composite buildings in fire.

Keywords: fire, steel structure, component-based model, beam-to-column connections

Procedia PDF Downloads 450
7761 Machine Learning Automatic Detection on Twitter Cyberbullying

Authors: Raghad A. Altowairgi

Abstract:

With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.

Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost

Procedia PDF Downloads 130
7760 A Meta-Analysis of School-Based Suicide Prevention for Adolescents and Meta-Regressions of Contextual and Intervention Factors

Authors: E. H. Walsh, J. McMahon, M. P. Herring

Abstract:

Post-primary school-based suicide prevention (PSSP) is a valuable avenue to reduce suicidal behaviours in adolescents. The aims of this meta-analysis and meta-regression were 1) to quantify the effect of PSSP interventions on adolescent suicide ideation (SI) and suicide attempts (SA), and 2) to explore how intervention effects may vary based on important contextual and intervention factors. This study provides further support to the benefits of PSSP by demonstrating lower suicide outcomes in over 30,000 adolescents following PSSP and mental health interventions and tentatively suggests that intervention effectiveness may potentially vary based on intervention factors. The protocol for this study is registered on PROSPERO (ID=CRD42020168883). Population, intervention, comparison, outcomes, and study design (PICOs) defined eligible studies as cluster randomised studies (n=12) containing PSSP and measuring suicide outcomes. Aggregate electronic database EBSCO host, Web of Science, and Cochrane Central Register of Controlled Trials databases were searched. Cochrane bias tools for cluster randomised studies demonstrated that half of the studies were rated as low risk of bias. The Egger’s Regression Test adapted for multi-level modelling indicated that publication bias was not an issue (all ps > .05). Crude and corresponding adjusted pooled log odds ratios (OR) were computed using the Metafor package in R, yielding 12 SA and 19 SI effects. Multi-level random-effects models accounting for dependencies of effects from the same study revealed that in crude models, compared to controls, interventions were significantly associated with 13% (OR=0.87, 95% confidence interval (CI), [0.78,0.96], Q18 =15.41, p=0.63) and 34% (OR=0.66, 95%CI [0.47,0.91], Q10=16.31, p=0.13) lower odds of SI and SA, respectively. Adjusted models showed similar odds reductions of 15% (OR=0.85, 95%CI[0.75,0.95], Q18=10.04, p=0.93) and 28% (OR=0.72, 95%CI[0.59,0.87], Q10=10.46, p=0.49) for SI and SA, respectively. Within-cluster heterogeneity ranged from no heterogeneity to low heterogeneity for SA across crude and adjusted models (0-9%). No heterogeneity was identified for SI across crude and adjusted models (0%). Pre-specified univariate moderator analyses were not significant for SA (all ps < 0.05). Variations in average pooled SA odds reductions across categories of various intervention characteristics were observed (all ps < 0.05), which preliminarily suggests that the effectiveness of interventions may potentially vary across intervention factors. These findings have practical implications for researchers, clinicians, educators, and decision-makers. Further investigation of important logical, theoretical, and empirical moderators on PSSP intervention effectiveness is recommended to establish how and when PSSP interventions best reduce adolescent suicidal behaviour.

Keywords: adolescents, contextual factors, post-primary school-based suicide prevention, suicide ideation, suicide attempts

Procedia PDF Downloads 104
7759 Line Heating Forming: Methodology and Application Using Kriging and Fifth Order Spline Formulations

Authors: Henri Champliaud, Zhengkun Feng, Ngan Van Lê, Javad Gholipour

Abstract:

In this article, a method is presented to effectively estimate the deformed shape of a thick plate due to line heating. The method uses a fifth order spline interpolation, with up to C3 continuity at specific points to compute the shape of the deformed geometry. First and second order derivatives over a surface are the resulting parameters of a given heating line on a plate. These parameters are determined through experiments and/or finite element simulations. Very accurate kriging models are fitted to real or virtual surfaces to build-up a database of maps. Maps of first and second order derivatives are then applied on numerical plate models to evaluate their evolving shapes through a sequence of heating lines. Adding an optimization process to this approach would allow determining the trajectories of heating lines needed to shape complex geometries, such as Francis turbine blades.

Keywords: deformation, kriging, fifth order spline interpolation, first, second and third order derivatives, C3 continuity, line heating, plate forming, thermal forming

Procedia PDF Downloads 456
7758 Hydraulic Analysis of Irrigation Approach Channel Using HEC-RAS Model

Authors: Muluegziabher Semagne Mekonnen

Abstract:

This study was intended to show the irrigation water requirements and evaluation of canal hydraulics steady state conditions to improve on scheme performance of the Meki-Ziway irrigation project. The methodology used was the CROPWAT 8.0 model to estimate the irrigation water requirements of five major crops irrigated in the study area. The results showed that for the whole existing and potential irrigation development area of 2000 ha and 2599 ha, crop water requirements were 3,339,200 and 4,339,090.4 m³, respectively. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. In this study Hydraulic Analysis of Irrigation Canals Using HEC-RAS Model was conducted in Meki-Ziway Irrigation Scheme. The HEC-RAS model was tested in terms of error estimation and used to determine canal capacity potential.

Keywords: HEC-RAS, irrigation, hydraulic. canal reach, capacity

Procedia PDF Downloads 60