Search results for: adaptive and non-adaptive spectral estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3565

Search results for: adaptive and non-adaptive spectral estimation

1735 Demand and Supply Management for Electricity Markets: Econometric Analysis of Electricity Prices

Authors: Ioana Neamtu

Abstract:

This paper investigates the potential for demand-side management for the system price in the Nordic electricity market and the price effects of introducing wind-power into the system. The model proposed accounts for the micro-structure of the Nordic electricity market by modeling each hour individually, while still accounting for the relationship between the hours within a day. This flexibility allows us to explore the differences between peak and shoulder demand hours. Preliminary results show potential for demand response management, as indicated by the price elasticity of demand as well as a small but statistically significant decrease in price, given by the wind power penetration. Moreover, our study shows that these effects are stronger during day-time and peak hours,compared to night-time and shoulder hours.

Keywords: structural model, GMM estimation, system of equations, electricity market

Procedia PDF Downloads 437
1734 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique

Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef

Abstract:

X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.

Keywords: enhancement, x-rays, pixel intensity values, MatLab

Procedia PDF Downloads 485
1733 A Combined Error Control with Forward Euler Method for Dynamical Systems

Authors: R. Vigneswaran, S. Thilakanathan

Abstract:

Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.

Keywords: adaptivity, fixed point, long time simulations, stability, linear system

Procedia PDF Downloads 312
1732 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data

Authors: S. Nickolas, Shobha K.

Abstract:

The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.

Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing

Procedia PDF Downloads 274
1731 Low Cost Inertial Sensors Modeling Using Allan Variance

Authors: A. A. Hussen, I. N. Jleta

Abstract:

Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to the low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effect of these random errors, they must be accurately modeled. Where the key is the successful implementation that depends on how well the noise statistics of the inertial sensors is selected. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.

Keywords: Allan variance, accelerometer, gyroscope, stochastic errors

Procedia PDF Downloads 442
1730 Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network

Authors: Dong-Hyun Ha, Young-Min Ko, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In Heterogeneous network (HetNet) can provide high quality of a service in a wireless communication system by composition of small cell networks. The composition of small cell networks improves cell coverage and capacity to the mobile users.Recently, various techniques using small cell networks have been researched in the wireless communication system. In this paper, the cooperative scheme obtaining high reliability is proposed in the small cell networks. The proposed scheme suggests a cooperative small cell system and the new signal transmission technique in the proposed system model. The new signal transmission technique applies a cyclic delay diversity (CDD) scheme based on the multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system to obtain improved performance. The improved performance of the proposed scheme is confirmed by the simulation results.

Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM

Procedia PDF Downloads 502
1729 Outdoor Thermal Environment Measurement and Simulations in Traditional Settlements in Taiwan

Authors: Tzu-Ping Lin, Shing-Ru Yang

Abstract:

Climate change has a significant impact on human living environment, while the traditional settlement may suffer extreme thermal stress due to its specific building type and living behavior. This study selected Lutaoyang, which is the largest settlement in mountainous areas of Tainan County, for the investigation area. The microclimate parameters, such as air temperature, relative humidity, wind speed, and mean radiant temperature. The micro climate parameters were also simulated by the ENVI-met model. The results showed the banyan tree area providing good thermal comfort condition due to the shading. On the contrary, the courtyard (traditionally for the crops drying) surrounded by low rise building and consisted of artificial pavement contributing heat stress especially in summer noon. In the climate change simulations, the courtyard will become very hot and are not suitable for residents activities. These analytical results will shed light on the sustainability related to thermal environment in traditional settlements and develop adaptive measure towards sustainable development under the climate change challenges.

Keywords: thermal environment, traditional settlement, ENVI-met, Taiwan

Procedia PDF Downloads 479
1728 Natural Factors of Interannual Variability of Winter Precipitation over the Altai Krai

Authors: Sukovatov K.Yu., Bezuglova N.N.

Abstract:

Winter precipitation variability over the Altai Krai was investigated by retrieving temporal patterns. The spectral singular analysis was used to describe the variance distribution and to reduce the precipitation data into a few components (modes). The associated time series were related to large-scale atmospheric and oceanic circulation indices by using lag cross-correlation and wavelet-coherence analysis. GPCC monthly precipitation data for rectangular field limited by 50-550N, 77-880E and monthly climatological circulation index data for the cold season were used to perform SSA decomposition and retrieve statistics for analyzed parameters on the time period 1951-2017. Interannual variability of winter precipitation over the Altai Krai are mostly caused by three natural factors: intensity variations of momentum exchange between mid and polar latitudes over the North Atlantic (explained variance 11.4%); wind speed variations in equatorial stratosphere (quasi-biennial oscillation, explained variance 15.3%); and surface temperature variations for equatorial Pacific sea (ENSO, explained variance 2.8%). It is concluded that under the current climate conditions (Arctic amplification and increasing frequency of meridional processes in mid-latitudes) the second and the third factors are giving more significant contribution into explained variance of interannual variability for cold season atmospheric precipitation over the Altai Krai than the first factor.

Keywords: interannual variability, winter precipitation, Altai Krai, wavelet-coherence

Procedia PDF Downloads 188
1727 Evaluation of Parameters of Subject Models and Their Mutual Effects

Authors: A. G. Kovalenko, Y. N. Amirgaliyev, A. U. Kalizhanova, L. S. Balgabayeva, A. H. Kozbakova, Z. S. Aitkulov

Abstract:

It is known that statistical information on operation of the compound multisite system is often far from the description of actual state of the system and does not allow drawing any conclusions about the correctness of its operation. For example, from the world practice of operation of systems of water supply, water disposal, it is known that total measurements at consumers and at suppliers differ between 40-60%. It is connected with mathematical measure of inaccuracy as well as ineffective running of corresponding systems. Analysis of widely-distributed systems is more difficult, in which subjects, which are self-maintained in decision-making, carry out economic interaction in production, act of purchase and sale, resale and consumption. This work analyzed mathematical models of sellers, consumers, arbitragers and the models of their interaction in the provision of dispersed single-product market of perfect competition. On the basis of these models, the methods, allowing estimation of every subject’s operating options and systems as a whole are given.

Keywords: dispersed systems, models, hydraulic network, algorithms

Procedia PDF Downloads 284
1726 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups

Authors: Naushad Mamode Khan

Abstract:

The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood based estimating methodology. The joint generalized quasilikelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQLIII) that are based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.

Keywords: longitudinal, com-Poisson, ill-conditioned, INAR(1), GLMS, GQL

Procedia PDF Downloads 354
1725 Robust Variable Selection Based on Schwarz Information Criterion for Linear Regression Models

Authors: Shokrya Saleh A. Alshqaq, Abdullah Ali H. Ahmadini

Abstract:

The Schwarz information criterion (SIC) is a popular tool for selecting the best variables in regression datasets. However, SIC is defined using an unbounded estimator, namely, the least-squares (LS), which is highly sensitive to outlying observations, especially bad leverage points. A method for robust variable selection based on SIC for linear regression models is thus needed. This study investigates the robustness properties of SIC by deriving its influence function and proposes a robust SIC based on the MM-estimation scale. The aim of this study is to produce a criterion that can effectively select accurate models in the presence of vertical outliers and high leverage points. The advantages of the proposed robust SIC is demonstrated through a simulation study and an analysis of a real dataset.

Keywords: influence function, robust variable selection, robust regression, Schwarz information criterion

Procedia PDF Downloads 140
1724 Detecting Nitrogen Deficiency and Potato Leafhopper (Hemiptera, Cicadellidae) Infestation in Green Bean Using Multispectral Imagery from Unmanned Aerial Vehicle

Authors: Bivek Bhusal, Ana Legrand

Abstract:

Detection of crop stress is one of the major applications of remote sensing in agriculture. Multiple studies have demonstrated the capability of remote sensing using Unmanned Aerial Vehicle (UAV)-based multispectral imagery for detection of plant stress, but none so far on Nitrogen (N) stress and PLH feeding stress on green beans. In view of its wide host range, geographical distribution, and damage potential, Potato leafhopper- Empoasca fabae (Harris) has been emerging as a key pest in several countries. Monitoring methods for potato leafhopper (PLH) damage, as well as the laboratory techniques for detecting Nitrogen deficiency, are time-consuming and not always easily affordable. A study was initiated to demonstrate if the multispectral sensor attached to a drone can detect PLH stress and N deficiency in beans. Small-plot trials were conducted in the summer of 2023, where cages were used to manipulate PLH infestation in green beans (Provider cultivar) at their first-trifoliate stage. Half of the bean plots were introduced with PLH, and the others were kept insect-free. Half of these plots were grown with the recommended amount of N, and the others were grown without N. Canopy reflectance was captured using a five-band multispectral sensor. Our findings indicate that drone imagery could detect stress due to a lack of N and PLH damage in beans.

Keywords: potato leafhopper, nitrogen, remote sensing, spectral reflectance, beans

Procedia PDF Downloads 60
1723 Combining the Dynamic Conditional Correlation and Range-GARCH Models to Improve Covariance Forecasts

Authors: Piotr Fiszeder, Marcin Fałdziński, Peter Molnár

Abstract:

The dynamic conditional correlation model of Engle (2002) is one of the most popular multivariate volatility models. However, this model is based solely on closing prices. It has been documented in the literature that the high and low price of the day can be used in an efficient volatility estimation. We, therefore, suggest a model which incorporates high and low prices into the dynamic conditional correlation framework. Empirical evaluation of this model is conducted on three datasets: currencies, stocks, and commodity exchange-traded funds. The utilisation of realized variances and covariances as proxies for true variances and covariances allows us to reach a strong conclusion that our model outperforms not only the standard dynamic conditional correlation model but also a competing range-based dynamic conditional correlation model.

Keywords: volatility, DCC model, high and low prices, range-based models, covariance forecasting

Procedia PDF Downloads 183
1722 Competitiveness of African Countries through Open Quintuple Helix Model

Authors: B. G. C. Ahodode, S. Fekkaklouhail

Abstract:

Following the triple helix theory, this study aims to evaluate the innovation system effect on African countries’ competitiveness by taking into account external contributions; according to the extent that developing countries (especially African countries) are characterized by weak innovation systems whose synergy operates more at the foreign level than domestic and global. To do this, we used the correlation test, parsimonious regression techniques, and panel estimation between 2013 and 2016. Results show that the degree of innovation synergy has a significant effect on competitiveness in Africa. Specifically, while the opening system (OPESYS) and social system (SOCSYS) contribute respectively in importance order to 0.634 and 0.284 (at 1%) significant points of increase in the GCI, the political system (POLSYS) and educational system (EDUSYS) only increase it to 0.322 and 0.169 at 5% significance level while the effect of the economic system (ECOSYS) is not significant on Global Competitiveness Index.

Keywords: innovation system, innovation, competitiveness, Africa

Procedia PDF Downloads 69
1721 Identity and Access Management for Medical Cyber-Physical Systems: New Technology and Security Solutions

Authors: Abdulrahman Yarali, Machica McClain

Abstract:

In the context of the increasing use of Cyber-Physical Systems (CPS) across critical infrastructure sectors, this paper addresses a crucial and emerging topic: the integration of Identity and Access Management (IAM) with Internet of Things (IoT) devices in Medical Cyber-Physical Systems (MCPS). It underscores the significance of robust IAM solutions in the expanding interconnection of IoT devices in healthcare settings, leveraging AI, ML, DL, Zero Trust Architecture (ZTA), biometric authentication advancements, and blockchain technologies. The paper advocates for the potential benefits of transitioning from traditional, static IAM frameworks to dynamic, adaptive solutions that can effectively counter sophisticated cyber threats, ensure the integrity and reliability of CPS, and significantly bolster the overall security posture. The paper calls for strategic planning, collaboration, and continuous innovation to harness these benefits. By emphasizing the importance of securing CPS against evolving threats, this research contributes to the ongoing discourse on cybersecurity and advocates for a collaborative approach to foster innovation and enhance the resilience of critical infrastructure in the digital era.

Keywords: CPS, IAM, IoT, AI, ML, authentication, models, policies, healthcare

Procedia PDF Downloads 21
1720 Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection

Authors: Nadia Ben Youssef, Aicha Bouzid

Abstract:

Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach.

Keywords: gradient, edge detection, color image, quaternion

Procedia PDF Downloads 234
1719 An Unified Model for Longshore Sediment Transport Rate Estimation

Authors: Aleksandra Dudkowska, Gabriela Gic-Grusza

Abstract:

Wind wave-induced sediment transport is an important multidimensional and multiscale dynamic process affecting coastal seabed changes and coastline evolution. The knowledge about sediment transport rate is important to solve many environmental and geotechnical issues. There are many types of sediment transport models but none of them is widely accepted. It is bacause the process is not fully defined. Another problem is a lack of sufficient measurment data to verify proposed hypothesis. There are different types of models for longshore sediment transport (LST, which is discussed in this work) and cross-shore transport which is related to different time and space scales of the processes. There are models describing bed-load transport (discussed in this work), suspended and total sediment transport. LST models use among the others the information about (i) the flow velocity near the bottom, which in case of wave-currents interaction in coastal zone is a separate problem (ii) critical bed shear stress that strongly depends on the type of sediment and complicates in the case of heterogeneous sediment. Moreover, LST rate is strongly dependant on the local environmental conditions. To organize existing knowledge a series of sediment transport models intercomparisons was carried out as a part of the project “Development of a predictive model of morphodynamic changes in the coastal zone”. Four classical one-grid-point models were studied and intercompared over wide range of bottom shear stress conditions, corresponding with wind-waves conditions appropriate for coastal zone in polish marine areas. The set of models comprises classical theories that assume simplified influence of turbulence on the sediment transport (Du Boys, Meyer-Peter & Muller, Ribberink, Engelund & Hansen). It turned out that the values of estimated longshore instantaneous mass sediment transport are in general in agreement with earlier studies and measurements conducted in the area of interest. However, none of the formulas really stands out from the rest as being particularly suitable for the test location over the whole analyzed flow velocity range. Therefore, based on the models discussed a new unified formula for longshore sediment transport rate estimation is introduced, which constitutes the main original result of this study. Sediment transport rate is calculated based on the bed shear stress and critical bed shear stress. The dependence of environmental conditions is expressed by one coefficient (in a form of constant or function) thus the model presented can be quite easily adjusted to the local conditions. The discussion of the importance of each model parameter for specific velocity ranges is carried out. Moreover, it is shown that the value of near-bottom flow velocity is the main determinant of longshore bed-load in storm conditions. Thus, the accuracy of the results depends less on the sediment transport model itself and more on the appropriate modeling of the near-bottom velocities.

Keywords: bedload transport, longshore sediment transport, sediment transport models, coastal zone

Procedia PDF Downloads 387
1718 Bio-Mimetic Foot Design for Legged Locomotion over Unstructured Terrain

Authors: Hannah Kolano, Paul Nadan, Jeremy Ryan, Sophia Nielsen

Abstract:

The hooves of goats and other ruminants, or the family Ruminantia, are uniquely structured to adapt to rough terrain. Their hooves possess a hard outer shell and a soft interior that allow them to both conform to uneven surfaces and hook onto prominent features. In an effort to apply this unique mechanism to a robotics context, artificial feet for a hexapedal robot have been designed based on the hooves of ruminants to improve the robot’s ability to traverse unstructured environments such as those found on a rocky planet or asteroid, as well as in earth-based environments such as rubble, caves, and mountainous regions. The feet were manufactured using a combination of 3D printing and polyurethane casting techniques and attached to a commercially available hexapedal robot. The robot was programmed with a terrain-adaptive gait and proved capable of traversing a variety of uneven surfaces and inclines. This development of more adaptable robotic feet allows legged robots to operate in a wider range of environments and expands their possible applications.

Keywords: biomimicry, legged locomotion, robotic foot design, ruminant feet, unstructured terrain navigation

Procedia PDF Downloads 128
1717 Flow Field Analysis of a Liquid Ejector Pump Using Embedded Large Eddy Simulation Methodology

Authors: Qasim Zaheer, Jehanzeb Masud

Abstract:

The understanding of entrainment and mixing phenomenon in the ejector pump is of pivotal importance for designing and performance estimation. In this paper, the existence of turbulent vortical structures due to Kelvin-Helmholtz instability at the free surface between the motive and the entrained fluids streams are simulated using Embedded LES methodology. The efficacy of Embedded LES for simulation of complex flow field of ejector pump is evaluated using ANSYS Fluent®. The enhanced mixing and entrainment process due to breaking down of larger eddies into smaller ones as a consequence of Vortex Stretching phenomenon is captured in this study. Moreover, the flow field characteristics of ejector pump like pressure velocity fields and mass flow rates are analyzed and validated against the experimental results.

Keywords: Kelvin Helmholtz instability, embedded LES, complex flow field, ejector pump

Procedia PDF Downloads 297
1716 Macular Ganglion Cell Inner Plexiform Layer Thinning

Authors: Hye-Young Shin, Chan Kee Park

Abstract:

Background: To compare the thinning patterns of the ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (pRNFL) as measured using Cirrus high-definition optical coherence tomography (HD-OCT) in patients with visual field (VF) defects that respect the vertical meridian. Methods: Twenty eyes of eleven patients with VF defects that respect the vertical meridian were enrolled retrospectively. The thicknesses of the macular GCIPL and pRNFL were measured using Cirrus HD-OCT. The 5% and 1% thinning area index (TAI) was calculated as the proportion of abnormally thin sectors at the 5% and 1% probability level within the area corresponding to the affected VF. The 5% and 1% TAI were compared between the GCIPL and pRNFL measurements. Results: The color-coded GCIPL deviation map showed a characteristic vertical thinning pattern of the GCIPL, which is also seen in the VF of patients with brain lesions. The 5% and 1% TAI were significantly higher in the GCIPL measurements than in the pRNFL measurements (all P < 0.01). Conclusions: Macular GCIPL analysis clearly visualized a characteristic topographic pattern of retinal ganglion cell (RGC) loss in patients with VF defects that respect the vertical meridian, unlike pRNFL measurements. Macular GCIPL measurements provide more valuable information than pRNFL measurements for detecting the loss of RGCs in patients with retrograde degeneration of the optic nerve fibers.

Keywords: brain lesion, macular ganglion cell, inner plexiform layer, spectral-domain optical coherence tomography

Procedia PDF Downloads 337
1715 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation

Authors: Feng Yin

Abstract:

Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.

Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation

Procedia PDF Downloads 278
1714 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial

Authors: Shubham Jaiswal

Abstract:

During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative

Procedia PDF Downloads 445
1713 Modelling High-Frequency Crude Oil Dynamics Using Affine and Non-Affine Jump-Diffusion Models

Authors: Katja Ignatieva, Patrick Wong

Abstract:

We investigated the dynamics of high frequency energy prices, including crude oil and electricity prices. The returns of underlying quantities are modelled using various parametric models such as stochastic framework with jumps and stochastic volatility (SVCJ) as well as non-parametric alternatives, which are purely data driven and do not require specification of the drift or the diffusion coefficient function. Using different statistical criteria, we investigate the performance of considered parametric and nonparametric models in their ability to forecast price series and volatilities. Our models incorporate possible seasonalities in the underlying dynamics and utilise advanced estimation techniques for the dynamics of energy prices.

Keywords: stochastic volatility, affine jump-diffusion models, high frequency data, model specification, markov chain monte carlo

Procedia PDF Downloads 104
1712 Adaptive Architecture: Reformulation of Socio-Ecological Systems

Authors: Pegah Zamani

Abstract:

This multidisciplinary study interrogates the reformulation of socio-ecological systems by bringing different disciplines together and incorporating ecological, social, and technological components to the sustainable design. The study seeks for a holistic sustainable system to understand the multidimensional impact of the evolving innovative technologies on responding to the variable socio-environmental conditions. Through a range of cases, from the vernacular built spaces to the sophisticated optimized systems, the research unfolds how far the environmental elements would impact the performance of a sustainable building, its micro-climatic ecological requirements, and its human inhabitation. As a product of the advancing technologies, an optimized and environmentally responsive building offers new identification, and realization of the built space through reformulating the connection to its internal and external environments (such as solar, thermal, and airflow), as well as its dwellers. The study inquires properties of optimized buildings, by bringing into the equation not only the environmental but also the socio-cultural, morphological, and phenomenal factors. Thus, the research underlines optimized built space as a product and practice which would not be meaningful without addressing and dynamically adjusting to the diversity and complexity of socio-ecological systems.

Keywords: ecology, morphology, socio-ecological systems, sustainability

Procedia PDF Downloads 204
1711 Direct Transient Stability Assessment of Stressed Power Systems

Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara

Abstract:

This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.

Keywords: power system, transient stability, critical trajectory method, energy function method

Procedia PDF Downloads 386
1710 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 363
1709 Blade Runner and Slavery in the 21st Century

Authors: Bülent Diken

Abstract:

This paper looks to set Ridley Scott’s original film Blade Runner (1982) and Denis Villeneuve’s Blade Runner 2049 (2017) in order to provide an analysis of both films with respect to the new configurations of slavery in the 21st century. Both Blade Runner films present a de-politicized society that oscillates between two extremes: the spectral (the eye, optics, digital communications) and the biopolitical (the body, haptics). On the one hand, recognizing the subject only as a sign, the society of the spectacle registers, identifies, produces and reproduces the subject as a code. At the same time, though, the subject is constantly reduced to a naked body, to bare life, for biometric technologies to scan it as a biological body or body parts. Being simultaneously a pure code (word without body) and an instrument slave (body without word), the replicants are thus the paradigmatic subjects of this society. The paper focuses first on the similarity: both films depict a relationship between masters and slaves, that is, a despotic relationship. The master uses the (body of the) slave as an instrument, as an extension of his own body. Blade Runner 2019 frames the despotic relation in this classical way through its triangulation with the economy (the Tyrell Corporation) and the slave-replicants’ dissent (rejecting their reduction to mere instruments). In a counter-classical approach, in Blade Runner 2049, the focus shifts to another triangulation: despotism, economy (the Wallace Corporation) and consent (of replicants who no longer perceive themselves as slaves).

Keywords: Blade Runner, the spectacle, bio-politics, slavery, imstrumentalisation

Procedia PDF Downloads 69
1708 Integrating Multiple Types of Value in Natural Capital Accounting Systems: Environmental Value Functions

Authors: Pirta Palola, Richard Bailey, Lisa Wedding

Abstract:

Societies and economies worldwide fundamentally depend on natural capital. Alarmingly, natural capital assets are quickly depreciating, posing an existential challenge for humanity. The development of robust natural capital accounting systems is essential for transitioning towards sustainable economic systems and ensuring sound management of capital assets. However, the accurate, equitable and comprehensive estimation of natural capital asset stocks and their accounting values still faces multiple challenges. In particular, the representation of socio-cultural values held by groups or communities has arguably been limited, as to date, the valuation of natural capital assets has primarily been based on monetary valuation methods and assumptions of individual rationality. People relate to and value the natural environment in multiple ways, and no single valuation method can provide a sufficiently comprehensive image of the range of values associated with the environment. Indeed, calls have been made to improve the representation of multiple types of value (instrumental, intrinsic, and relational) and diverse ontological and epistemological perspectives in environmental valuation. This study addresses this need by establishing a novel valuation framework, Environmental Value Functions (EVF), that allows for the integration of multiple types of value in natural capital accounting systems. The EVF framework is based on the estimation and application of value functions, each of which describes the relationship between the value and quantity (or quality) of an ecosystem component of interest. In this framework, values are estimated in terms of change relative to the current level instead of calculating absolute values. Furthermore, EVF was developed to also support non-marginalist conceptualizations of value: it is likely that some environmental values cannot be conceptualized in terms of marginal changes. For example, ecological resilience value may, in some cases, be best understood as a binary: it either exists (1) or is lost (0). In such cases, a logistic value function may be used as the discriminator. Uncertainty in the value function parameterization can be considered through, for example, Monte Carlo sampling analysis. The use of EVF is illustrated with two conceptual examples. For the first time, EVF offers a clear framework and concrete methodology for the representation of multiple types of value in natural capital accounting systems, simultaneously enabling 1) the complementary use and integration of multiple valuation methods (monetary and non-monetary); 2) the synthesis of information from diverse knowledge systems; 3) the recognition of value incommensurability; 4) marginalist and non-marginalist value analysis. Furthermore, with this advancement, the coupling of EVF and ecosystem modeling can offer novel insights to the study of spatial-temporal dynamics in natural capital asset values. For example, value time series can be produced, allowing for the prediction and analysis of volatility, long-term trends, and temporal trade-offs. This approach can provide essential information to help guide the transition to a sustainable economy.

Keywords: economics of biodiversity, environmental valuation, natural capital, value function

Procedia PDF Downloads 194
1707 Study of Superconducting Patch Printed on Electric-Magnetic Substrates Materials

Authors: Fortaki Tarek, S. Bedra

Abstract:

In this paper, the effects of both uniaxial anisotropy in the substrate and high Tc superconducting patch on the resonant frequency, half-power bandwidth, and radiation patterns are investigated using an electric field integral equation and the spectral domain Green’s function. The analysis has been based on a full electromagnetic wave model with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant and radiation characteristics of high Tc superconducting rectangular microstrip patch in the case where the patch is printed on electric-magnetic uniaxially anisotropic substrate materials. The stationary phase technique has been used for computing the radiation electric field. The obtained results demonstrate a considerable improvement in the half-power bandwidth, of the rectangular microstrip patch, by using a superconductor patch instead of a perfect conductor one. Further results show that high Tc superconducting rectangular microstrip patch on the uniaxial substrate with properly selected electric and magnetic anisotropy ratios is more advantageous than the one on the isotropic substrate by exhibiting wider bandwidth and radiation characteristic. This behavior agrees with that discovered experimentally for superconducting patches on isotropic substrates. The calculated results have been compared with measured one available in the literature and excellent agreement has been found.

Keywords: high Tc superconducting microstrip patch, electric-magnetic anisotropic substrate, Galerkin method, surface complex impedance with boundary conditions, radiation patterns

Procedia PDF Downloads 444
1706 A Spatio-Temporal Analysis and Change Detection of Wetlands in Diamond Harbour, West Bengal, India Using Normalized Difference Water Index

Authors: Lopita Pal, Suresh V. Madha

Abstract:

Wetlands are areas of marsh, fen, peat land or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres. The rapidly expanding human population, large scale changes in land use/land cover, burgeoning development projects and improper use of watersheds all has caused a substantial decline of wetland resources in the world. Major degradations have been impacted from agricultural, industrial and urban developments leading to various types of pollutions and hydrological perturbations. Regular fishing activities and unsustainable grazing of animals are degrading the wetlands in a slow pace. The paper focuses on the spatio-temporal change detection of the area of the water body and the main cause of this depletion. The total area under study (22°19’87’’ N, 88°20’23’’ E) is a wetland region in West Bengal of 213 sq.km. The procedure used is the Normalized Difference Water Index (NDWI) from multi-spectral imagery and Landsat to detect the presence of surface water, and the datasets have been compared of the years 2016, 2006 and 1996. The result shows a sharp decline in the area of water body due to a rapid increase in the agricultural practices and the growing urbanization.

Keywords: spatio-temporal change, NDWI, urbanization, wetland

Procedia PDF Downloads 283