Search results for: energy performance certificate EPBD
1054 Navigating through Uncertainty: An Explorative Study of Managers’ Experiences in China-foreign Cooperative Higher Education
Abstract:
To drive practical interpretations and applications of various policies in building the transnational education joint-ventures, middle managers learn to navigate through uncertainties and ambiguities. However, the current literature views very little about those middle managers’ experiences, perceptions, and practices. This paper takes the empirical approach and aims to uncover the middle managers’ experiences by conducting interviews, campus visits, and document analysis. Following the qualitative research method approach, the researchers gathered information from a mixture of fourteen foreign and Chinese managers. Their perceptions of the China-foreign cooperation in higher education and their perceived roles have offered important, valuable insights to this group of people’s attitudes and management performances. The diverse cultural and demographic backgrounds contributed to the significance of the study. There are four key findings. One, middle managers’ immediate micro-contexts and individual attitudes are the top two influential factors in managers’ performances. Two, the foreign middle managers showed a stronger sense of self-identity in risk-taking. Three, the Chinese middle managers preferred to see difficulties as part of their assigned responsibilities. Four, middle managers in independent universities demonstrated a stronger sense of belonging and fewer frustrations than middle managers in secondary institutes. The researchers propose that training for managers in a transnational educational setting should consider these discoveries when select fitting topics and content. In particular, middle managers should be better prepared to anticipate their everyday jobs in the micro-environment; hence, information concerning sponsor organizations’ working culture is as essential as knowing the national and local regulations, and socio-culture. Different case studies can help the managers to recognize and celebrate the diversity in transnational education. Situational stories can help them to become aware of the diverse and wide range of work contexts so that they will not feel to be left alone when facing challenges without relevant previous experience or training. Though this research is a case study based in the Chinese transnational higher education setting, the implications could be relevant and comparable to other transnational higher education situations and help to continue expanding the potential applications in this field.Keywords: educational management, middle manager performance, transnational higher education
Procedia PDF Downloads 1671053 Sugarcane Trash Biochar: Effect of the Temperature in the Porosity
Authors: Gabriela T. Nakashima, Elias R. D. Padilla, Joao L. Barros, Gabriela B. Belini, Hiroyuki Yamamoto, Fabio M. Yamaji
Abstract:
Biochar can be an alternative to use sugarcane trash. Biochar is a solid material obtained from pyrolysis, that is a biomass thermal degradation with low or no O₂ concentration. Pyrolysis transforms the carbon that is commonly found in other organic structures into a carbon with more stability that can resist microbial decomposition. Biochar has a versatility of uses such as soil fertility, carbon sequestration, energy generation, ecological restoration, and soil remediation. Biochar has a great ability to retain water and nutrients in the soil so that this material can improve the efficiency of irrigation and fertilization. The aim of this study was to characterize biochar produced from sugarcane trash in three different pyrolysis temperatures and determine the lowest temperature with the high yield and carbon content. Physical characterization of this biochar was performed to help the evaluation for the best production conditions. Sugarcane (Saccharum officinarum) trash was collected at Corredeira Farm, located in Ibaté, São Paulo State, Brazil. The farm has 800 hectares of planted area with an average yield of 87 t·ha⁻¹. The sugarcane varieties planted on the farm are: RB 855453, RB 867515, RB 855536, SP 803280, SP 813250. Sugarcane trash was dried and crushed into 50 mm pieces. Crucibles and lids were used to settle the sugarcane trash samples. The higher amount of sugarcane trash was added to the crucible to avoid the O₂ concentration. Biochar production was performed in three different pyrolysis temperatures (200°C, 325°C, 450°C) in 2 hours residence time in the muffle furnace. Gravimetric yield of biochar was obtained. Proximate analysis of biochar was done using ASTM E-872 and ABNT NBR 8112. Volatile matter and ash content were calculated by direct weight loss and fixed carbon content calculated by difference. Porosity measurement was evaluated using an automatic gas adsorption device, Autosorb-1, with CO₂ described by Nakatani. Approximately 0.5 g of biochar in 2 mm particle sizes were used for each measurement. Vacuum outgassing was performed as a pre-treatment in different conditions for each biochar temperature. The pore size distribution of micropores was determined using Horváth-Kawazoe method. Biochar presented different colors for each treatment. Biochar - 200°C presented a higher number of pieces with 10mm or more and did not present the dark black color like other treatments after 2 h residence time in muffle furnace. Also, this treatment had the higher content of volatiles and the lower amount of fixed carbon. In porosity analysis, while the temperature treatments increase, the amount of pores also increase. The increase in temperature resulted in a biochar with a better quality. The pores in biochar can help in the soil aeration, adsorption, water retention. Acknowledgment: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil – PROAP-CAPES, PDSE and CAPES - Finance Code 001.Keywords: proximate analysis, pyrolysis, soil amendment, sugarcane straw
Procedia PDF Downloads 2141052 Characterization and Modelling of Groundwater Flow towards a Public Drinking Water Well Field: A Case Study of Ter Kamerenbos Well Field
Authors: Buruk Kitachew Wossenyeleh
Abstract:
Groundwater is the largest freshwater reservoir in the world. Like the other reservoirs of the hydrologic cycle, it is a finite resource. This study focused on the groundwater modeling of the Ter Kamerenbos well field to understand the groundwater flow system and the impact of different scenarios. The study area covers 68.9Km2 in the Brussels Capital Region and is situated in two river catchments, i.e., Zenne River and Woluwe Stream. The aquifer system has three layers, but in the modeling, they are considered as one layer due to their hydrogeological properties. The catchment aquifer system is replenished by direct recharge from rainfall. The groundwater recharge of the catchment is determined using the spatially distributed water balance model called WetSpass, and it varies annually from zero to 340mm. This groundwater recharge is used as the top boundary condition for the groundwater modeling of the study area. During the groundwater modeling using Processing MODFLOW, constant head boundary conditions are used in the north and south boundaries of the study area. For the east and west boundaries of the study area, head-dependent flow boundary conditions are used. The groundwater model is calibrated manually and automatically using observed hydraulic heads in 12 observation wells. The model performance evaluation showed that the root means the square error is 1.89m and that the NSE is 0.98. The head contour map of the simulated hydraulic heads indicates the flow direction in the catchment, mainly from the Woluwe to Zenne catchment. The simulated head in the study area varies from 13m to 78m. The higher hydraulic heads are found in the southwest of the study area, which has the forest as a land-use type. This calibrated model was run for the climate change scenario and well operation scenario. Climate change may cause the groundwater recharge to increase by 43% and decrease by 30% in 2100 from current conditions for the high and low climate change scenario, respectively. The groundwater head varies for a high climate change scenario from 13m to 82m, whereas for a low climate change scenario, it varies from 13m to 76m. If doubling of the pumping discharge assumed, the groundwater head varies from 13m to 76.5m. However, if the shutdown of the pumps is assumed, the head varies in the range of 13m to 79m. It is concluded that the groundwater model is done in a satisfactory way with some limitations, and the model output can be used to understand the aquifer system under steady-state conditions. Finally, some recommendations are made for the future use and improvement of the model.Keywords: Ter Kamerenbos, groundwater modelling, WetSpass, climate change, well operation
Procedia PDF Downloads 1531051 Importance of Geologists at Municipalities. Colombian Case
Authors: Clemencia Gomez
Abstract:
Geology is currently absent from Colombia's education system, leading to a lack of geological awareness that hinders essential scientific training about Earth and its spatial and temporal dimensions. Understanding geological concepts is crucial for tackling challenges like climate change, sustainable resource management, geological risk mitigation, and groundwater management. Citizens have the right to receive a comprehensive scientific education that enhances their critical thinking regarding social, environmental, and economic issues. Geological sciences are vital in this context, as they enable the sustainable use of the planet's resources and effective management of human impacts. Additionally, geoethics should be integral to every citizen's education, highlighting the necessity of responsibly utilizing natural resources found in the Earth's surface and subsurface, which are fundamental to many everyday products. The Colombian associations of Geology aims to address these gaps by advocating for the appointment of geologists in municipalities. These professionals would assist in reviewing technical aspects of urban planning, identifying geological risks, pinpointing water supply opportunities, supporting sustainable mineral-energy projects, and promoting geological education in schools. The role of a professional in Earth sciences is crucial for municipalities for several reasons: Natural Resource Management: Earth scientists help in managing and conserving natural resources such as water, minerals, and soil. Their expertise ensures sustainable use and helps prevent depletion. Environmental Protection: They assess environmental impacts and advise on policies to protect ecosystems and biodiversity. This is vital for maintaining the health of local environments. Disaster Preparedness and Response: Professionals in this field analyze geological hazards like earthquakes, floods, and landslides. They contribute to developing early warning systems and emergency response plans, which can save lives and property. Climate Change Mitigation: Earth scientists study climate patterns and contribute to strategies for mitigating climate change impacts. This includes advising on land use planning and developing resilience strategies for communities. Urban Planning and Development: Their expertise is essential in urban planning, ensuring that infrastructure development considers geological and environmental factors. This helps prevent construction in hazardous areas and promotes sustainable development. Public Education and Awareness: They play a vital role in educating the public about Earth-related issues, fostering greater community engagement in environmental conservation and disaster preparedness. In summary, professionals in Earth sciences significantly contribute to the sustainability, safety, and well-being of municipalities and their residents.Keywords: social geology, safety, sustainability, municipalities
Procedia PDF Downloads 101050 Safety Considerations of Furanics for Sustainable Applications in Advanced Biorefineries
Authors: Anitha Muralidhara, Victor Engelen, Christophe Len, Pascal Pandard, Guy Marlair
Abstract:
Production of bio-based chemicals and materials from lignocellulosic biomass is gaining tremendous importance in advanced bio-refineries while aiming towards progressive replacement of petroleum based chemicals in transportation fuels and commodity polymers. One such attempt has resulted in the production of key furan derivatives (FD) such as furfural, HMF, MMF etc., via acid catalyzed dehydration (ACD) of C6 and C5 sugars, which are further converted into key chemicals or intermediates (such as Furandicarboxylic acid, Furfuryl alcohol etc.,). In subsequent processes, many high potential FD are produced, that can be converted into high added value polymers or high energy density biofuels. During ACD, an unavoidable polyfuranic byproduct is generated which is called humins. The family of FD is very large with varying chemical structures and diverse physicochemical properties. Accordingly, the associated risk profiles may largely vary. Hazardous Material (Haz-mat) classification systems such as GHS (CLP in the EU) and the UN TDG Model Regulations for transport of dangerous goods are one of the preliminary requirements for all chemicals for their appropriate classification, labelling, packaging, safe storage, and transportation. Considering the growing application routes of FD, it becomes important to notice the limited access to safety related information (safety data sheets available only for famous compounds such as HMF, furfural etc.,) in these internationally recognized haz-mat classification systems. However, these classifications do not necessarily provide information about the extent of risk involved when the chemical is used in any specific application. Factors such as thermal stability, speed of combustion, chemical incompatibilities, etc., can equally influence the safety profile of a compound, that are clearly out of the scope of any haz-mat classification system. Irrespective of the bio-based origin, FD has so far received inconsistent remarks concerning their toxicity profiles. With such inconsistencies, there is a fear that, a large family of FD may also follow extreme judgmental scenarios like ionic liquids, by ranking some compounds as extremely thermally stable, non-flammable, etc., Unless clarified, these messages could lead to misleading judgements while ranking the chemical based on its hazard rating. Safety is a key aspect in any sustainable biorefinery operation/facility, which is often underscored or neglected. To fill up these existing data gaps and to address ambiguities and discrepancies, the current study focuses on giving preliminary insights on safety assessment of FD and their potential targeted by-products. With the available information in the literature and obtained experimental results, physicochemical safety, environmental safety as well as (a scenario based) fire safety profiles of key FD, as well as side streams such as humins and levulinic acid, will be considered. With this, the study focuses on defining patterns and trends that gives coherent safety related information for existing and newly synthesized FD in the market for better functionality and sustainable applications.Keywords: furanics, humins, safety, thermal and fire hazard, toxicity
Procedia PDF Downloads 1681049 Teaching Behaviours of Effective Secondary Mathematics Teachers: A Study in Dhaka, Bangladesh
Authors: Asadullah Sheikh, Kerry Barnett, Paul Ayres
Abstract:
Despite significant progress in access, equity and public examination success, poor student performance in mathematics in secondary schools has become a major concern in Bangladesh. A substantial body of research has emphasised the important contribution of teaching practices to student achievement. However, this has not been investigated in Bangladesh. Therefore, the study sought to find out the effectiveness of mathematics teaching practices as a means of improving secondary school mathematics in Dhaka Municipality City (DMC) area, Bangladesh. The purpose of this study was twofold, first, to identify the 20 highest performing secondary schools in mathematics in DMC, and second, to investigate the teaching practices of mathematics teachers in these schools. A two-phase mixed method approach was adopted. In the first phase, secondary source data were obtained from the Board of Intermediate and Secondary Education (BISE), Dhaka and value-added measures used to identify the 20 highest performing secondary schools in mathematics. In the second phase, a concurrent mixed method design, where qualitative methods were embedded within a dominant quantitative approach was utilised. A purposive sampling strategy was used to select fifteen teachers from the 20 highest performing secondary schools. The main sources of data were classroom teaching observations, and teacher interviews. The data from teacher observations were analysed with descriptive and nonparametric statistics. The interview data were analysed qualitatively. The main findings showed teachers adopt a direct teaching approach which incorporates orientation, structuring, modelling, practice, questioning and teacher-student interaction that creates an individualistic learning environment. The variation in developmental levels of teaching skill indicate that teachers do not necessarily use the qualitative (i.e., focus, stage, quality and differentiation) aspects of teaching behaviours effectively. This is the first study to investigate teaching behaviours of effective secondary mathematics teachers within Dhaka, Bangladesh. It contributes in an international dimension to the field of educational effectiveness and raise questions about existing constructivist approaches. Further, it contributes to important insights about teaching behaviours that can be used to inform the development of evidence-based policy and practice on quality teaching in Bangladesh.Keywords: effective teaching, mathematics, secondary schools, student achievement, value-added measures
Procedia PDF Downloads 2411048 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy
Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren
Abstract:
Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment
Procedia PDF Downloads 401047 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 671046 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 1261045 A Virtual Set-Up to Evaluate Augmented Reality Effect on Simulated Driving
Authors: Alicia Yanadira Nava Fuentes, Ilse Cervantes Camacho, Amadeo José Argüelles Cruz, Ana María Balboa Verduzco
Abstract:
Augmented reality promises being present in future driving, with its immersive technology let to show directions and maps to identify important places indicating with graphic elements when the car driver requires the information. On the other side, driving is considered a multitasking activity and, for some people, a complex activity where different situations commonly occur that require the immediate attention of the car driver to make decisions that contribute to avoid accidents; therefore, the main aim of the project is the instrumentation of a platform with biometric sensors that allows evaluating the performance in driving vehicles with the influence of augmented reality devices to detect the level of attention in drivers, since it is important to know the effect that it produces. In this study, the physiological sensors EPOC X (EEG), ECG06 PRO and EMG Myoware are joined in the driving test platform with a Logitech G29 steering wheel and the simulation software City Car Driving in which the level of traffic can be controlled, as well as the number of pedestrians that exist within the simulation obtaining a driver interaction in real mode and through a MSP430 microcontroller achieves the acquisition of data for storage. The sensors bring a continuous analog signal in time that needs signal conditioning, at this point, a signal amplifier is incorporated due to the acquired signals having a sensitive range of 1.25 mm/mV, also filtering that consists in eliminating the frequency bands of the signal in order to be interpretative and without noise to convert it from an analog signal into a digital signal to analyze the physiological signals of the drivers, these values are stored in a database. Based on this compilation, we work on the extraction of signal features and implement K-NN (k-nearest neighbor) classification methods and decision trees (unsupervised learning) that enable the study of data for the identification of patterns and determine by classification methods different effects of augmented reality on drivers. The expected results of this project include are a test platform instrumented with biometric sensors for data acquisition during driving and a database with the required variables to determine the effect caused by augmented reality on people in simulated driving.Keywords: augmented reality, driving, physiological signals, test platform
Procedia PDF Downloads 1421044 Effect of Cutting Tools and Working Conditions on the Machinability of Ti-6Al-4V Using Vegetable Oil-Based Cutting Fluids
Authors: S. Gariani, I. Shyha
Abstract:
Cutting titanium alloys are usually accompanied with low productivity, poor surface quality, short tool life and high machining costs. This is due to the excessive generation of heat at the cutting zone and difficulties in heat dissipation due to relatively low heat conductivity of this metal. The cooling applications in machining processes are crucial as many operations cannot be performed efficiently without cooling. Improving machinability, increasing productivity, enhancing surface integrity and part accuracy are the main advantages of cutting fluids. Conventional fluids such as mineral oil-based, synthetic and semi-synthetic are the most common cutting fluids in the machining industry. Although, these cutting fluids are beneficial in the industries, they pose a great threat to human health and ecosystem. Vegetable oils (VOs) are being investigated as a potential source of environmentally favourable lubricants, due to a combination of biodegradability, good lubricous properties, low toxicity, high flash points, low volatility, high viscosity indices and thermal stability. Fatty acids of vegetable oils are known to provide thick, strong, and durable lubricant films. These strong lubricating films give the vegetable oil base stock a greater capability to absorb pressure and high load carrying capacity. This paper details preliminary experimental results when turning Ti-6Al-4V. The impact of various VO-based cutting fluids, cutting tool materials, working conditions was investigated. The full factorial experimental design was employed involving 24 tests to evaluate the influence of process variables on average surface roughness (Ra), tool wear and chip formation. In general, Ra varied between 0.5 and 1.56 µm and Vasco1000 cutting fluid presented comparable performance with other fluids in terms of surface roughness while uncoated coarse grain WC carbide tool achieved lower flank wear at all cutting speeds. On the other hand, all tools tips were subjected to uniform flank wear during whole cutting trails. Additionally, formed chip thickness ranged between 0.1 and 0.14 mm with a noticeable decrease in chip size when higher cutting speed was used.Keywords: cutting fluids, turning, Ti-6Al-4V, vegetable oils, working conditions
Procedia PDF Downloads 2791043 Performance of HVOF Sprayed Ni-20CR and Cr3C2-NiCr Coatings on Fe-Based Superalloy in an Actual Industrial Environment of a Coal Fired Boiler
Authors: Tejinder Singh Sidhu
Abstract:
Hot corrosion has been recognized as a severe problem in steam-powered electricity generation plants and industrial waste incinerators as it consumes the material at an unpredictably rapid rate. Consequently, the load-carrying ability of the components reduces quickly, eventually leading to catastrophic failure. The inability to either totally prevent hot corrosion or at least detect it at an early stage has resulted in several accidents, leading to loss of life and/or destruction of infrastructures. A number of countermeasures are currently in use or under investigation to combat hot corrosion, such as using inhibitors, controlling the process parameters, designing a suitable industrial alloy, and depositing protective coatings. However, the protection system to be selected for a particular application must be practical, reliable, and economically viable. Due to the continuously rising cost of the materials as well as increased material requirements, the coating techniques have been given much more importance in recent times. Coatings can add value to products up to 10 times the cost of the coating. Among the different coating techniques, thermal spraying has grown into a well-accepted industrial technology for applying overlay coatings onto the surfaces of engineering components to allow them to function under extreme conditions of wear, erosion-corrosion, high-temperature oxidation, and hot corrosion. In this study, the hot corrosion performances of Ni-20Cr and Cr₃C₂-NiCr coatings developed by High Velocity Oxy-Fuel (HVOF) process have been studied. The coatings were developed on a Fe-based superalloy, and experiments were performed in an actual industrial environment of a coal-fired boiler. The cyclic study was carried out around the platen superheater zone where the temperature was around 1000°C. The study was conducted for 10 cycles, and one cycle was consisting of 100 hours of heating followed by 1 hour of cooling at ambient temperature. Both the coatings deposited on Fe-based superalloy imparted better hot corrosion resistance than the uncoated one. The Ni-20Cr coated superalloy performed better than the Cr₃C₂-NiCr coated in the actual working conditions of the coal fired boiler. It is found that the formation of chromium oxide at the boundaries of Ni-rich splats of the coating blocks the inward permeation of oxygen and other corrosive species to the substrate.Keywords: hot corrosion, coating, HVOF, oxidation
Procedia PDF Downloads 851042 A Method to Evaluate and Compare Web Information Extractors
Authors: Patricia Jiménez, Rafael Corchuelo, Hassan A. Sleiman
Abstract:
Web mining is gaining importance at an increasing pace. Currently, there are many complementary research topics under this umbrella. Their common theme is that they all focus on applying knowledge discovery techniques to data that is gathered from the Web. Sometimes, these data are relatively easy to gather, chiefly when it comes from server logs. Unfortunately, there are cases in which the data to be mined is the data that is displayed on a web document. In such cases, it is necessary to apply a pre-processing step to first extract the information of interest from the web documents. Such pre-processing steps are performed using so-called information extractors, which are software components that are typically configured by means of rules that are tailored to extracting the information of interest from a web page and structuring it according to a pre-defined schema. Paramount to getting good mining results is that the technique used to extract the source information is exact, which requires to evaluate and compare the different proposals in the literature from an empirical point of view. According to Google Scholar, about 4 200 papers on information extraction have been published during the last decade. Unfortunately, they were not evaluated within a homogeneous framework, which leads to difficulties to compare them empirically. In this paper, we report on an original information extraction evaluation method. Our contribution is three-fold: a) this is the first attempt to provide an evaluation method for proposals that work on semi-structured documents; the little existing work on this topic focuses on proposals that work on free text, which has little to do with extracting information from semi-structured documents. b) It provides a method that relies on statistically sound tests to support the conclusions drawn; the previous work does not provide clear guidelines or recommend statistically sound tests, but rather a survey that collects many features to take into account as well as related work; c) We provide a novel method to compute the performance measures regarding unsupervised proposals; otherwise they would require the intervention of a user to compute them by using the annotations on the evaluation sets and the information extracted. Our contributions will definitely help researchers in this area make sure that they have advanced the state of the art not only conceptually, but from an empirical point of view; it will also help practitioners make informed decisions on which proposal is the most adequate for a particular problem. This conference is a good forum to discuss on our ideas so that we can spread them to help improve the evaluation of information extraction proposals and gather valuable feedback from other researchers.Keywords: web information extractors, information extraction evaluation method, Google scholar, web
Procedia PDF Downloads 2481041 Critical Evaluation of Long Chain Hydrocarbons with Biofuel Potential from Marine Diatoms Isolated from the West Coast of India
Authors: Indira K., Valsamma Joseph, I. S. Bright
Abstract:
Introduction :Biofuels could replace fossil fuels and reduce our carbon footprint on the planet by technological advancements needed for sustainable and economic fuel production. Micro algae have proven to be a promising source to meet the current energy demand because of high lipid content and production of high biomass rapidly. Marine diatoms, which are key contributors in the biofuel sector and also play a significant role in primary productivity and ecology with high biodiversity and genetic and chemical diversity, are less well understood than other microalgae for producing hydrocarbons. Method :The marine diatom samples selected for hydrocarbon analysis were a total of eleven, out of which 9 samples were from the culture collection of NCAAH, and the remaining two of them were isolated by serial dilution method to get a pure culture from a mixed culture of microalgae obtained from the various cruise stations (350&357) FORV Sagar Sampada along the west coast of India. These diatoms were mass cultured in F/2 media, and the biomass harvested. The crude extract was obtained from the biomass by homogenising with n-hexane, and the hydrocarbons was further obtained by passing the crude extract through 500mg Bonna Agela SPE column and the quantitative analysis was done by GCHRMS analysis using HP-5 column and Helium gas was used as a carrier gas(1ml/min). The injector port temperature was 2400C, the detector temperature was 2500C, and the oven was initially kept at 600C for 1 minute and increased to 2200C at the rate of 60C per minute, and the analysis of a mixture of long chain hydrocarbons was done .Results:In the qualitative analysis done, the most potent hydrocarbon was found to be Psammodictyon Panduriforme (NCAAH-9) with a hydrocarbon mass of 37.27mg/g of the biomass and 2.1% of the total biomass 0f 1.395g and the other potent producer is Biddulphia(NCAAH 6) with hydrocarbon mass of 25.4mg/g of biomass and percentage of hydrocarbon is 1.03%. In the quantitative analysis by GCHRMS, the long chain hydrocarbons found in most of the marine diatoms were undecane, hexadecane, octadecane 3ethyl 5,2 ethyl butyl, Eicosane7hexyl, hexacosane, heptacosane, heneicosane, octadecane 3 methyl, triacontane. The exact mass of the long chain hydrocarbons in all the marine diatom samples was found to be Nonadecane 12C191H40, Tritriacontane,13-decyl-13-heptyl 12C501H102, Octadecane,3ethyl-5-(2-ethylbutyl 12C261H54, tetratetracontane 12C441H89, Eicosane, 7-hexyl 12C261H54. Conclusion:All the marine diatoms screened produced long chain hydrocarbons which can be used as diesel fuel with good cetane value example, hexadecane, undecane. All the long chain hydrocarbons can further undergo catalytic cracking to produce short chain alkanes which can give good octane values and can be used as gasoline. Optimisation of hydrocarbon production with the most potent marine diatom yielded long chain hydrocarbons of good fuel quality.Keywords: biofuel, hydrocarbons, marine diatoms, screening
Procedia PDF Downloads 791040 Characterization of Volatiles Botrytis cinerea in Blueberry Using Solid Phase Micro Extraction, Gas Chromatography Mass Spectrometry
Authors: Ahmed Auda, Manjree Agarwala, Giles Hardya, Yonglin Rena
Abstract:
Botrytis cinerea is a major pest for many plants. It can attack a wide range of plant parts. It can attack buds, flowers, and leaves, stems, and fruit. However, B. cinerea can be mixed with other diseases that cause the same damage. There are many species of botrytis and more than one different strains of each. Botrytis might infect the foliage of nursery stock stored through winter in damp conditions. There are no known resistant plants. Botrytis must have nutrients or food source before it infests the plant. Nutrients leaking from wounded plant parts or dying tissue like old flower petals give the required nutrients. From this food, the fungus becomes more attackers and invades healthy tissue. Dark to light brown rot forms in the ill tissue. High humidity conditions support the growth of this fungus. However, we suppose that selection pressure can act on the morphological and neurophysiologic filter properties of the receiver and on both the biochemical and the physiological regulation of the signal. Communication is implied when signal and receiver evolves toward more and more specific matching, culminating. In other hand, receivers respond to portions of a body odor bouquet which is released to the environment not as an (intentional) signal but as an unavoidable consequence of metabolic activity or tissue damage. Each year Botrytis species can cause considerable economic losses to plant crops. Even with the application of strict quarantine and control measures, these fungi can still find their way into crops and cause the imposition of onerous restrictions on exports. Blueberry fruit mould caused by a fungal infection usually results in major losses during post-harvest storage. Therefore, the management of infection in early stages of disease development is necessary to minimize losses. The overall purpose of this study will develop sensitive, cheap, quick and robust diagnostic techniques for the detection of B. cinerea in blueberry. The specific aim was designed to investigate the performance of volatile organic compounds (VOCs) in the detection and discrimination of blueberry fruits infected by fungal pathogens with an emphasis on Botrytis in the early storage stage of post-harvest.Keywords: botrytis cinerea, blueberry, GC/MS, VOCs
Procedia PDF Downloads 2441039 Professional Development in EFL Classroom: Motivation and Reflection
Authors: Iman Jabbar
Abstract:
Within the scope of professionalism and in order to compete with the modern world, teachers, are expected to develop their teaching skills and activities in addition to their professional knowledge. At the college level, the teacher should be able to face classroom challenges through his engagement with the learning situation to understand the students and their needs. In our field of TESOL, the role of the English teacher is no longer restricted to teaching English texts, but rather he should endeavor to enhance the students’ skills such as communication and critical analysis. Within the literature of professionalism, there are certain strategies and tools that an English teacher should adopt to develop his competence and performance. Reflective practice, which is an exploratory process, is one of these strategies. Another strategy contributing to classroom development is motivation. It is crucial in students’ learning as it affects the quality of learning English in the classroom in addition to determining success or failure as well as language achievement. This is a qualitative study grounded on interpretive perspectives of teachers and students regarding the process of professional development. This study aims at (a) understanding how teachers at the college level conceptualize reflective practice and motivation inside EFL classroom, and (b) exploring the methods and strategies that they implement to practice reflection and motivation. This study and is based on two questions: 1. How do EFL teachers perceive and view reflection and motivation in relation to their teaching and professional development? 2. How can reflective practice and motivation be developed into practical strategies and actions in EFL teachers’ professional context? The study is organized into two parts, theoretical and practical. The theoretical part reviews the literature on the concept of reflective practice and motivation in relation to professional development through providing certain definitions, theoretical models, and strategies. The practical part draws on the theoretical one, however; it is the core of the study since it deals with two issues. It involves the research design, methodology, and methods of data collection, sampling, and data analysis. It ends up with an overall discussion of findings and the researcher's reflections on the investigated topic. In terms of significance, the study is intended to contribute to the field of TESOL at the academic level through the selection of the topic and investigating it from theoretical and practical perspectives. Professional development is the path that leads to enhancing the quality of teaching English as a foreign or second language in a way that suits the modern trends of globalization and advanced technology.Keywords: professional development, motivation, reflection, learning
Procedia PDF Downloads 4521038 Superoleophobic Nanocellulose Aerogel Membrance as Bioinspired Cargo Carrier on Oil by Sol-Gel Method
Authors: Zulkifli, I. W. Eltara, Anawati
Abstract:
Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces—those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water—are extremely rare. In addition to chemical composition and roughened texture, a third parameter is essential to achieve superoleophobicity, namely, re-entrant surface curvature in the form of overhang structures. The overhangs can be realized as fibers. Superoleophobic surfaces are appealing for example, antifouling, since purely superhydrophobic surfaces are easily contaminated by oily substances in practical applications, which in turn will impair the liquid repellency. On the other studied have demonstrate that such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, they are flexible, unlike most aerogels that suffer from brittleness, and they allow flexible hierarchically porous templates for functionalities, e.g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogel used in current work is an ultralight weight solid material composed of native cellulose nanofibers. The native cellulose nanofibers are cleaved from the self-assembled hierarchy of macroscopic cellulose fibers. They have become highly topical, as they are proposed to show extraordinary mechanical properties due to their parallel and grossly hydrogen bonded polysaccharide chains. We demonstrate that superoleophobic nanocellulose aerogels coating by sol-gel method, the aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Superoleophobic nanocellulose aerogels have recently been achieved using unmodified cellulose nanofibers and using carboxy methylated, negatively charged cellulose nanofibers as starting materials. In this work, the aerogels made from unmodified cellulose nanofibers were subsequently treated with fluorosilanes. To complement previous work on superoleophobic aerogels, we demonstrate their application as cargo carriers on oil, gas permeability, plastrons, and drag reduction, and we show that fluorinated nanocellulose aerogels are high-adhesive superoleophobic surfaces. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces.Keywords: superoleophobic, nanocellulose, aerogel, sol-gel
Procedia PDF Downloads 3521037 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis
Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński
Abstract:
The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g. phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g. from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell
Procedia PDF Downloads 1741036 An Investigation into the Influence of Compression on 3D Woven Preform Thickness and Architecture
Authors: Calvin Ralph, Edward Archer, Alistair McIlhagger
Abstract:
3D woven textile composites continue to emerge as an advanced material for structural applications and composite manufacture due to their bespoke nature, through thickness reinforcement and near net shape capabilities. When 3D woven preforms are produced, they are in their optimal physical state. As 3D weaving is a dry preforming technology it relies on compression of the preform to achieve the desired composite thickness, fibre volume fraction (Vf) and consolidation. This compression of the preform during manufacture results in changes to its thickness and architecture which can often lead to under-performance or changes of the 3D woven composite. Unlike traditional 2D fabrics, the bespoke nature and variability of 3D woven architectures makes it difficult to know exactly how each 3D preform will behave during processing. Therefore, the focus of this study is to investigate the effect of compression on differing 3D woven architectures in terms of structure, crimp or fibre waviness and thickness as well as analysing the accuracy of available software to predict how 3D woven preforms behave under compression. To achieve this, 3D preforms are modelled and compression simulated in Wisetex with varying architectures of binder style, pick density, thickness and tow size. These architectures have then been woven with samples dry compression tested to determine the compressibility of the preforms under various pressures. Additional preform samples were manufactured using Resin Transfer Moulding (RTM) with varying compressive force. Composite samples were cross sectioned, polished and analysed using microscopy to investigate changes in architecture and crimp. Data from dry fabric compression and composite samples were then compared alongside the Wisetex models to determine accuracy of the prediction and identify architecture parameters that can affect the preform compressibility and stability. Results indicate that binder style/pick density, tow size and thickness have a significant effect on compressibility of 3D woven preforms with lower pick density allowing for greater compression and distortion of the architecture. It was further highlighted that binder style combined with pressure had a significant effect on changes to preform architecture where orthogonal binders experienced highest level of deformation, but highest overall stability, with compression while layer to layer indicated a reduction in fibre crimp of the binder. In general, simulations showed a relative comparison to experimental results; however, deviation is evident due to assumptions present within the modelled results.Keywords: 3D woven composites, compression, preforms, textile composites
Procedia PDF Downloads 1361035 Artificial Membrane Comparison for Skin Permeation in Skin PAMPA
Authors: Aurea C. L. Lacerda, Paulo R. H. Moreno, Bruna M. P. Vianna, Cristina H. R. Serra, Airton Martin, André R. Baby, Vladi O. Consiglieri, Telma M. Kaneko
Abstract:
The modified Franz cell is the most widely used model for in vitro permeation studies, however it still presents some disadvantages. Thus, some alternative methods have been developed such as Skin PAMPA, which is a bio- artificial membrane that has been applied for skin penetration estimation of xenobiotics based on HT permeability model consisting. Skin PAMPA greatest advantage is to carry out more tests, in a fast and inexpensive way. The membrane system mimics the stratum corneum characteristics, which is the primary skin barrier. The barrier properties are given by corneocytes embedded in a multilamellar lipid matrix. This layer is the main penetration route through the paracellular permeation pathway and it consists of a mixture of cholesterol, ceramides, and fatty acids as the dominant components. However, there is no consensus on the membrane composition. The objective of this work was to compare the performance among different bio-artificial membranes for studying the permeation in skin PAMPA system. Material and methods: In order to mimetize the lipid composition`s present in the human stratum corneum six membranes were developed. The membrane composition was equimolar mixture of cholesterol, ceramides 1-O-C18:1, C22, and C20, plus fatty acids C20 and C24. The membrane integrity assay was based on the transport of Brilliant Cresyl Blue, which has a low permeability; and Lucifer Yellow with very poor permeability and should effectively be completely rejected. The membrane characterization was performed using Confocal Laser Raman Spectroscopy, using stabilized laser at 785 nm with 10 second integration time and 2 accumulations. The membrane behaviour results on the PAMPA system were statistically evaluated and all of the compositions have shown integrity and permeability. The confocal Raman spectra were obtained in the region of 800-1200 cm-1 that is associated with the C-C stretches of the carbon scaffold from the stratum corneum lipids showed similar pattern for all the membranes. The ceramides, long chain fatty acids and cholesterol in equimolar ratio permitted to obtain lipid mixtures with self-organization capability, similar to that occurring into the stratum corneum. Conclusion: The artificial biological membranes studied for Skin PAMPA showed to be similar and with comparable properties to the stratum corneum.Keywords: bio-artificial membranes, comparison, confocal Raman, skin PAMPA
Procedia PDF Downloads 5091034 A Case of Borderline Personality Disorder: An Explanatory Study of Unconscious Conflicts through Dream-Analysis
Authors: Mariam Anwaar, Kiran B. Ahmad
Abstract:
Borderline Personality Disorder (BPD) is an invasive presence of affect instability, disturbance in self-concept and attachment in relationships. The profound indicator is the dichotomous approach of the world in which the ego categorizes individuals, especially their significant others, into secure or threatful beings, leaving little room for a complex combination of characteristics in one person. This defense mechanism of splitting their world has been described through the explanatory model of unconscious conflict theorized by Sigmund Freud’s Electra Complex in the Phallic Stage. The central role is of the father with whom the daughter experiences penis envy, thus identifying with the mother’s characteristics to receive the father’s attention. However, Margret Mahler, an object relation theorist, elucidates the central role of the mother and that the split occurs during the pre-Electra complex stage. Amid the 14 and 24 months of the infant, it acknowledges the world away from the mother as they have developed milestones such as crawling. In such novelty, the infant crawls away from the mother creating a sense of independence (individuation). On the other hand, being distant causes anxiety, making them return to their original object of security (separation). In BPD, the separation-individuation stage is disrupted, due to contradictory actions of the caregiver, which results in splitting the object into negative and positive aspects, repressing the former and adhering to the latter for survival. Thus, with time, the ego distorts the reality into dichotomous categories, using the splitting defenses, and the mental representation of the self is distorted due to the internalization of the negative objects. The explanatory model was recognized in the case study of Fizza, at 21-year-old Pakistani female, residing in Karachi. Her marital status is single with an occupation being a dental student. Fizza lives in a nuclear family but is surrounded by her extended family as they all are in close vicinity. She came with the complaints of depressive symptoms for two-years along with self-harm due to severe family conflicts. Through the intervention of Dialectical Behavior Therapy (DBT), the self-harming actions were reduced, however, this libidinal energy transformed into claustrophobic symptoms and, along with this, Fizza has always experienced vivid dreams. A retrospective method of Jungian dream-analysis was applied to locate the origins of the splitting in the unconscious. The result was the revelation of a sexual harassment trauma at the age of six-years which was displaced in the form of self-harm. In addition to this, the presence of a conflict at the separation-individuation stage was detected during the dream-analysis, and it was the underlying explanation of the claustrophobic symptoms. This qualitative case study implicates the use of a patient’s subjective experiences, such as dreams, to journey through the spiral of the unconscious in order to not only detect repressed memories but to use them in psychotherapy as a means of healing the patient.Keywords: borderline personality disorder, dream-analysis, Electra complex, separation-individuation, splitting, unconscious
Procedia PDF Downloads 1531033 Review of the Model-Based Supply Chain Management Research in the Construction Industry
Authors: Aspasia Koutsokosta, Stefanos Katsavounis
Abstract:
This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of CSC modeling accommodates conceptual or process models which discuss general management frameworks and do not relate to acknowledged soft OR methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, mathematical formulation, structure, objectives, solution approach, software used and decision level. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop robust mathematical optimization models for the CSC. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without the consequential reform of generic concepts to match the unique characteristics of the construction industry.Keywords: construction supply chain management, modeling, operations research, optimization, simulation
Procedia PDF Downloads 5031032 Development of Alternative Fuels Technologies for Transportation
Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej
Abstract:
Currently, in automotive transport to power vehicles, almost exclusively hydrocarbon based fuels are used. Due to increase of hydrocarbon fuels consumption, quality parameters are tightend for clean environment. At the same time efforts are undertaken for development of alternative fuels. The reasons why looking for alternative fuels for petroleum and diesel are: to increase vehicle efficiency and to reduce the environmental impact, reduction of greenhouse gases emissions and savings in consumption of limited oil resources. Significant progress was performed on development of alternative fuels such as methanol, ethanol, natural gas (CNG / LNG), LPG, dimethyl ether (DME) and biodiesel. In addition, biggest vehicle manufacturers work on fuel cell vehicles and its introduction to the market. Alcohols such as methanol and ethanol create the perfect fuel for spark-ignition engines. Their advantages are high-value antiknock which determines their application as additive (10%) to unleaded petrol and relative purity of produced exhaust gasses. Ethanol is produced in distillation process of plant products, which value as a food can be irrational. Ethanol production can be costly also for the entire economy of the country, because it requires a large complex distillation plants, large amounts of biomass and finally a significant amount of fuel to sustain the process. At the same time, the fermentation process of plants releases into the atmosphere large quantities of carbon dioxide. Natural gas cannot be directly converted into liquid fuels, although such arrangements have been proposed in the literature. Going through stage of intermediates is inevitable yet. Most popular one is conversion to methanol, which can be processed further to dimethyl ether (DME) or olefin (ethylene and propylene) for the petrochemical sector. Methanol uses natural gas as a raw material, however, requires expensive and advanced production processes. In relation to pollution emissions, the optimal vehicle fuel is LPG which is used in many countries as an engine fuel. Production of LPG is inextricably linked with production and processing of oil and gas, and which represents a small percentage. Its potential as an alternative for traditional fuels is therefore proportionately reduced. Excellent engine fuel may be biogas, however, follows to the same limitations as ethanol - the same production process is used and raw materials. Most essential fuel in the campaign of environment protection against pollution is natural gas. Natural gas as fuel may be either compressed (CNG) or liquefied (LNG). Natural gas can also be used for hydrogen production in steam reforming. Hydrogen can be used as a basic starting material for the chemical industry, an important raw material in the refinery processes, as well as a fuel vehicle transportation. Natural gas can be used as CNG which represents an excellent compromise between the availability of the technology that is proven and relatively cheap to use in many areas of the automotive industry. Natural gas can also be seen as an important bridge to other alternative sources of energy derived from fuel and harmless to the environment. For these reasons CNG as a fuel stimulates considerable interest in the worldwide.Keywords: alternative fuels, CNG (Compressed Natural Gas), LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles)
Procedia PDF Downloads 1831031 Factory Communication System for Customer-Based Production Execution: An Empirical Study on the Manufacturing System Entropy
Authors: Nyashadzashe Chiraga, Anthony Walker, Glen Bright
Abstract:
The manufacturing industry is currently experiencing a paradigm shift into the Fourth Industrial Revolution in which customers are increasingly at the epicentre of production. The high degree of production customization and personalization requires a flexible manufacturing system that will rapidly respond to the dynamic and volatile changes driven by the market. They are a gap in technology that allows for the optimal flow of information and optimal manufacturing operations on the shop floor regardless of the rapid changes in the fixture and part demands. Information is the reduction of uncertainty; it gives meaning and context on the state of each cell. The amount of information needed to describe cellular manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Structural entropy is the expected amount of information needed to describe scheduled states of a manufacturing system. While operational entropy is the amount of information that describes the scheduled states of a manufacturing system, which occur during the actual manufacturing operation. Using Anylogic simulator a typical manufacturing job shop was set-up with a cellular manufacturing configuration. The cellular make-up of the configuration included; a Material handling cell, 3D Printer cell, Assembly cell, manufacturing cell and Quality control cell. The factory shop provides manufactured parts to a number of clients, and there are substantial variations in the part configurations, new part designs are continually being introduced to the system. Based on the normal expected production schedule, the schedule adherence was calculated from the structural entropy and operation entropy of varying the amounts of information communicated in simulated runs. The structural entropy denotes a system that is in control; the necessary real-time information is readily available to the decision maker at any point in time. For contractive analysis, different out of control scenarios were run, in which changes in the manufacturing environment were not effectively communicated resulting in deviations in the original predetermined schedule. The operational entropy was calculated from the actual operations. From the results obtained in the empirical study, it was seen that increasing, the efficiency of a factory communication system increases the degree of adherence of a job to the expected schedule. The performance of downstream production flow fed from the parallel upstream flow of information on the factory state was increased.Keywords: information entropy, communication in manufacturing, mass customisation, scheduling
Procedia PDF Downloads 2471030 Integrating Wearable-Textiles Sensors and IoT for Continuous Electromyography Monitoring
Authors: Bulcha Belay Etana, Benny Malengier, Debelo Oljira, Janarthanan Krishnamoorthy, Lieva Vanlangenhove
Abstract:
Electromyography (EMG) is a technique used to measure the electrical activity of muscles. EMG can be used to assess muscle function in a variety of settings, including clinical, research, and sports medicine. The aim of this study was to develop a wearable textile sensor for EMG monitoring. The sensor was designed to be soft, stretchable, and washable, making it suitable for long-term use. The sensor was fabricated using a conductive thread material that was embroidered onto a fabric substrate. The sensor was then connected to a microcontroller unit (MCU) and a Wi-Fi-enabled module. The MCU was programmed to acquire the EMG signal and transmit it wirelessly to the Wi-Fi-enabled module. The Wi-Fi-enabled module then sent the signal to a server, where it could be accessed by a computer or smartphone. The sensor was able to successfully acquire and transmit EMG signals from a variety of muscles. The signal quality was comparable to that of commercial EMG sensors. The development of this sensor has the potential to improve the way EMG is used in a variety of settings. The sensor is soft, stretchable, and washable, making it suitable for long-term use. This makes it ideal for use in clinical settings, where patients may need to wear the sensor for extended periods of time. The sensor is also small and lightweight, making it ideal for use in sports medicine and research settings. The data for this study was collected from a group of healthy volunteers. The volunteers were asked to perform a series of muscle contractions while the EMG signal was recorded. The data was then analyzed to assess the performance of the sensor. The EMG signals were analyzed using a variety of methods, including time-domain analysis and frequency-domain analysis. The time-domain analysis was used to extract features such as the root mean square (RMS) and average rectified value (ARV). The frequency-domain analysis was used to extract features such as the power spectrum. The question addressed by this study was whether a wearable textile sensor could be developed that is soft, stretchable, and washable and that can successfully acquire and transmit EMG signals. The results of this study demonstrate that a wearable textile sensor can be developed that meets the requirements of being soft, stretchable, washable, and capable of acquiring and transmitting EMG signals. This sensor has the potential to improve the way EMG is used in a variety of settings.Keywords: EMG, electrode position, smart wearable, textile sensor, IoT, IoT-integrated textile sensor
Procedia PDF Downloads 751029 Window Seat: Examining Public Space, Politics, and Social Identity through Urban Public Transportation
Authors: Sabrina Howard
Abstract:
'Window Seat' uses public transportation as an entry point for understanding the relationship between public space, politics, and social identity construction. This project argues that by bringing people of different races, classes, and genders in 'contact' with one another, public transit operates as a site of exposure, as people consciously and unconsciously perform social identity within these spaces. These performances offer a form of freedom that we associate with being in urban spaces while simultaneously rendering certain racialized, gendered, and classed bodies vulnerable to violence. Furthermore, due to its exposing function, public transit operates as a site through which we, as urbanites and scholars, can read social injustice and reflect on the work that is necessary to become a truly democratic society. The major questions guiding this research are: How does using public transit as the entry point provide unique insights into the relationship between social identity, politics, and public space? What ideas do Americans hold about public space and how might these ideas reflect a liberal yearning for a more democratic society? To address these research questions, 'Window Seat' critically examines ethnographic data collected on public buses and trains in Los Angeles, California, and online news media. It analyzes these sources through literature in socio-cultural psychology, sociology, and political science. It investigates the 'everyday urban hero' narrative or popular news stories that feature an individual or group of people acting against discriminatory or 'Anti-American' behavior on public buses and trains. 'Window Seat' studies these narratives to assert that by circulating stories of civility in news media, United Statsians construct and maintain ideas of the 'liberal city,' which is characterized by ideals of freedom and democracy. Furthermore, for those involved, these moments create an opportunity to perform the role of the Good Samaritan, an identity that is wrapped up in liberal beliefs in diversity and inclusion. This research expands conversations in urban studies by making a case for the political significance of urban public space. It demonstrates how these sites serve as spaces through which liberal beliefs are circulated and upheld through identity performance.Keywords: social identity, public space, public transportation, liberalism
Procedia PDF Downloads 2061028 Neurophysiology of Domain Specific Execution Costs of Grasping in Working Memory Phases
Authors: Rumeysa Gunduz, Dirk Koester, Thomas Schack
Abstract:
Previous behavioral studies have shown that working memory (WM) and manual actions share limited capacity cognitive resources, which in turn results in execution costs of manual actions in WM. However, to the best of our knowledge, there is no study investigating the neurophysiology of execution costs. The current study aims to fill this research gap investigating the neurophysiology of execution costs of grasping in WM phases (encoding, maintenance, retrieval) considering verbal and visuospatial domains of WM. A WM-grasping dual task paradigm was implemented to examine execution costs. Baseline single task required performing verbal or visuospatial version of a WM task. Dual task required performing the WM task embedded in a high precision grasp to place task. 30 participants were tested in a 2 (single vs. dual task) x 2 (visuo-spatial vs. verbal WM) within subject design. Event related potentials (ERPs) were extracted for each WM phase separately in the single and dual tasks. Memory performance for visuospatial WM, but not for verbal WM, was significantly lower in the dual task compared to the single task. Encoding related ERPs in the single task revealed different ERPs of verbal WM and visuospatial WM at bilateral anterior sites and right posterior site. In the dual task, bilateral anterior difference disappeared due to bilaterally increased anterior negativities for visuospatial WM. Maintenance related ERPs in the dual task revealed different ERPs of verbal WM and visuospatial WM at bilateral posterior sites. There was also anterior negativity for visuospatial WM. Retrieval related ERPs in the single task revealed different ERPs of verbal WM and visuospatial WM at bilateral posterior sites. In the dual task, there was no difference between verbal WM and visuospatial WM. Behavioral and ERP findings suggest that execution of grasping shares cognitive resources only with visuospatial WM, which in turn results in domain specific execution costs. Moreover, ERP findings suggest unique patterns of costs in each WM phase, which supports the idea that each WM phase reflects a separate cognitive process. This study not only contributes to the understanding of cognitive principles of manual action control, but also contributes to the understanding of WM as an entity consisting of separate modalities and cognitive processes.Keywords: dual task, grasping execution, neurophysiology, working memory domains, working memory phases
Procedia PDF Downloads 4281027 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting
Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey
Abstract:
Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method
Procedia PDF Downloads 811026 Learning Resources as Determinants for Improving Teaching and Learning Process in Nigerian Universities
Authors: Abdulmutallib U. Baraya, Aishatu M. Chadi, Zainab A. Aliyu, Agatha Samson
Abstract:
Learning Resources is the field of study that investigates the process of analyzing, designing, developing, implementing, and evaluating learning materials, learners, and the learning process in order to improve teaching and learning in university-level education essential for empowering students and various sectors of Nigeria’s economy to succeed in a fast-changing global economy. Innovation in the information age of the 21st century is the use of educational technologies in the classroom for instructional delivery, it involves the use of appropriate educational technologies like smart boards, computers, projectors and other projected materials to facilitate learning and improve performance. The study examined learning resources as determinants for improving the teaching and learning process in Abubakar Tafawa Balewa University (ATBU), Bauchi, Bauchi state of Nigeria. Three objectives, three research questions and three null hypotheses guided the study. The study adopted a Survey research design. The population of the study was 880 lecturers. A sample of 260 was obtained using the research advisor table for determining sampling, and 250 from the sample was proportionately selected from the seven faculties. The instrument used for data collection was a structured questionnaire. The instrument was subjected to validation by two experts. The reliability of the instrument stood at 0.81, which is reliable. The researchers, assisted by six research assistants, distributed and collected the questionnaire with a 75% return rate. Data were analyzed using mean and standard deviation to answer the research questions, whereas simple linear regression was used to test the null hypotheses at a 0.05 level of significance. The findings revealed that physical facilities and digital technology tools significantly improved the teaching and learning process. Also, consumables, supplies and equipment do not significantly improve the teaching and learning process in the faculties. It was recommended that lecturers in the various faculties should strengthen and sustain the use of digital technology tools, and there is a need to strive and continue to properly maintain the available physical facilities. Also, the university management should, as a matter of priority, continue to adequately fund and upgrade equipment, consumables and supplies frequently to enhance the effectiveness of the teaching and learning process.Keywords: education, facilities, learning-resources, technology-tools
Procedia PDF Downloads 251025 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 393