Search results for: Miller method
587 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section
Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert
Abstract:
Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics
Procedia PDF Downloads 256586 Rhizobium leguminosarum: Selecting Strain and Exploring Delivery Systems for White Clover
Authors: Laura Villamizar, David Wright, Claudia Baena, Marie Foxwell, Maureen O'Callaghan
Abstract:
Leguminous crops can be self-sufficient for their nitrogen requirements when their roots are nodulated with an effective Rhizobium strain and for this reason seed or soil inoculation is practiced worldwide to ensure nodulation and nitrogen fixation in grain and forage legumes. The most widely used method of applying commercially available inoculants is using peat cultures which are coated onto seeds prior to sowing. In general, rhizobia survive well in peat, but some species die rapidly after inoculation onto seeds. The development of improved formulation methodology is essential to achieve extended persistence of rhizobia on seeds, and improved efficacy. Formulations could be solid or liquid. Most popular solid formulations or delivery systems are: wettable powders (WP), water dispersible granules (WG), and granules (DG). Liquid formulation generally are: suspension concentrates (SC) or emulsifiable concentrates (EC). In New Zealand, R. leguminosarum bv. trifolii strain TA1 has been used as a commercial inoculant for white clover over wide areas for many years. Seeds inoculation is carried out by mixing the seeds with inoculated peat, some adherents and lime, but rhizobial populations on stored seeds decline over several weeks due to a number of factors including desiccation and antibacterial compounds produced by the seeds. In order to develop a more stable and suitable delivery system to incorporate rhizobia in pastures, two strains of R. leguminosarum (TA1 and CC275e) and several formulations and processes were explored (peat granules, self-sticky peat for seed coating, emulsions and a powder containing spray dried microcapsules). Emulsions prepared with fresh broth of strain TA1 were very unstable under storage and after seed inoculation. Formulations where inoculated peat was used as the active ingredient were significantly more stable than those prepared with fresh broth. The strain CC275e was more tolerant to stress conditions generated during formulation and seed storage. Peat granules and peat inoculated seeds using strain CC275e maintained an acceptable loading of 108 CFU/g of granules or 105 CFU/g of seeds respectively, during six months of storage at room temperature. Strain CC275e inoculated on peat was also microencapsulated with a natural biopolymer by spray drying and after optimizing operational conditions, microparticles containing 107 CFU/g and a mean particle size between 10 and 30 micrometers were obtained. Survival of rhizobia during storage of the microcapsules is being assessed. The development of a stable product depends on selecting an active ingredient (microorganism), robust enough to tolerate some adverse conditions generated during formulation, storage, and commercialization and after its use in the field. However, the design and development of an adequate formulation, using compatible ingredients, optimization of the formulation process and selecting the appropriate delivery system, is possibly the best tool to overcome the poor survival of rhizobia and provide farmers with better quality inoculants to use.Keywords: formulation, Rhizobium leguminosarum, storage stability, white clover
Procedia PDF Downloads 148585 Mapping Alternative Education in Italy: The Case of Popular and Second-Chance Schools and Interventions in Lombardy
Authors: Valeria Cotza
Abstract:
School drop-out is a multifactorial phenomenon that in Italy concerns all those underage students who, at different school stages (up to 16 years old) or training (up to 18 years old), manifest educational difficulties from dropping out of compulsory education without obtaining a qualification to repetition rates and absenteeism. From the 1980s to the 2000s, there was a progressive attenuation of the economic and social model towards a multifactorial reading of the phenomenon, and the European Commission noted the importance of learning about the phenomenon through approaches able to integrate large-scale quantitative surveys with qualitative analyses. It is not a matter of identifying the contextual factors affecting the phenomenon but problematising them by means of systemic and comprehensive in-depth analysis. So, a privileged point of observation and field of intervention are those schools that propose alternative models of teaching and learning to the traditional ones, such as popular and second-chance schools. Alternative schools and interventions grew in these years in Europe as well as in the US and Latin America, working in the direction of greater equity to create the conditions (often absent in conventional schools) for everyone to achieve educational goals. Against extensive Anglo-Saxon and US literature on this topic, there is yet no unambiguous definition of alternative education, especially in Europe, where second-chance education has been most studied. There is little literature on a second chance in Italy and almost none on alternative education (with the exception of method schools, to which in Italy the concept of “alternative” is linked). This research aims to fill the gap by systematically surveying the alternative interventions in the area and beginning to explore some models of popular and second-chance schools and experiences through a mixed methods approach. So, the main research objectives concern the spread of alternative education in the Lombardy region, the main characteristics of these schools and interventions, and their effectiveness in terms of students’ well-being and school results. This paper seeks to answer the first point by presenting the preliminary results of the first phase of the project dedicated to mapping. Through the Google Forms platform, a questionnaire is being distributed to all schools in Lombardy and some schools in the rest of Italy to map the presence of alternative schools and interventions and their main characteristics. The distribution is also taking place thanks to the support of the Milan Territorial and Lombardy Regional School Offices. Moreover, other social realities outside the school system (such as cooperatives and cultural associations) can be questioned. The schools and other realities to be questioned outside Lombardy will also be identified with the support of INDIRE (Istituto Nazionale per Documentazione, Innovazione e Ricerca Educativa, “National Institute for Documentation, Innovation and Educational Research”) and based on existing literature and the indicators of “Futura” Plan of the PNRR (Piano Nazionale di Ripresa e Resilienza, “National Recovery and Resilience Plan”). Mapping will be crucial and functional for the subsequent qualitative and quantitative phase, which will make use of statistical analysis and constructivist grounded theory.Keywords: school drop-out, alternative education, popular and second-chance schools, map
Procedia PDF Downloads 82584 The Effect of a Multidisciplinary Spine Clinic on Treatment Rates and Lead Times to Care
Authors: Ishan Naidu, Jessica Ryvlin, Devin Videlefsky
Abstract:
Introduction: Back pain is a leading cause of years lived with disability and economic burden, exceeding over $20 billion in healthcare costs not including indirect costs such as absence from work and caregiving. The multifactorial nature of back pain leads to treatment modalities administered by a variety of specialists, which are often disjointed. Multiple studies have found that patients receiving delayed physical therapy for lower back pain had higher medical-related costs from increased health service utilization as well as a reduced improvement in pain severity compared to early management. Uncoordinated health care delivery can exacerbate the physical and economic toll of the chronic condition, thus improvements in interdisciplinary, shared decision-making may improve outcomes. Objective: To assess whether a multidisciplinary spine clinic (MSC), consisting of orthopedic surgery, neurosurgery, pain medicine, and physiatry, alters interventional and non-interventional planning and treatment compared to a traditional unidisciplinary spine clinic (USC) including only orthopedic surgery. Methods: We conducted a retrospective cohort study with patients initially presenting for spine care to orthopedic surgeons between July 1, 2018 to June 30, 2019. Time to treatment recommendation, time to treatment and rates of treatment recommendations were assessed, including physical therapy, injections and surgery. Treatment rates were compared between MSC and USC using Pearson’s chi-square test logistic regression. Time to treatment recommendation and time to treatment were compared using log-rank test and Cox proportional hazard regression. All analyses were repeated for the propensity score (PS) matched subsample. Results: This study included 1,764 patients, with 692 at MSC and 1,072 at USC. Patients in MSC were more likely to be recommended injection when compared to USC (8.5% vs. 5.4%, p=0.01). When adjusted for confounders, the likelihood of injection recommendation remained greater in MSC than USC (Odds ratio [OR]=2.22, 95% CI: (1.39, 3.53), p=0.001). MSC was also associated with a shorter time to receiving injection recommendation versus USC (median: 21 vs. 32 days, log-rank: p<0.001; hazard ratio [HR]=1.90, 95% CI: (1.25, 2.90), p=0.003). MSC was associated with a higher likelihood of injection treatment (OR=2.27, 95% CI: (1.39, 3.73), p=0.001) and shorter lead time (HR=1.98, 95% CI: (1.27, 3.09), p=0.003). PS-matched analyses yielded similar conclusions. Conclusions: Care delivered at a multidisciplinary spine clinic was associated with a higher likelihood of recommending injection and a shorter lead time to injection administration when compared to a traditional unidisciplinary spine surgery clinic. Multidisciplinary clinics may facilitate coordinated care amongst different specialties resulting in increased utilization of less invasive treatment modalities while also improving care efficiency. The multidisciplinary clinic model is an important advancement in care delivery and communication, which can be used as a powerful method of improving patient outcomes as treatment guidelines evolve.Keywords: coordinated care, epidural steroid injection, multi-disciplinary, non-invasive
Procedia PDF Downloads 140583 Supplementing Aerial-Roving Surveys with Autonomous Optical Cameras: A High Temporal Resolution Approach to Monitoring and Estimating Effort within a Recreational Salmon Fishery in British Columbia, Canada
Authors: Ben Morrow, Patrick O'Hara, Natalie Ban, Tunai Marques, Molly Fraser, Christopher Bone
Abstract:
Relative to commercial fisheries, recreational fisheries are often poorly understood and pose various challenges for monitoring frameworks. In British Columbia (BC), Canada, Pacific salmon are heavily targeted by recreational fishers while also being a key source of nutrient flow and crucial prey for a variety of marine and terrestrial fauna, including endangered Southern Resident killer whales (Orcinus orca). Although commercial fisheries were historically responsible for the majority of salmon retention, recreational fishing now comprises both greater effort and retention. The current monitoring scheme for recreational salmon fisheries involves aerial-roving creel surveys. However, this method has been identified as costly and having low predictive power as it is often limited to sampling fragments of fluid and temporally dynamic fisheries. This study used imagery from two shore-based autonomous cameras in a highly active recreational fishery around Sooke, BC, and evaluated their efficacy in supplementing existing aerial-roving surveys for monitoring a recreational salmon fishery. This study involved continuous monitoring and high temporal resolution (over one million images analyzed in a single fishing season), using a deep learning-based vessel detection algorithm and a custom image annotation tool to efficiently thin datasets. This allowed for the quantification of peak-season effort from a busy harbour, species-specific retention estimates, high levels of detected fishing events at a nearby popular fishing location, as well as the proportion of the fishery management area represented by cameras. Then, this study demonstrated how it could substantially enhance the temporal resolution of a fishery through diel activity pattern analyses, scaled monthly to visualize clusters of activity. This work also highlighted considerable off-season fishing detection, currently unaccounted for in the existing monitoring framework. These results demonstrate several distinct applications of autonomous cameras for providing enhanced detail currently unavailable in the current monitoring framework, each of which has important considerations for the managerial allocation of resources. Further, the approach and methodology can benefit other studies that apply shore-based camera monitoring, supplement aerial-roving creel surveys to improve fine-scale temporal understanding, inform the optimal timing of creel surveys, and improve the predictive power of recreational stock assessments to preserve important and endangered fish species.Keywords: cameras, monitoring, recreational fishing, stock assessment
Procedia PDF Downloads 122582 The Saudi Arabia 2030 Strategy: Translation Reception and Translator Readiness
Authors: Budur Alsulami
Abstract:
One of the aims of the recently implemented Saudi Arabia Vision 2030 strategy is focused on strengthening education, entertainment, and tourism to attract international visitors to the country. To promote and increase the tourism sector, tourism translation can serve the tourism industry by translating various materials that promote the country’s tourism such as brochures, catalogues, and websites. In order to achieve the goal of enhancing tourism in Saudi Arabia, promotional texts related to tourism and Saudi culture will need to be translated into English and addressed to non-Arabic-speaking potential tourists. This research aims to measure student readiness to be professional translators who can introduce and promote Saudi Arabia to non-Arabic-speaking tourists. The study will also evaluate students' abilities to promote and convey Saudi culture to non-Arabic tourists by translating tourism texts. Translating tourism materials demands considerable effort and specific translation skills to capture tourists' interest and encourage visits. Numerous scholars have explored challenges in translating tourism promotional materials, focusing on translation methods, cultural issues, course design, and necessary knowledge for tourism translation. Based on these insights, experts recommend that translators prioritize audience expectations, cultural appropriateness, and linguistic conventions while revising course syllabi to include practical skills. This research aims to assess students' readiness to become professional translators aligned with Vision 2030 tourism goals. To accomplish this, in the first stage of the project, twenty students from two Saudi Arabian Universities who have completed at least two years of Translation Studies were invited to translate two tourism texts of 300 words each. These tourism texts contain information about famous tourist sights and traditional food in Saudi Arabia and contained cultural terms and heritage information. The students then completed a questionnaire about the challenges of the text and the process of their translation, and then participated in a semi-structured interview. In the second stage of the project, the students’ translations will be evaluated by a qualified National Accreditation Authority of Translators and Interpreters (NAATI) examiner applying the NAATI rubrics. Finally, these translations will be read and assessed by fifteen to twenty native and near-native readers of English, who will evaluate the quality of the translations based on their understanding and perception of these texts. Results analysed to date suggest that a number of student translators faced challenges such as choosing a suitable translation method, omitting some key terms or words during the translation process, and managing their time, all of which may indicate a lack of practice in translating texts of this nature and lack of awareness regarding translation strategies most suitable for the genre.Keywords: Saudi Arabia Vision 2030, translation, tourism, reader reception, culture, heritage, translator training/competencies
Procedia PDF Downloads 4581 Induction Machine Design Method for Aerospace Starter/Generator Applications and Parametric FE Analysis
Authors: Wang Shuai, Su Rong, K. J.Tseng, V. Viswanathan, S. Ramakrishna
Abstract:
The More-Electric-Aircraft concept in aircraft industry levies an increasing demand on the embedded starter/generators (ESG). The high-speed and high-temperature environment within an engine poses great challenges to the operation of such machines. In view of such challenges, squirrel cage induction machines (SCIM) have shown advantages due to its simple rotor structure, absence of temperature-sensitive components as well as low torque ripples etc. The tight operation constraints arising from typical ESG applications together with the detailed operation principles of SCIMs have been exploited to derive the mathematical interpretation of the ESG-SCIM design process. The resultant non-linear mathematical treatment yielded unique solution to the SCIM design problem for each configuration of pole pair number p, slots/pole/phase q and conductors/slot zq, easily implemented via loop patterns. It was also found that not all configurations led to feasible solutions and corresponding observations have been elaborated. The developed mathematical procedures also proved an effective framework for optimization among electromagnetic, thermal and mechanical aspects by allocating corresponding degree-of-freedom variables. Detailed 3D FEM analysis has been conducted to validate the resultant machine performance against design specifications. To obtain higher power ratings, electrical machines often have to increase the slot areas for accommodating more windings. Since the available space for embedding such machines inside an engine is usually short in length, axial air gap arrangement appears more appealing compared to its radial gap counterpart. The aforementioned approach has been adopted in case studies of designing series of AFIMs and RFIMs respectively with increasing power ratings. Following observations have been obtained. Under the strict rotor diameter limitation AFIM extended axially for the increased slot areas while RFIM expanded radially with the same axial length. Beyond certain power ratings AFIM led to long cylinder geometry while RFIM topology resulted in the desired short disk shape. Besides the different dimension growth patterns, AFIMs and RFIMs also exhibited dissimilar performance degradations regarding power factor, torque ripples as well as rated slip along with increased power ratings. Parametric response curves were plotted to better illustrate the above influences from increased power ratings. The case studies may provide a basic guideline that could assist potential users in making decisions between AFIM and RFIM for relevant applications.Keywords: axial flux induction machine, electrical starter/generator, finite element analysis, squirrel cage induction machine
Procedia PDF Downloads 454580 Multicenter Evaluation of the ACCESS Anti-HCV Assay on the DxI 9000 ACCESS Immunoassay Analyzer, for the Detection of Hepatitis C Virus Antibody
Authors: Dan W. Rhodes, Juliane Hey, Magali Karagueuzian, Florianne Martinez, Yael Sandowski, Vanessa Roulet, Mahmoud Badawi, Mohammed-Amine Chakir, Valérie Simon, Jérémie Gautier, Françoise Le Boulaire, Catherine Coignard, Claire Vincent, Sandrine Greaume, Isabelle Voisin
Abstract:
Background: Beckman Coulter, Inc. (BEC) has recently developed a fully automated second-generation anti-HCV test on a new immunoassay platform. The objective of this multicenter study conducted in Europe was to evaluate the performance of the ACCESS anti-HCV assay on the recently CE-marked DxI 9000 ACCESS Immunoassay Analyzer as an aid in the diagnosis of HCV (Hepatitis C Virus) infection and as a screening test for blood and plasma donors. Methods: The clinical specificity of the ACCESS anti-HCV assay was determined using HCV antibody-negative samples from blood donors and hospitalized patients. Sample antibody status was determined by a CE-marked anti-HCV assay (Abbott ARCHITECTTM anti-HCV assay or Abbott PRISM HCV assay) with an additional confirmation method (Immunoblot testing with INNO-LIATM HCV Score - Fujirebio), if necessary, according to pre-determined testing algorithms. The clinical sensitivity was determined using known HCV antibody-positive samples, identified positive by Immunoblot testing with INNO-LIATM HCV Score - Fujirebio. HCV RNA PCR or genotyping was available on all Immunoblot positive samples for further characterization. The false initial reactive rate was determined on fresh samples from blood donors and hospitalized patients. Thirty (30) commercially available seroconversion panels were tested to assess the sensitivity for early detection of HCV infection. The study was conducted from November 2019 to March 2022. Three (3) external sites and one (1) internal site participated. Results: Clinical specificity (95% CI) was 99.7% (99.6 – 99.8%) on 5852 blood donors and 99.0% (98.4 – 99.4%) on 1527 hospitalized patient samples. There were 15 discrepant samples (positive on ACCESS anti-HCV assay and negative on both ARCHITECT and Immunoblot) observed with hospitalized patient samples, and of note, additional HCV RNA PCR results showed five (5) samples had positive HCV RNA PCR results despite the absence of HCV antibody detection by ARCHITECT and Immunoblot, suggesting a better sensitivity of the ACCESS anti-HCV assay with these five samples compared to the ARCHITECT and Immunoblot anti-HCV assays. Clinical sensitivity (95% CI) on 510 well-characterized, known HCV antibody-positive samples was 100.0% (99.3 – 100.0%), including 353 samples with known HCV genotypes (1 to 6). The overall false initial reactive rate (95% CI) on 6630 patient samples was 0.02% (0.00 – 0.09%). Results obtained on 30 seroconversion panels demonstrated that the ACCESS anti-HCV assay had equivalent sensitivity performances, with an average bleed difference since the first reactive bleed below one (1), compared to the ARCHITECTTM anti-HCV assay. Conclusion: The newly developed ACCESS anti-HCV assay from BEC for use on the DxI 9000 ACCESS Immunoassay Analyzer demonstrated high clinical sensitivity and specificity, equivalent to currently marketed anti-HCV assays, as well as a low false initial reactive rate.Keywords: DxI 9000 ACCESS Immunoassay Analyzer, HCV, HCV antibody, Hepatitis C virus, immunoassay
Procedia PDF Downloads 98579 Impact of Electric Field on the Optical Properties of Hydrophilic Quantum Dots
Authors: Valentina V. Goftman, Vladislav A. Pankratov, Alexey V. Markin, Tangi Aubert, Zeger Hens, Sarah De Saeger, Irina Yu. Goryacheva
Abstract:
The most important requirements for biochemical applicability of quantum dots (QDs) are: 1) the surface cap should render intact or improved optical properties; 2) mono-dispersion and good stability in aqueous phase in a wide range of pH and ionic strength values; 3) presence of functional groups, available for bioconjugation; 4) minimal impact from the environment on the QDs’ properties and, vice versa, minimal influence of the QDs’ components on the environment; and 5) stability against chemical/biochemical/physical influence. The latter is especially important for in vitro and in vivo applications. For example, some physical intracellular delivery strategies (e.g., electroporation) imply a rapid high-voltage electric field impulse in order to temporarily generate hydrophilic pores in the cell plasma membrane, necessary for the passive transportation of QDs into the cell. In this regard, it is interesting to investigate how different capping layers, which can provide high stability and sufficient fluorescent properties of QDs in a water solution, behave under these abnormal conditions. In this contribution, hydrophobic core-shell CdSe/CdS/CdZnS/ZnS QDs (λem=600 nm), produced by means of the Successive Ion Layer Adsorption and Reaction (SILAR) technique, were transferred to a water solution using two of the most commonly used methods: (i) encapsulation in an amphiphilic brush polymer based on poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with polyethylene glycol (PEG) chains and (ii) silica covering. Polymer encapsulation preserves the initial ligands on the QDs’ surface owing to the hydrophobic attraction between the hydrophobic groups of the amphiphilic molecules and the surface hydrophobic groups of the QDs. This covering process allows maintaining the initial fluorescent properties, but it leads to a considerable increase of the QDs’ size. However, covering with a silica shell, by means of the reverse microemulsion method, allows maintaining both size and fluorescent properties of the initial QDs. The obtained water solutions of polymer covered and silica-coated QDs in three different concentrations were exposed to a low-voltage electric field for a short time and the fluorescent properties were investigated. It is shown that the PMAO-PEG polymer acquires some additional charges in the presence of the electric field, which causes repulsion between the polymer and the QDs’ surface. This process destroys the homogeneity of the whole amphiphilic shell and it dramatically decreases the fluorescent properties (dropping to 10% from its initial value) because of the direct contact of the QDs with the strongly oxidative environment (water). In contrast, a silica shell possesses dielectric properties which allow retaining 90% of its initial fluorescence intensity, even after a longer electric impact. Thus, silica shells are clearly a preferable covering for bio-application of QDs, because – besides the high uniform morphology, controlled size and biocompatibility – it allows protecting QDs from oxidation, even under the influence of an electric field.Keywords: electric field, polymer coating, quantum dots, silica covering, stability
Procedia PDF Downloads 457578 A Case of Borderline Personality Disorder: An Explanatory Study of Unconscious Conflicts through Dream-Analysis
Authors: Mariam Anwaar, Kiran B. Ahmad
Abstract:
Borderline Personality Disorder (BPD) is an invasive presence of affect instability, disturbance in self-concept and attachment in relationships. The profound indicator is the dichotomous approach of the world in which the ego categorizes individuals, especially their significant others, into secure or threatful beings, leaving little room for a complex combination of characteristics in one person. This defense mechanism of splitting their world has been described through the explanatory model of unconscious conflict theorized by Sigmund Freud’s Electra Complex in the Phallic Stage. The central role is of the father with whom the daughter experiences penis envy, thus identifying with the mother’s characteristics to receive the father’s attention. However, Margret Mahler, an object relation theorist, elucidates the central role of the mother and that the split occurs during the pre-Electra complex stage. Amid the 14 and 24 months of the infant, it acknowledges the world away from the mother as they have developed milestones such as crawling. In such novelty, the infant crawls away from the mother creating a sense of independence (individuation). On the other hand, being distant causes anxiety, making them return to their original object of security (separation). In BPD, the separation-individuation stage is disrupted, due to contradictory actions of the caregiver, which results in splitting the object into negative and positive aspects, repressing the former and adhering to the latter for survival. Thus, with time, the ego distorts the reality into dichotomous categories, using the splitting defenses, and the mental representation of the self is distorted due to the internalization of the negative objects. The explanatory model was recognized in the case study of Fizza, at 21-year-old Pakistani female, residing in Karachi. Her marital status is single with an occupation being a dental student. Fizza lives in a nuclear family but is surrounded by her extended family as they all are in close vicinity. She came with the complaints of depressive symptoms for two-years along with self-harm due to severe family conflicts. Through the intervention of Dialectical Behavior Therapy (DBT), the self-harming actions were reduced, however, this libidinal energy transformed into claustrophobic symptoms and, along with this, Fizza has always experienced vivid dreams. A retrospective method of Jungian dream-analysis was applied to locate the origins of the splitting in the unconscious. The result was the revelation of a sexual harassment trauma at the age of six-years which was displaced in the form of self-harm. In addition to this, the presence of a conflict at the separation-individuation stage was detected during the dream-analysis, and it was the underlying explanation of the claustrophobic symptoms. This qualitative case study implicates the use of a patient’s subjective experiences, such as dreams, to journey through the spiral of the unconscious in order to not only detect repressed memories but to use them in psychotherapy as a means of healing the patient.Keywords: borderline personality disorder, dream-analysis, Electra complex, separation-individuation, splitting, unconscious
Procedia PDF Downloads 152577 Alkaloid Levels in Experimental Lines of Ryegrass in Southtern Chile
Authors: Leonardo Parra, Manuel Chacón-Fuentes, Andrés Quiroz
Abstract:
One of the most important factors in beef and dairy production in the world as well as also in Chile, is related to the correct choice of cultivars or mixtures of forage grasses and legumes to ensure high yields and quality of grassland. However, a great problem is the persistence of the grasses as a result of the action of different hypogeous as epigean pests. The complex insect pests associated with grassland include white grubs (Hylamorpha elegans, Phytoloema herrmanni), blackworm (Dalaca pallens) and Argentine stem weevil (Listronotus bonariensis). In Chile, the principal strategy utilized for controlling this pest is chemical control, through the use of synthetic insecticides, however, underground feeding habits of larval and flight activity of adults makes this uneconomic method. Furthermore, due to problems including environmental degradation, development of resistance and chemical residues, there is a worldwide interest in the use of alternative environmentally friendly pest control methods. In this sense, in recent years there has been an increasing interest in determining the role of endophyte fungi in controlling epigean and hypogeous pest. Endophytes from ryegrass (Lolium perenne), establish a biotrophic relationship with the host, defined as mutualistic symbiosis. The plant-fungi association produces a “cocktail of alkaloids” where peramine is the main toxic substance present in endophyte of ryegrass and responsible for damage reduction of L. bonariensis. In the last decade, few studies have been developed on the effectiveness of new ryegrass cultivars carriers of endophyte in controlling insect pests. Therefore, the aim of this research is to provide knowledge concerning to evaluate the alkaloid content, such as peramine and Lolitrem B, present in new experimental lines of ryegrass and feasible to be used in grasslands of southern Chile. For this, during 2016, ryegrass plants of six experimental lines and two commercial cultivars sown at the Instituto de Investigaciones Agropecuarias Carrillanca (Vilcún, Chile) were collected and subjected to a process of chemical extraction to identify and quantify the presence of peramine and lolitrem B by the technique of liquid chromatography of high resolution (HPLC). The results indicated that the experimental lines EL-1 and EL-3 had high content of peramine (0.25 and 0.43 ppm, respectively) than with lolitrem B (0.061 and 0.19 ppm, respectively). Furthermore, the higher contents of lolitrem B were detected in the EL-4 and commercial cultivar Alto (positive control) with 0.08 and 0.17 ppm, respectively. Peramine and lolitrem B were not detected in the cultivar Jumbo (negative control). These results suggest that EL-3 would have potential as future cultivate because it has high content of peramine, alkaloid responsible for controlling insect pest. However, their current role on the complex insects attacking ryegrass grasslands should be evaluated. The information obtained in this research could be used to improve control strategies against hypogeous and epigean pests of grassland in southern Chile and also to reduce the use of synthetic pesticides.Keywords: HPLC, Lolitrem B, peramine, pest
Procedia PDF Downloads 241576 Evaluation of Correct Usage, Comfort and Fit of Personal Protective Equipment in Construction Work
Authors: Anna-Lisa Osvalder, Jonas Borell
Abstract:
There are several reasons behind the use, non-use, or inadequate use of personal protective equipment (PPE) in the construction industry. Comfort and accurate size support proper use, while discomfort, misfit, and difficulties to understand how the PPEs should be handled inhibit correct usage. The need for several protective equipments simultaneously might also create problems. The purpose of this study was to analyse the correct usage, comfort, and fit of different types of PPEs used for construction work. Correct usage was analysed as guessability, i.e., human perceptions of how to don, adjust, use, and doff the equipment, and if used as intended. The PPEs tested individually or in combinations were a helmet, ear protectors, goggles, respiratory masks, gloves, protective cloths, and safety harnesses. First, an analytical evaluation was performed with ECW (enhanced cognitive walkthrough) and PUEA (predictive use error analysis) to search for usability problems and use errors during handling and use. Then usability tests were conducted to evaluate guessability, comfort, and fit with 10 test subjects of different heights and body constitutions. The tests included observations during donning, five different outdoor work tasks, and doffing. The think-aloud method, short interviews, and subjective estimations were performed. The analytical evaluation showed that some usability problems and use errors arise during donning and doffing, but with minor severity, mostly causing discomfort. A few use errors and usability problems arose for the safety harness, especially for novices, where some could lead to a high risk of severe incidents. The usability tests showed that discomfort arose for all test subjects when using a combination of PPEs, increasing over time. For instance, goggles, together with the face mask, caused pressure, chafing at the nose, and heat rash on the face. This combination also limited sight of vision. The helmet, in combination with the goggles and ear protectors, did not fit well and caused uncomfortable pressure at the temples. No major problems were found with the individual fit of the PPEs. The ear protectors, goggles, and face masks could be adjusted for different head sizes. The guessability for how to don and wear the combination of PPE was moderate, but it took some time to adjust them for a good fit. The guessability was poor for the safety harness; few clues in the design showed how it should be donned, adjusted, or worn on the skeletal bones. Discomfort occurred when the straps were tightened too much. All straps could not be adjusted for somebody's constitutions leading to non-optimal safety. To conclude, if several types of PPEs are used together, discomfort leading to pain is likely to occur over time, which can lead to misuse, non-use, or reduced performance. If people who are not regular users should wear a safety harness correctly, the design needs to be improved for easier interpretation, correct position of the straps, and increased possibilities for individual adjustments. The results from this study can be a base for re-design ideas for PPE, especially when they should be used in combinations.Keywords: construction work, PPE, personal protective equipment, misuse, guessability, usability
Procedia PDF Downloads 85575 Arisarum Vulgare: Bridging Tradition and Science through Phytochemical Characterization and Exploring Therapeutic Potential via in vitro and in vivo Biological Activities
Authors: Boudjelal Amel
Abstract:
Arisarum vulgare, a member of the Araceae family, is an herbaceous perennial widely distributed in the Mediterranean region. A. vulgare is recognized for its medicinal properties and holds significant traditional importance in Algeria for the treatment of various human ailments, including pain, infections, inflammation, digestive disorders, skin problems, eczema, cancer, wounds, burns and gynecological diseases. Despite its extensive traditional use, scientific exploration of A. vulgare remains limited. The study aims to investigate for the first time the therapeutic potential of A. vulgare ethanolic extract obtained by ultrasound-assisted extraction. The chemical composition of the extract was determined by LC-MS/MS analysis. For in vitro phytopharmacological evaluation, several assays, including DPPH, ABTS, FRAP and reducing power, were employed to evaluate the antioxidant activity. The antibacterial activity was assessed againt Escherichia coli, Salmonella typhimurium, Staphylococus aureus, Enterococcus feacium by disk diffusion and microdilution methods. The possible inhibitory activity of ethanolic extract was analyzed against the cholinesterases enzymes (AChE and BChE). The DNA protection activity of A. vulgare ethanolic extract was estimated using the agarose gel electrophoresis method. The capacities of the extract to protect plasmid DNA (pBR322) from the oxidizing effects of H2O2 and UV treatment were evaluated by their DNA-breaking forms. The in vivo wound healing potential of a traditional ointment containing 5% of A. vulgare ethanolic extract was also investigated. The LC-MS/MS profiling of the extract revealed the presence of various bioactive compounds, including naringenin, chlorogenic, vanillic, cafeic, coumaric acids, trans-cinnamic and trans ferrulic acids. The plant extract presented considerable antioxidant potential, being the most active for Reducing power (0,07326±0.001 mg/ml) and DPPH (0.14±0.004 mg/ml). The extract showed the highest inhibition zone diameter against Enterococcus feacium (36±0.1 mm). The ethanolic extract of A. vulgare suppressed the growth of Staphylococus aureus, Escherichia coli and Salmonella typhimurium according to the MIC values. The extract of the plant significantly inhibited both AChE and BChE enzymes. DNA protection activity of the A. vulgare extract was determined as 90.41% for form I and 51.92% for form II. The in vivo experiments showed that 5% ethanolic extract ointment accelerated the wound healing process. The topical application of the traditional formulation enhanced wound closure (95,36±0,6 %) and improved histological parameters in the treated group compared to the control groups. The promising biological properties of Arisarum vulgare revealed that the plant could be appraised as a potential origin of bioactive molecules having multifunctional medicinal uses.Keywords: arisarum vulgare, LC-MS/MS, antioxidant activity, antimicrobial activity, cholinesterases enzymes inhibition, dna-damage activity, in vivo wound healing
Procedia PDF Downloads 66574 Predictors, Barriers, and Facilitators to Refugee Women’s Employment and Economic Inclusion: A Mixed Methods Systematic Review
Authors: Areej Al-Hamad, Yasin Yasin, Kateryna Metersky
Abstract:
This mixed-method systematic review and meta-analysis provide an encompassing understanding of the barriers, facilitators, and predictors of refugee women's employment and economic inclusion. The study sheds light on the complex interplay of sociocultural, personal, political, and environmental factors influencing these outcomes, underlining the urgent need for a multifaceted, tailored approach to devising strategies, policies, and interventions aimed at boosting refugee women's economic empowerment. Our findings suggest that sociocultural factors, including gender norms, societal attitudes, language proficiency, and social networks, profoundly shape refugee women's access to and participation in the labor market. Personal factors such as age, educational attainment, health status, skills, and previous work experience also play significant roles. Political factors like immigration policies, regulations, and rights to work, alongside environmental factors like labor market conditions, availability of employment opportunities, and access to resources and support services, further contribute to the complex dynamics influencing refugee women's economic inclusion. The significant variability observed in the impacts of these factors across different contexts underscores the necessity of adopting population and region-specific strategies. A one-size-fits-all approach may prove to be ineffective due to the diversity and unique circumstances of refugee women across different geographical, cultural, and political contexts. The study's findings have profound implications for policy-making, practice, education, and research. The insights garnered a call for coordinated efforts across these domains to bolster refugee women's economic participation. In policy-making, the findings necessitate a reassessment of current immigration and labor market policies to ensure they adequately support refugee women's employment and economic integration. In practice, they highlight the need for comprehensive, tailored employment services and interventions that address the specific barriers and leverage the facilitators identified. In education, they underline the importance of language and skills training programs that cater to the unique needs and circumstances of refugee women. Lastly, in research, they emphasize the need for ongoing investigations into the multifaceted factors influencing refugee women's employment experiences, allowing for continuous refinement of our understanding and interventions. Through this comprehensive exploration, the study contributes to ongoing efforts aimed at creating more inclusive, equitable societies. By continually refining our understanding of the complex factors influencing refugee women's employment experiences, we can pave the way toward enhanced economic empowerment for this vulnerable population.Keywords: refugee women, employment barriers, systematic review, employment facilitators
Procedia PDF Downloads 78573 Mechanical Response Investigation of Wafer Probing Test with Vertical Cobra Probe via the Experiment and Transient Dynamic Simulation
Authors: De-Shin Liu, Po-Chun Wen, Zhen-Wei Zhuang, Hsueh-Chih Liu, Pei-Chen Huang
Abstract:
Wafer probing tests play an important role in semiconductor manufacturing procedures in accordance with the yield and reliability requirement of the wafer after the backend-of-the-line process. Accordingly, the stable physical and electrical contact between the probe and the tested wafer during wafer probing is regarded as an essential issue in identifying the known good die. The probe card can be integrated with multiple probe needles, which are classified as vertical, cantilever and micro-electro-mechanical systems type probe selections. Among all potential probe types, the vertical probe has several advantages as compared with other probe types, including maintainability, high probe density and feasibility for high-speed wafer testing. In the present study, the mechanical response of the wafer probing test with the vertical cobra probe on 720 μm thick silicon (Si) substrate with a 1.4 μm thick aluminum (Al) pad is investigated by the experiment and transient dynamic simulation approach. Because the deformation mechanism of the vertical cobra probe is determined by both bending and buckling mechanisms, the stable correlation between contact forces and overdrive (OD) length must be carefully verified. Moreover, the decent OD length with corresponding contact force contributed to piercing the native oxide layer of the Al pad and preventing the probing test-induced damage on the interconnect system. Accordingly, the scratch depth of the Al pad under various OD lengths is estimated by the atomic force microscope (AFM) and simulation work. In the wafer probing test configuration, the contact phenomenon between the probe needle and the tested object introduced large deformation and twisting of mesh gridding, causing the subsequent numerical divergence issue. For this reason, the arbitrary Lagrangian-Eulerian method is utilized in the present simulation work to conquer the aforementioned issue. The analytic results revealed a slight difference when the OD is considered as 40 μm, and the simulated is almost identical to the measured scratch depths of the Al pad under higher OD lengths up to 70 μm. This phenomenon can be attributed to the unstable contact of the probe at low OD length with the scratch depth below 30% of Al pad thickness, and the contact status will be being stable when the scratch depth over 30% of pad thickness. The splash of the Al pad is observed by the AFM, and the splashed Al debris accumulates on a specific side; this phenomenon is successfully simulated in the transient dynamic simulation. Thus, the preferred testing OD lengths are found as 45 μm to 70 μm, and the corresponding scratch depths on the Al pad are represented as 31.4% and 47.1% of Al pad thickness, respectively. The investigation approach demonstrated in this study contributed to analyzing the mechanical response of wafer probing test configuration under large strain conditions and assessed the geometric designs and material selections of probe needles to meet the requirement of high resolution and high-speed wafer-level probing test for thinned wafer application.Keywords: wafer probing test, vertical probe, probe mark, mechanical response, FEA simulation
Procedia PDF Downloads 54572 Characterization and Evaluation of the Dissolution Increase of Molecular Solid Dispersions of Efavirenz
Authors: Leslie Raphael de M. Ferraz, Salvana Priscylla M. Costa, Tarcyla de A. Gomes, Giovanna Christinne R. M. Schver, Cristóvão R. da Silva, Magaly Andreza M. de Lyra, Danilo Augusto F. Fontes, Larissa A. Rolim, Amanda Carla Q. M. Vieira, Miracy M. de Albuquerque, Pedro J. Rolim-Neto
Abstract:
Efavirenz (EFV) is a drug used as first-line treatment of AIDS. However, it has poor aqueous solubility and wettability, presenting problems in the gastrointestinal tract absorption and bioavailability. One of the most promising strategies to improve the solubility is the use of solid dispersions (SD). Therefore, this study aimed to characterize SD EFZ with the polymers: PVP-K30, PVPVA 64 and SOLUPLUS in order to find an optimal formulation to compose a future pharmaceutical product for AIDS therapy. Initially, Physical Mixtures (PM) and SD with the polymers were obtained containing 10, 20, 50 and 80% of drug (w/w) by the solvent method. The best formulation obtained between the SD was selected by in vitro dissolution test. Finally, the drug-carrier system chosen, in all ratios obtained, were analyzed by the following techniques: Differential Scanning Calorimetry (DSC), polarization microscopy, Scanning Electron Microscopy (SEM) and spectrophotometry of absorption in the region of infrared (IR). From the dissolution profiles of EFV, PM and SD, the values of area Under The Curve (AUC) were calculated. The data showed that the AUC of all PM is greater than the isolated EFV, this result is derived from the hydrophilic properties of the polymers thus favoring a decrease in surface tension between the drug and the dissolution medium. In adittion, this ensures an increasing of wettability of the drug. In parallel, it was found that SD whom had higher AUC values, were those who have the greatest amount of polymer (with only 10% drug). As the amount of drug increases, it was noticed that these results either decrease or are statistically similar. The AUC values of the SD using the three different polymers, followed this decreasing order: SD PVPVA 64-EFV 10% > SD PVP-K30-EFV 10% > SD Soluplus®-EFV 10%. The DSC curves of SD’s did not show the characteristic endothermic event of drug melt process, suggesting that the EFV was converted to its amorphous state. The analysis of polarized light microscopy showed significant birefringence of the PM’s, but this was not observed in films of SD’s, thus suggesting the conversion of the drug from the crystalline to the amorphous state. In electron micrographs of all PM, independently of the percentage of the drug, the crystal structure of EFV was clearly detectable. Moreover, electron micrographs of the SD with the two polymers in different ratios investigated, we observed the presence of particles with irregular size and morphology, also occurring an extensive change in the appearance of the polymer, not being possible to differentiate the two components. IR spectra of PM corresponds to the overlapping of polymer and EFV bands indicating thereby that there is no interaction between them, unlike the spectra of all SD that showed complete disappearance of the band related to the axial deformation of the NH group of EFV. Therefore, this study was able to obtain a suitable formulation to overcome the solubility limitations of the EFV, since SD PVPVA 64-EFZ 10% was chosen as the best system in delay crystallization of the prototype, reaching higher levels of super saturation.Keywords: characterization, dissolution, Efavirenz, solid dispersions
Procedia PDF Downloads 629571 Spectral Responses of the Laser Generated Coal Aerosol
Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Tomi Smausz, Zoltán Kónya, Béla Hopp, Gábor Szabó, Zoltán Bozóki
Abstract:
Characterization of spectral responses of light absorbing carbonaceous particulate matter (LAC) is of great importance in both modelling its climate effect and interpreting remote sensing measurement data. The residential or domestic combustion of coal is one of the dominant LAC constituent. According to some related assessments the residential coal burning account for roughly half of anthropogenic BC emitted from fossil fuel burning. Despite of its significance in climate the comprehensive investigation of optical properties of residential coal aerosol is really limited in the literature. There are many reason of that starting from the difficulties associated with the controlled burning conditions of the fuel, through the lack of detailed supplementary proximate and ultimate chemical analysis enforced, the interpretation of the measured optical data, ending with many analytical and methodological difficulties regarding the in-situ measurement of coal aerosol spectral responses. Since the gas matrix of ambient can significantly mask the physicochemical characteristics of the generated coal aerosol the accurate and controlled generation of residential coal particulates is one of the most actual issues in this research area. Most of the laboratory imitation of residential coal combustion is simply based on coal burning in stove with ambient air support allowing one to measure only the apparent spectral feature of the particulates. However, the recently introduced methodology based on a laser ablation of solid coal target opens up novel possibilities to model the real combustion procedure under well controlled laboratory conditions and makes the investigation of the inherent optical properties also possible. Most of the methodology for spectral characterization of LAC is based on transmission measurement made of filter accumulated aerosol or deduced indirectly from parallel measurements of scattering and extinction coefficient using free floating sampling. In the former one the accuracy while in the latter one the sensitivity are liming the applicability of this approaches. Although the scientific community are at the common platform that aerosol-phase PhotoAcoustic Spectroscopy (PAS) is the only method for precise and accurate determination of light absorption by LAC, the PAS based instrumentation for spectral characterization of absorption has only been recently introduced. In this study, the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols are demonstrated. The experimental set-up and its characteristic for residential coal aerosol generation are introduced here. The optical absorption and the scattering coefficients as well as their wavelength dependency are determined by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, some correlation between the proximate and ultimate chemical as well as the measured or deduced optical parameters are also revealed.Keywords: absorption, scattering, residential coal, aerosol generation by laser ablation
Procedia PDF Downloads 358570 Offshore Facilities Load Out: Case Study of Jacket Superstructure Loadout by Strand Jacking Skidding Method
Authors: A. Rahim Baharudin, Nor Arinee binti Mat Saaud, Muhammad Afiq Azman, Farah Adiba A. Sani
Abstract:
Objectives: This paper shares the case study on the engineering analysis, data analysis, and real-time data comparison for qualifying the stand wires' minimum breaking load and safe working load upon loadout operation for a new project and, at the same time, eliminate the risk due to discrepancies and unalignment of COMPANY Technical Standards to Industry Standards and Practices. This paper demonstrates “Lean Construction” for COMPANY’s Project by sustaining fit-for-purpose Technical Requirements of Loadout Strand Wire Factor of Safety (F.S). The case study utilizes historical engineering data from a few loadout operations by skidding methods from different projects. It is also demonstrating and qualifying the skidding wires' minimum breaking load and safe working load used for loadout operation for substructure and other facilities for the future. Methods: Engineering analysis and comparison of data were taken as referred to the international standard and internal COMPANY standard requirements. Data was taken from nine (9) previous projects for both topsides and jacket facilities executed at the several local fabrication yards where load out was conducted by three (3) different service providers with emphasis on four (4) basic elements: i) Industry Standards for Loadout Engineering and Operation Reference: COMPANY internal standard was referred to superseded documents of DNV-OS-H201 and DNV/GL 0013/ND. DNV/GL 0013/ND and DNVGL-ST-N001 do not mention any requirements of Strand Wire F.S of 4.0 for Skidding / Pulling Operations. ii) Reference to past Loadout Engineering and Execution Package: Reference was made to projects delivered by three (3) major offshore facilities operators. Strand Wire F.S observed ranges from 2.0 MBL (Min) to 2.5 MBL (Max). No Loadout Operation using the requirements of 4.0 MBL was sighted from the reference. iii) Strand Jack Equipment Manufacturer Datasheet Reference: Referring to Strand Jack Equipment Manufactured Datasheet by different loadout service providers, it is shown that the Designed F.S for the equipment is also ranging between 2.0 ~ 2.5. Eight (8) Strand Jack Datasheet Model was referred to, ranging from 15 Mt to 850 Mt Capacity; however, there are NO observations of designed F.S 4.0 sighted. iv) Site Monitoring on Actual Loadout Data and Parameter: Max Load on Strand Wire was captured during 2nd Breakout, which is during Static Condition of 12.9 MT / Strand Wire (67.9% Utilization). Max Load on Strand Wire for Dynamic Conditions during Step 8 and Step 12 is 9.4 Mt / Strand Wire (49.5% Utilization). Conclusion: This analysis and study demonstrated the adequacy of strand wires supplied by the service provider were technically sufficient in terms of strength, and via engineering analysis conducted, the minimum breaking load and safe working load utilized and calculated for the projects were satisfied and operated safely for the projects. It is recommended from this study that COMPANY’s technical requirements are to be revised for future projects’ utilization.Keywords: construction, load out, minimum breaking load, safe working load, strand jacking, skidding
Procedia PDF Downloads 111569 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting
Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey
Abstract:
Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method
Procedia PDF Downloads 78568 Superparamagnetic Sensor with Lateral Flow Immunoassays as Platforms for Biomarker Quantification
Authors: M. Salvador, J. C. Martinez-Garcia, A. Moyano, M. C. Blanco-Lopez, M. Rivas
Abstract:
Biosensors play a crucial role in the detection of molecules nowadays due to their advantages of user-friendliness, high selectivity, the analysis in real time and in-situ applications. Among them, Lateral Flow Immunoassays (LFIAs) are presented among technologies for point-of-care bioassays with outstanding characteristics such as affordability, portability and low-cost. They have been widely used for the detection of a vast range of biomarkers, which do not only include proteins but also nucleic acids and even whole cells. Although the LFIA has traditionally been a positive/negative test, tremendous efforts are being done to add to the method the quantifying capability based on the combination of suitable labels and a proper sensor. One of the most successful approaches involves the use of magnetic sensors for detection of magnetic labels. Bringing together the required characteristics mentioned before, our research group has developed a biosensor to detect biomolecules. Superparamagnetic nanoparticles (SPNPs) together with LFIAs play the fundamental roles. SPMNPs are detected by their interaction with a high-frequency current flowing on a printed micro track. By means of the instant and proportional variation of the impedance of this track provoked by the presence of the SPNPs, quantitative and rapid measurement of the number of particles can be obtained. This way of detection requires no external magnetic field application, which reduces the device complexity. On the other hand, the major limitations of LFIAs are that they are only qualitative or semiquantitative when traditional gold or latex nanoparticles are used as color labels. Moreover, the necessity of always-constant ambient conditions to get reproducible results, the exclusive detection of the nanoparticles on the surface of the membrane, and the short durability of the signal are drawbacks that can be advantageously overcome with the design of magnetically labeled LFIAs. The approach followed was to coat the SPIONs with a specific monoclonal antibody which targets the protein under consideration by chemical bonds. Then, a sandwich-type immunoassay was prepared by printing onto the nitrocellulose membrane strip a second antibody against a different epitope of the protein (test line) and an IgG antibody (control line). When the sample flows along the strip, the SPION-labeled proteins are immobilized at the test line, which provides magnetic signal as described before. Preliminary results using this practical combination for the detection and quantification of the Prostatic-Specific Antigen (PSA) shows the validity and consistency of the technique in the clinical range, where a PSA level of 4.0 ng/mL is the established upper normal limit. Moreover, a LOD of 0.25 ng/mL was calculated with a confident level of 3 according to the IUPAC Gold Book definition. Its versatility has also been proved with the detection of other biomolecules such as troponin I (cardiac injury biomarker) or histamine.Keywords: biosensor, lateral flow immunoassays, point-of-care devices, superparamagnetic nanoparticles
Procedia PDF Downloads 229567 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 388566 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data
Authors: Andrea Ghermandi
Abstract:
Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds
Procedia PDF Downloads 179565 A Brief Review on Doping in Sports and Performance-Enhancing Drugs
Authors: Zahra Mohajer, Afsaneh Soltani
Abstract:
Doping is a major issue in competitive sports and is favored by vast groups of athletes. The feeling of being higher-ranking than others and gaining fame has caused many athletes to misuse drugs. The definition of doping is to use prohibited substances and/or methods that help physical or mental performances or both. Doping counts as the illegal use of chemical substances or drugs, excessive amounts of physiological substances to increase the performance at or out of competition or even the use of inappropriate medications to treat an injury to gain the ability to participate in a competition. The International Olympic Committee (IOC) and World Anti-Doping Agency (WADA) have forbidden these substances to ensure fair and equal competition and also the health of the competitors. As of 2004 WADA has published an international list of illegal substances used for doping, which is updated annually. In the process of the Genome Project scientists have gained the ability to treat numerous diseases by gene therapy, which may result in bodily performance increase and therefore a potential opportunity to misuse by some athletes. Gene doping is defined as the non-therapeutic direct and indirect genetic modifications using genetic materials that can improve the performances in sports events. Biosynthetic drugs are a form of indirect genetic engineering. The method can be performed in three ways such as injecting the DNA directly into the muscle, inserting the genetically engineered cells, or transferring the DNA using a virus as a vector. Erythropoietin is a hormone majorly released by the kidney and in small amounts by the liver. Its function is to stimulate the erythropoiesis and therefore the more production of red blood cells (RBC) which causes an increase in Hemoglobin (Hb). During this process, the oxygen delivery to muscles will increase, which will improve athletic performance and postpone exhaustion. There are ways to increase the oxygen transferred to muscles such as blood transfusion, stimulating the production of red blood cells by using Erythropoietin (EPO), and also using allosteric effectors of Hemoglobin. EPO can either be injected as a protein or can be inserted into the cells as the gene which encodes EPO. Adeno-associated viruses have been employed to deliver the EPO gene to the cells. Employing the genes that naturally exist in the human body such as the EPO gene can reduce the risk of detecting gene doping. The first research about blood doping was conducted in 1947. The study has shown that an increase in hematocrit (HCT) up to 55% following homologous transfusion makes it more unchallenging for the body to perform the exercise at the altitude. Thereafter athletes’ attraction to blood infusion escalated. Also, a study has demonstrated that by reinfusing their own blood 4 weeks after being drawn, three men have shown a rise in Hb level which improved the oxygen uptake, and a delay in exhaustion. The list of performance-enhancing drugs is published by WADA annually and includes the following drugs: anabolic agents, hormones, Beta-2 agonists, Beta-blockers, Diuretics, Stimulants, narcotics, cannabinoids, and corticosteroids.Keywords: doping, PEDs, sports, WADA
Procedia PDF Downloads 105564 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics
Authors: Animesh Pan, Geoffrey D. Bothun
Abstract:
With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting
Procedia PDF Downloads 126563 Development and Evaluation of Economical Self-cleaning Cement
Authors: Anil Saini, Jatinder Kumar Ratan
Abstract:
Now a day, the key issue for the scientific community is to devise the innovative technologies for sustainable control of urban pollution. In urban cities, a large surface area of the masonry structures, buildings, and pavements is exposed to the open environment, which may be utilized for the control of air pollution, if it is built from the photocatalytically active cement-based constructional materials such as concrete, mortars, paints, and blocks, etc. The photocatalytically active cement is formulated by incorporating a photocatalyst in the cement matrix, and such cement is generally known as self-cleaning cement In the literature, self-cleaning cement has been synthesized by incorporating nanosized-TiO₂ (n-TiO₂) as a photocatalyst in the formulation of the cement. However, the utilization of n-TiO₂ for the formulation of self-cleaning cement has the drawbacks of nano-toxicity, higher cost, and agglomeration as far as the commercial production and applications are concerned. The use of microsized-TiO₂ (m-TiO₂) in place of n-TiO₂ for the commercial manufacture of self-cleaning cement could avoid the above-mentioned problems. However, m-TiO₂ is less photocatalytically active as compared to n- TiO₂ due to smaller surface area, higher band gap, and increased recombination rate. As such, the use of m-TiO₂ in the formulation of self-cleaning cement may lead to a reduction in photocatalytic activity, thus, reducing the self-cleaning, depolluting, and antimicrobial abilities of the resultant cement material. So improvement in the photoactivity of m-TiO₂ based self-cleaning cement is the key issue for its practical applications in the present scenario. The current work proposes the use of surface-fluorinated m-TiO₂ for the formulation of self-cleaning cement to enhance its photocatalytic activity. The calcined dolomite, a constructional material, has also been utilized as co-adsorbent along with the surface-fluorinated m-TiO₂ in the formulation of self-cleaning cement to enhance the photocatalytic performance. The surface-fluorinated m-TiO₂, calcined dolomite, and the formulated self-cleaning cement were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), BET (Brunauer–Emmett–Teller) surface area, and energy dispersive X-ray fluorescence spectrometry (EDXRF). The self-cleaning property of the as-prepared self-cleaning cement was evaluated using the methylene blue (MB) test. The depolluting ability of the formulated self-cleaning cement was assessed through a continuous NOX removal test. The antimicrobial activity of the self-cleaning cement was appraised using the method of the zone of inhibition. The as-prepared self-cleaning cement obtained by uniform mixing of 87% clinker, 10% calcined dolomite, and 3% surface-fluorinated m-TiO₂ showed a remarkable self-cleaning property by providing 53.9% degradation of the coated MB dye. The self-cleaning cement also depicted a noteworthy depolluting ability by removing 5.5% of NOx from the air. The inactivation of B. subtiltis bacteria in the presence of light confirmed the significant antimicrobial property of the formulated self-cleaning cement. The self-cleaning, depolluting, and antimicrobial results are attributed to the synergetic effect of surface-fluorinated m-TiO₂ and calcined dolomite in the cement matrix. The present study opens an idea and route for further research for acile and economical formulation of self-cleaning cement.Keywords: microsized-titanium dioxide (m-TiO₂), self-cleaning cement, photocatalysis, surface-fluorination
Procedia PDF Downloads 167562 Culturally Relevant Education Challenges and Threats in the US Secondary Classroom
Authors: Owen Cegielski, Kristi Maida, Danny Morales, Sylvia L. Mendez
Abstract:
This study explores the challenges and threats US secondary educators experience in incorporating culturally relevant education (CRE) practices in their classrooms. CRE is a social justice pedagogical practice used to connect student’s cultural references to academic skills and content, to promote critical reflection, to facilitate cultural competence, and to critique discourses of power and oppression. Empirical evidence on CRE demonstrates positive student educational outcomes in terms of achievement, engagement, and motivation. Additionally, due to the direct focus on uplifting diverse cultures through the curriculum, students experience greater feelings of belonging, increased interest in the subject matter, and stronger racial/ethnic identities. When these teaching practices are in place, educators develop deeper relationships with their students and appreciate the multitude of gifts they (and their families) bring to the classroom environment. Yet, educators regularly report being unprepared to incorporate CRE in their daily teaching practice and identify substantive gaps in their knowledge and skills in this area. Often, they were not exposed to CRE in their educator preparation program, nor do they receive adequate support through school- or district-wide professional development programming. Through a descriptive phenomenological research design, 20 interviews were conducted with a diverse set of secondary school educators to explore the challenges and threats they experience in incorporating CRE practices in their classrooms. The guiding research question for this study is: What are the challenges and threats US secondary educators face when seeking to incorporate CRE practices in their classrooms? Interviews were grounded by the theory of challenge and threat states, which highlights the ways in which challenges and threats are appraised and how resources factor into emotional valence and perception, as well as the potential to meet the task at hand. Descriptive phenomenological data analysis strategies were utilized to develop an essential structure of the educators’ views of challenges and threats in regard to incorporating CRE practices in their secondary classrooms. The attitude of the phenomenological reduction method was adopted, and the data were analyzed through five steps: sense of the whole, meaning units, transformation, structure, and essential structure. The essential structure that emerged was while secondary educators display genuine interest in learning how to successfully incorporate CRE practices, they perceive it to be a challenge (and not a threat) due to lack of exposure which diminishes educator capacity, comfort, and confidence in employing CRE practices. These findings reveal the value of attending to emotional valence and perception of CRE in promoting this social justice pedagogical practice. Findings also reveal the importance of appropriately resourcing educators with CRE support to ensure they develop and utilize this practice.Keywords: culturally relevant education, descriptive phenomenology, social justice practice, US secondary education
Procedia PDF Downloads 185561 Right Atrial Tissue Morphology in Acquired Heart Diseases
Authors: Edite Kulmane, Mara Pilmane, Romans Lacis
Abstract:
Introduction: Acquired heart diseases remain one of the leading health care problems in the world. Changes in myocardium of the diseased hearts are complex and pathogenesis is still not fully clear. The aim of this study was to identify appearance and distribution of apoptosis, homeostasis regulating factors, and innervation and ischemia markers in right atrial tissue in different acquired heart diseases. Methods: During elective open heart surgery were taken right atrial tissue fragments from 12 patients. All patients were operated because of acquired heart diseases- aortic valve stenosis (5 patients), coronary heart disease (5 patients), coronary heart disease and secondary mitral insufficiency (1 patient) and mitral disease (1 patient). The mean age was (mean±SD) 70,2±7,0 years (range 58-83 years). The tissues were stained with haematoxylin and eosin methods for routine light-microscopical examination and for immunohistochemical detection of protein gene peptide 9.5 (PGP 9.5), human atrial natriuretic peptide (hANUP), vascular endothelial growth factor (VEGF), chromogranin A and endothelin. Apoptosis was detected by TUNEL method. Results: All specimens showed degeneration of cardiomyocytes with lysis of myofibrils, diffuse vacuolization especially in perinuclear region, different size of cells and their nuclei. The severe invasion of connective tissue was observed in main part of all fragments. The apoptotic index ranged from 24 to 91%. One specimen showed region of newly performed microvessels with cube shaped endotheliocytes that were positive for PGP 9.5, endothelin, chromogranin A and VEGF. From all fragments, taken from patients with coronary heart disease, there were observed numerous PGP 9.5-containing nerve fibres, except in patient with secondary mitral insufficiency, who showed just few PGP 9.5 positive nerves. In majority of specimens there were regions observed with cube shaped mixed -VEGF immunoreactive endocardial and epicardial cells. Only VEGF positive endothelial cells were observed just in few specimens. There was no significant difference of hANUP secreting cells among all specimens. All patients operated due to the coronary heart disease moderate to numerous number of chromogranin A positive cells were seen while in patients with aortic valve stenosis tissue demonstrated just few factor positive cells. Conclusions: Complex detection of different factors may indicate selectively disordered morphopathogenetical event of heart disease: decrease of PGP 9.5 nerves suggests the decreased innervation of organ; increased apoptosis indicates the cell death without ingrowth of connective tissue; persistent presence of hANUP proves the unchanged homeostasis of cardiomyocytes probably supported by expression of chromogranins. Finally, decrease of VEGF detects the regions of affected blood vessels in heart affected by acquired heart disease.Keywords: heart, apoptosis, protein-gene peptide 9.5, atrial natriuretic peptide, vascular endothelial growth factor, chromogranin A, endothelin
Procedia PDF Downloads 292560 A Five-Year Experience of Intensity Modulated Radiotherapy in Nasopharyngeal Carcinomas in Tunisia
Authors: Omar Nouri, Wafa Mnejja, Fatma Dhouib, Syrine Zouari, Wicem Siala, Ilhem Charfeddine, Afef Khanfir, Leila Farhat, Nejla Fourati, Jamel Daoud
Abstract:
Purpose and Objective: Intensity modulated radiation (IMRT) technique, associated with induction chemotherapy (IC) and/or concomitant chemotherapy (CC), is actually the recommended treatment modality for nasopharyngeal carcinomas (NPC). The aim of this study was to evaluate the therapeutic results and the patterns of relapse with this treatment protocol. Material and methods: A retrospective monocentric study of 145 patients with NPC treated between June 2016 and July 2021. All patients received IMRT with integrated simultaneous boost (SIB) of 33 daily fractions at a dose of 69.96 Gy for high-risk volume, 60 Gy for intermediate risk volume and 54 Gy for low-risk volume. The high-risk volume dose was 66.5 Gy in children. Survival analysis was performed according to the Kaplan-Meier method, and the Log-rank test was used to compare factors that may influence survival. Results: Median age was 48 years (11-80) with a sex ratio of 2.9. One hundred-twenty tumors (82.7%) were classified as stages III-IV according to the 2017 UICC TNM classification. Ten patients (6.9%) were metastatic at diagnosis. One hundred-thirty-five patient (93.1%) received IC, 104 of which (77%) were TPF-based (taxanes, cisplatin and 5 fluoro-uracil). One hundred-thirty-eight patient (95.2%) received CC, mostly cisplatin in 134 cases (97%). After a median follow-up of 50 months [22-82], 46 patients (31.7%) had a relapse: 12 (8.2%) experienced local and/or regional relapse after a median of 18 months [6-43], 29 (20%) experienced distant relapse after a median of 9 months [2-24] and 5 patients (3.4%) had both. Thirty-five patients (24.1%) died, including 5 (3.4%) from a cause other than their cancer. Three-year overall survival (OS), cancer specific survival, disease free survival, metastasis free survival and loco-regional free survival were respectively 78.1%, 81.3%, 67.8%, 74.5% and 88.1%. Anatomo-clinic factors predicting OS were age > 50 years (88.7 vs. 70.5%; p=0.004), diabetes history (81.2 vs. 66.7%; p=0.027), UICC N classification (100 vs. 95 vs. 77.5 vs. 68.8% respectively for N0, N1, N2 and N3; p=0.008), the practice of a lymph node biopsy (84.2 vs. 57%; p=0.05), and UICC TNM stages III-IV (93.8 vs. 73.6% respectively for stage I-II vs. III-IV; p=0.044). Therapeutic factors predicting OS were a number of CC courses (less than 4 courses: 65.8 vs. 86%; p=0.03, less than 5 courses: 71.5 vs. 89%; p=0.041), a weight loss > 10% during treatment (84.1 vs. 60.9%; p=0.021) and a total cumulative cisplatin dose, including IC and CC, < 380 mg/m² (64.4 vs. 87.6%; p=0.003). Radiotherapy delay and total duration did not significantly affect OS. No grade 3-4 late side effects were noted in the evaluable 127 patients (87.6%). The most common toxicity was dry mouth which was grade 2 in 47 cases (37%) and grade 1 in 55 cases (43.3%).Conclusion: IMRT for nasopharyngeal carcinoma granted a high loco-regional control rate for patients during the last five years. However, distant relapses remain frequent and conditionate the prognosis. We identified many anatomo-clinic and therapeutic prognosis factors. Therefore, high-risk patients require a more aggressive therapeutic approach, such as radiotherapy dose escalation or adding adjuvant chemotherapy.Keywords: therapeutic results, prognostic factors, intensity-modulated radiotherapy, nasopharyngeal carcinoma
Procedia PDF Downloads 62559 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects
Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov
Abstract:
The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.Keywords: effective properties, scale effects, surface defects, voids elasticity
Procedia PDF Downloads 417558 Effectiveness of Imagery Compared with Exercise Training on Hip Abductor Strength and EMG Production in Healthy Adults
Authors: Majid Manawer Alenezi, Gavin Lawrence, Hans-Peter Kubis
Abstract:
Imagery training could be an important treatment for muscle function improvements in patients who are facing limitations in exercise training by pain or other adverse symptoms. However, recent studies are mostly limited to small muscle groups and are often contradictory. Moreover, a possible bilateral transfer effect of imagery training has not been examined. We, therefore, investigated the effectiveness of unilateral imagery training in comparison with exercise training on hip abductor muscle strength and EMG. Additionally, both limbs were assessed to investigate bilateral transfer effects. Healthy individuals took part in an imagery or exercise training intervention for two weeks and were assesses pre and post training. Participants (n=30), after randomization into an imagery and an exercise group, trained 5 times a week under supervision with additional self-performed training on the weekends. The training consisted of performing, or to imagine, 5 maximal isometric hip abductor contractions (= one set), repeating the set 7 times. All measurements and trainings were performed laying on the side on a dynamometer table. The imagery script combined kinesthetic and visual imagery with internal perspective for producing imagined maximal hip abduction contractions. The exercise group performed the same number of tasks but performing the maximal hip abductor contractions. Maximal hip abduction strength and EMG amplitudes were measured of right and left limbs pre- and post-training period. Additionally, handgrip strength and right shoulder abduction (Strength and EMG) were measured. Using mixed model ANOVA (strength measures) and Wilcoxen-tests (EMGs), data revealed a significant increase in hip abductor strength production in the imagery group on the trained right limb (~6%). However, this was not reported for the exercise group. Additionally, the left hip abduction strength (not used for training) did not show a main effect in strength, however, there was a significant interaction of group and time revealing that the strength increased in the imagery group while it remained constant in the exercise group. EMG recordings supported the strength findings showing significant elevation of EMG amplitudes after imagery training on right and left side, while the exercise training group did not show any changes. Moreover, measures of handgrip strength and shoulder abduction showed no effects over time and no interactions in both groups. Experiments showed that imagery training is a suitable method for effectively increasing functional parameters of larger limb muscles (strength and EMG) which were enhanced on both sides (trained and untrained) confirming a bilateral transfer effect. Indeed, exercise training did not reveal any increases in the parameters above omitting functional improvements. The healthy individuals tested might not easily achieve benefits from exercise training within the time tested. However, it is evident that imagery training is effective in increasing the central motor command towards the muscles and that the effect seems to be segmental (no increase in handgrip strength and shoulder abduction parameters) and affects both sides (trained and untrained). In conclusion, imagery training was effective in functional improvements in limb muscles and produced a bilateral transfer on strength and EMG measures.Keywords: imagery, exercise, physiotherapy, motor imagery
Procedia PDF Downloads 232