Search results for: uncertainty simulation
4037 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method
Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar
Abstract:
In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.Keywords: stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method
Procedia PDF Downloads 3514036 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment
Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali
Abstract:
This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets
Procedia PDF Downloads 2134035 Coupled Analysis with Fluid and Flexible Multibody Dynamics of 6-DOF Platform with Liquid Sloshing Tank
Authors: Sung-Pill Kim, Dae-Gyu Sung, Hee-Sung Shin, Jong-Chun Park
Abstract:
When a sloshing tank filled partially with liquid is excited with the motion of platform, it can be observed that the center of mass inside the tank is changed and impact loads is instantaneously applied to the wall, which causes dynamic loads additionally to the supporting links of platform. In this case, therefore, the dynamic behavior of platform associated with fluid motion should be considered in the early stage of design for safety and economics of the system. In this paper, the dynamic loads due to liquid sloshing motion in a rectangular tank which is loaded up on the upper deck of a Stewart platform are simulated using a coupled analysis of Moving Particle Simulation (MPS) and Flexible Multi-Body Dynamics (FMBD). The co-simulation is performed using two commercial softwares, Recurdyn for solving FMBD and Particleworks for analyzing fluid motion based on MPS method. For validating the present coupled system, a rectangular sloshing tank being enforced with inline sway motion by 1-DOF motion platform is assumed, and time-varied free-surface elevation and reaction force at a fixed joint are compared with experiments.Keywords: dynamic loads, liquid sloshing tank, Stewart platform, moving particle semi-implicit (MPS) method, flexible multi-body dynamics (FMBD)
Procedia PDF Downloads 7064034 Synthesis of Cardanol Oil Building Blocks for Polymer Synthesis
Authors: Sylvain Caillol
Abstract:
Uncertainty in terms of price and availability of petroleum, in addition to global political and institutional tendencies toward the principles of sustainable development, urge chemical industry to a sustainable chemistry and particularly the use of renewable resources in order to synthesize biobased chemicals and products. We propose a platform approach for the synthesis of various building blocks from cardanol in one or two-steps syntheses. Cardanol, which is a natural phenol, is issued from Cashew Nutshell Liquid (CNSL), a non-edible renewable resource, co-produced from cashew industry in large commercial volumes. Cardanol is particularly interesting to replace fossil aromatic groups in polymers and materials. Our team studied various routes for the synthesis of cardanol-derived biobased building blocks used after that in polymer syntheses. For example, we used phenolation to dimerize/oligomerize cardanol to propose increase functionality of cardanol. Thio-ene was used to synthesize new reactive amines. Epoxidation and (meth)acrylation were also used to insert oxirane or (meth)acrylate groups in order to synthesize polymers and materials.Keywords: cardanol, cashew nutshell liquid, epoxy, vinyl ester, latex, emulsion
Procedia PDF Downloads 1764033 Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network
Authors: Nishant Parashar, Sawan S. Sinha, Balaji Srinivasan
Abstract:
We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors.Keywords: compressible turbulence, neural network, velocity gradient tensor, direct numerical simulation
Procedia PDF Downloads 1684032 Effect of Load Ratio on Probability Distribution of Fatigue Crack Propagation Life in Magnesium Alloys
Authors: Seon Soon Choi
Abstract:
It is necessary to predict a fatigue crack propagation life for estimation of structural integrity. Because of an uncertainty and a randomness of a structural behavior, it is also required to analyze stochastic characteristics of the fatigue crack propagation life at a specified fatigue crack size. The essential purpose of this study is to present the good probability distribution fit for the fatigue crack propagation life at a specified fatigue crack size in magnesium alloys under various fatigue load ratio conditions. To investigate a stochastic crack growth behavior, fatigue crack propagation experiments are performed in laboratory air under several conditions of fatigue load ratio using AZ31. By Anderson-Darling test, a goodness-of-fit test for probability distribution of the fatigue crack propagation life is performed and the good probability distribution fit for the fatigue crack propagation life is presented. The effect of load ratio on variability of fatigue crack propagation life is also investigated.Keywords: fatigue crack propagation life, load ratio, magnesium alloys, probability distribution
Procedia PDF Downloads 6494031 Characterization and Modelling of Aerosol Droplet in Absorption Columns
Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen
Abstract:
Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem. Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation
Procedia PDF Downloads 2464030 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance
Authors: Yuguang Gao, Mingtao Deng
Abstract:
The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.Keywords: collaborative medical alliance, disease related group, patient referral, simulation
Procedia PDF Downloads 594029 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids
Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho
Abstract:
In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model
Procedia PDF Downloads 1154028 Markov Characteristics of the Power Line Communication Channels in China
Authors: Ming-Yue Zhai
Abstract:
Due to the multipath and pulse noise nature, power line communications(PLC) channel can be modelled as a memory one with the finite states Markov model(FSMC). As the most important parameter modelling a Markov channel,the memory order in an FSMC is not solved in PLC systems yet. In the paper, the mutual information is used as a measure of the dependence between the different symbols, treated as the received SNA or amplitude of the current channel symbol or that of previous symbols. The joint distribution probabilities of the envelopes in PLC systems are computed based on the multi-path channel model, which is commonly used in PLC. we confirm that given the information of the symbol immediately preceding the current one, any other previous symbol is independent of the current one in PLC systems, which means the PLC channels is a Markov chain with the first-order. The field test is also performed to model the received OFDM signals with the help of AR model. The results show that the first-order AR model is enough to model the fading channel in PLC systems, which means the amount of uncertainty remaining in the current symbol should be negligible, given the information corresponding to the immediately preceding one.Keywords: power line communication, channel model, markovian, information theory, first-order
Procedia PDF Downloads 4124027 The Utilization of FSI Technique and Two-Way Particle Coupling System on Particle Dynamics in the Human Alveoli
Authors: Hassan Athari, Abdurrahim Bolukbasi, Dogan Ciloglu
Abstract:
This study represented the respiratory alveoli system, and determined the trajectory of inhaled particles more accurately using the modified three-dimensional model with deformable walls of alveoli. The study also considered the tissue tension in the model to demonstrate the effect of lung. Tissue tensions are transferred by the lung parenchyma and produce the pressure gradient. This load expands the alveoli and establishes a sub-ambient (vacuum) pressure within the lungs. Thus, at the alveolar level, the flow field and movement of alveoli wall lead to an integrated effect. In this research, we assume that the three-dimensional alveolus has a visco-elastic tissue (walls). For accurate investigation of pulmonary tissue mechanical properties on particle transport and alveolar flow field, the actual relevance between tissue movement and airflow is solved by two-way FSI (Fluid Structure Interaction) simulation technique in the alveolus. Therefore, the essence of real simulation of pulmonary breathing mechanics can be achieved by developing a coupled FSI computational model. We, therefore conduct a series of FSI simulations over a range of tissue models and breathing rates. As a result, the fluid flows and streamlines have changed during present flexible model against the rigid models and also the two-way coupling particle trajectories have changed against the one-way particle coupling.Keywords: FSI, two-way particle coupling, alveoli, CDF
Procedia PDF Downloads 2574026 Adopting the Two-Stage Nested Mixed Analysis of Variance Test to the Eco Indicator 99 to Evaluate Building Technologies under LCA Uncertainties
Authors: Svetlana Pushkar
Abstract:
Eco-indicator 99 (EI99) considers fundamental life cycle assessment (LCA) uncertainties via egalitarian/egalitarian (e/e), hierarchist/hierarchist (h/h), individualist/individualist (i/i), individualist/average (i/a), egalitarian/average (e/a), and hierarchist/average (h/a) methodological options. The objective of this study is to provide a reliable two-stage nested mixed balanced Analysis of Variance (ANOVA) test as a supplemental test to EI99 to address the problematic combination of similarly and not similarly produced materials usually found in building technologies. The robustness of the test was determined from both the “EI99 (all options)” stage (including e/e, i/i, h/h, e/a, i/a, and h/a - all methodological options) and the “EI99 (perspectives)” stage (including e/e, i/i, and h/h methodological options of EI99 - the methodological options with their particular weighting set or e/a, i/a, and h/a methodological options of EI99 - the methodological options with the average weighting set) of evaluating building technologies.Keywords: building technologies, LCA uncertainty, Eco-indicator 99, two-stage nested mixed ANOVA test
Procedia PDF Downloads 3104025 Assessment of Drainage Water Quality in South Africa: Case Study of Vaal-Harts Irrigation Scheme
Authors: Josiah A. Adeyemo, Fred A. O. Otieno, Olumuyiwa I. Ojo
Abstract:
South Africa is water-stressed being a semi-arid country with limited annual rainfall supply and a lack of perennial streams. The future implications of population growth combined with the uncertainty of climate change are likely to have significant financial, human and ecological impacts on already scarce water resources. The waste water from the drainage canals of the Vaal-Harts irrigation scheme (VHS) located in Jan Kempdorp, a farming community in South Africa, were investigated for possible irrigation re-use and their effects on the immediate environment. Three major drains within the scheme were identified and sampled. Drainage water samples were analysed to determine its characteristics. The water samples analyzed had pH values in the range of 5.5 and 6.4 which is below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.09-0.82 dS/m). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. The nitrate concentration in most of the samples was high, ranging from 4.8 to 53 mg/l. The reuse of the drainage water for irrigation is possible, but with further treatment. Some suggestions were offered in the safe management of drainage water in VHS.Keywords: drainage canal, water quality, irrigation, pollutants, environment
Procedia PDF Downloads 3354024 Introduction of Artificial Intelligence for Estimating Fractal Dimension and Its Applications in the Medical Field
Authors: Zerroug Abdelhamid, Danielle Chassoux
Abstract:
Various models are given to simulate homogeneous or heterogeneous cancerous tumors and extract in each case the boundary. The fractal dimension is then estimated by least squares method and compared to some previous methods.Keywords: simulation, cancerous tumor, Markov fields, fractal dimension, extraction, recovering
Procedia PDF Downloads 3654023 Analyzing Risk and Expected Return of Lenders in the Shared Mortgage Program of Korea
Authors: Keunock Lew, Seungryul Ma
Abstract:
The paper analyzes risk and expected return of lenders who provide mortgage loans to households in the shared mortgage program of Korea. In 2013, the Korean government introduced the mortgage program to help low income householders to convert their renting into purchasing houses. The financial source for the mortgage program is the Urban Housing Fund set up by the Korean government. Through the program, low income households can borrow money from lenders to buy a house at a very low interest rate (e.g. 1 % per year) for a long time. The motivation of adopting this mortgage program by the Korean government is that the cost of renting houses has been rapidly increased especially in large urban areas during the past decade, which became financial difficulties to low income households who do not have their own houses. As the analysis methodology, the paper uses a spread sheet model for projecting cash flows of the mortgage product over the period of loan contract. It also employs Monte Carlo simulation method to analyze the risk and expected yield of the lenders with assumption that the future housing price and market rate of interest follow a stochastic process. The study results will give valuable implications to the Korean government and lenders who want to stabilize the mortgage program and innovate the related loan products.Keywords: expected return, Monte Carlo simulation, risk, shared mortgage program
Procedia PDF Downloads 2744022 The Impact of Missense Mutation in Phosphatidylinositol Glycan Class A Associated to Paroxysmal Nocturnal Hemoglobinuria and Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 2: A Computational Study
Authors: Ashish Kumar Agrahari, Amit Kumar
Abstract:
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder that manifests with hemolytic anemia, thrombosis, and peripheral blood cytopenias. The disease is caused by the deficiency of two glycosylphosphatidylinositols (GPI)-anchored proteins (CD55 and CD59) in the hemopoietic stem cells. The deficiency of GPI-anchored proteins has been associated with the somatic mutations in phosphatidylinositol glycan class A (PIGA). However, the mutations that do not cause PNH is associated with the multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2). To best of our knowledge, no computational study has been performed to explore the atomistic level impact of PIGA mutations on the structure and dynamics of the protein. In the current work, we are mainly interested to get insights into the molecular mechanism of PIGA mutations. In the initial step, we screened the most pathogenic mutations from the pool of publicly available mutations. Further, to get a better understanding, pathogenic mutations were mapped to the modeled structure and subjected to 50ns molecular dynamics simulation. Our computational study suggests that four mutations are highly vulnerable to altering the structural conformation and stability of the PIGA protein, which illustrates its association with PNH and MCAHS2 phenotype.Keywords: homology modeling, molecular dynamics simulation, missense mutations PNH, MCAHS2, PIGA
Procedia PDF Downloads 1454021 Axiomatic Design and Organization Design: Opportunities and Challenges in Transferring Axiomatic Design to the Social Sciences
Authors: Nicolay Worren, Christopher A. Brown
Abstract:
Axiomatic design (AD) has mainly been applied to support the design of physical products and software solutions. However, it was intended as a general design approach that would also be applicable to the design of social systems, including organizations (i.e., organization design). In this article, we consider how AD may be successfully transferred to the field of organizational design. On the one hand, it provides a much-needed pragmatic approach that can help leaders clarify the link between the purpose and structure of their organizations, identify ineffective organizational structures, and increase the chance of achieving strategic goals. On the other hand, there are four conceptual challenges that may create uncertainty and resistance among scholars and practitioners educated in the social sciences: 1) The exclusive focus in AD on negative interdependencies ('coupling'); 2) No obvious way of representing the need for integration across design parameters (DPs); 3) A lack of principles for handling control processes that seem to require 'deliberate coupling' of FRs; and 4) A lack of principles for handling situations where conflicting FRs (i.e., coupling) might require integration rather than separation. We discuss alternative options for handling these challenges so that scholars and practitioners can make use of AD for organization design.Keywords: axiomatic design, organization design, social systems, concept definitions
Procedia PDF Downloads 1264020 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor
Authors: Hao Yan, Xiaobing Zhang
Abstract:
The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model
Procedia PDF Downloads 904019 Weighted Data Replication Strategy for Data Grid Considering Economic Approach
Authors: N. Mansouri, A. Asadi
Abstract:
Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.Keywords: data grid, data replication, simulation, replica selection, replica placement
Procedia PDF Downloads 2604018 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System
Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes
Abstract:
The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models
Procedia PDF Downloads 814017 Obtaining High-Dimensional Configuration Space for Robotic Systems Operating in a Common Environment
Authors: U. Yerlikaya, R. T. Balkan
Abstract:
In this research, a method is developed to obtain high-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-dimensional (D) workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. The number of dimensions of the configuration space comes from the degree of freedoms of the system of interest. The method can be applied in two ways. In the first way, the point clouds of all the bodies of the system and interaction of them are used. The second way is performed via using the clearance function of simulation software where the minimum distances between surfaces of bodies are simultaneously measured. A double-turret system is held in the scope of this study. The 4-D configuration space of a double-turret system is obtained in these two ways. As a result, the difference between these two methods is around 1%, depending on the density of the point cloud. The disparity between the two forms steadily decreases as the point cloud density increases. At the end of the study, in order to verify 4-D configuration space obtained, 4-D path planning problem was realized as 2-D + 2-D and a sample path planning is carried out with using A* algorithm. Then, the accuracy of the configuration space is proved using the obtained paths on the simulation model of the double-turret system.Keywords: A* algorithm, autonomous turrets, high-dimensional C-space, manifold C-space, point clouds
Procedia PDF Downloads 1394016 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model
Authors: Aminah Muchdar, Nuraeni, Eddy
Abstract:
The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE
Procedia PDF Downloads 1804015 Gender Differences in Risk Aversion Behavior: Case Study of Saudi Arabia and Jordan
Authors: Razan Salem
Abstract:
Men and women have different approaches towards investing, both in terms of strategies and risk attitudes. This study aims to focus mainly on investigating the financial risk behaviors of Arab women investors and to examine the financial risk tolerance levels of Arab women relative to Arab men investors. Using survey data on 547 Arab men and women investors, the results of Wilcoxon Signed-Rank (One-Sample) test Mann-Whitney U test reveal that Arab women are risk-averse investors and have lower financial risk tolerance levels relative to Arab men. Such findings can be explained by the fact of women's nature and lower investment literacy levels. Further, the current political uncertainty in the Arab region may be considered as another explanation of Arab women’s risk aversion behavior. The study's findings support the existing literature by validating the stereotype of “women are more risk-averse than men” in the Arab region. Overall, when it comes to investment and financial behaviors, women around the world behave similarly.Keywords: Arab region, culture, financial risk behavior, gender differences, women investors
Procedia PDF Downloads 1664014 Are the Organizations Prepared for Potential Crises? A Research Intended to Measure the Proactivity Level of Industrial Organizations
Authors: M. Tahir Demirsel, Mustafa Atsan
Abstract:
Many elements of the environment in which businesses operate today leave them faced with unexpected threats and opportunities. One of the major threats is business crisis. The crisis is a state of affairs in a business wherein the executives must take urgent and unprecedented action to try to save the business from failure. In order to survive in the business environment, organizations should be prepared for the potential crises. Technological developments, uncertainty in the market and the intense competition increase the probability of encountering a crisis for organizations. Therefore, by acting proactively to predict crisis, to detect signals of crisis and be prepared for a crisis by taking necessary precautions accordingly, is of great importance for businesses. In this context, the objective of this study is to reveal that how much organizations are proactive and can predict the future crises and investigate whether they are prepared for possible crises or not. The research was conducted on 222 business executives in one of the major industrial zones of Turkey, Konya Organized Industrial Zone (KOS). The findings are analyzed through descriptive statistics and multiple regression analysis. According to the results, it has been observed that organizations cannot predict the crisis signals and are not prepared for potential crises.Keywords: crisis preparedness, crisis signals, industrial organizations, proactivity
Procedia PDF Downloads 5164013 Adaptive Power Control Topology Based Photovoltaic-Battery Microgrid System
Authors: Rajat Raj, Rohini S. Hallikar
Abstract:
The ever-increasing integration of renewable energy sources in the power grid necessitates the development of efficient and reliable microgrid systems. Photovoltaic (PV) systems coupled with energy storage technologies, such as batteries, offer promising solutions for sustainable and resilient power generation. This paper proposes an adaptive power control topology for a PV-battery microgrid system, aiming to optimize the utilization of available solar energy and enhance the overall system performance. In order to provide a smooth transition between the OFF-GRID and ON-GRID modes of operation with proportionate power sharing, a self-adaptive control method for a microgrid is proposed. Three different modes of operation are discussed in this paper, i.e., GRID connected, the transition between Grid-connected and Islanded State, and changing the irradiance of PVs and doing the transitioning. The simulation results show total harmonic distortion to be 0.08, 1.43 and 2.17 for distribution generation-1 and 4.22,3.92 and 2.10 for distribution generation-2 in the three modes, respectively which helps to maintain good power quality. The simulation results demonstrate the superiority of the adaptive power control topology in terms of maximizing renewable energy utilization, improving system stability and ensuring a seamless transition between grid-connected and islanded modes.Keywords: islanded modes, microgrids, photo voltaic, total harmonic distortion
Procedia PDF Downloads 1724012 On-The-Fly Cross Sections Generation in Neutron Transport with Wide Energy Region
Authors: Rui Chen, Shu-min Zhou, Xiong-jie Zhang, Ren-bo Wang, Fan Huang, Bin Tang
Abstract:
During the temperature changes in reactor core, the nuclide cross section in reactor can vary with temperature, which eventually causes the changes of reactivity. To simulate the interaction between incident neutron and various materials at different temperatures on the nose, it is necessary to generate all the relevant reaction temperature-dependent cross section. Traditionally, the real time cross section generation method is used to avoid storing huge data but contains severe problems of low efficiency and adaptability for narrow energy region. Focused on the research on multi-temperature cross sections generation in real time during in neutron transport, this paper investigated the on-the-fly cross section generation method for resolved resonance region, thermal region and unresolved resonance region, and proposed the real time multi-temperature cross sections generation method based on double-exponential formula for resolved resonance region, as well as the Neville interpolation for thermal and unresolved resonance region. To prove the correctness and validity of multi-temperature cross sections generation based on wide energy region of incident neutron, the proposed method was applied in critical safety benchmark tests, which showed the capability for application in reactor multi-physical coupling simulation.Keywords: cross section, neutron transport, numerical simulation, on-the-fly
Procedia PDF Downloads 1974011 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments
Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments
Procedia PDF Downloads 4524010 Dynamics Pattern of Land Use and Land Cover Change and Its Driving Factors Based on a Cellular Automata Markov Model: A Case Study at Ibb Governorate, Yemen
Authors: Abdulkarem Qasem Dammag, Basema Qasim Dammag, Jian Dai
Abstract:
Change in Land use and Land cover (LU/LC) has a profound impact on the area's natural, economic, and ecological development, and the search for drivers of land cover change is one of the fundamental issues of LU/LC change. The study aimed to assess the temporal and Spatio-temporal dynamics of LU/LC in the past and to predict the future using Landsat images by exploring the characteristics of different LU/LC types. Spatio-temporal patterns of LU/LC change in Ibb Governorate, Yemen, were analyzed based on RS and GIS from 1990, 2005, and 2020. A socioeconomic survey and key informant interviews were used to assess potential drivers of LU/LC. The results showed that from 1990 to 2020, the total area of vegetation land decreased by 5.3%, while the area of barren land, grassland, built-up area, and waterbody increased by 2.7%, 1.6%, 1.04%, and 0.06%, respectively. Based on socio-economic surveys and key informant interviews, natural factors had a significant and long-term impact on land change. In contrast, site construction and socio-economic factors were the main driving forces affecting land change in a short time scale. The analysis results have been linked to the CA-Markov Land Use simulation and forecasting model for the years 2035 and 2050. The simulation results revealed from the period 2020 to 2050, the trend of dynamic changes in land use, where the total area of barren land decreased by 7.0% and grassland by 0.2%, while the vegetation land, built-up area, and waterbody increased by 4.6%, 2.6%, and 0.1 %, respectively. Overall, these findings provide LULC's past and future trends and identify drivers, which can play an important role in sustainable land use planning and management by balancing and coordinating urban growth and land use and can also be used at the regional level in different levels to provide as a reference. In addition, the results provide scientific guidance to government departments and local decision-makers in future land-use planning through dynamic monitoring of LU/LC change.Keywords: LU/LC change, CA-Markov model, driving forces, change detection, LU/LC change simulation
Procedia PDF Downloads 644009 Supercomputer Simulation of Magnetic Multilayers Films
Authors: Vitalii Yu. Kapitan, Aleksandr V. Perzhu, Konstantin V. Nefedev
Abstract:
The necessity of studying magnetic multilayer structures is explained by the prospects of their practical application as a technological base for creating new storages medium. Magnetic multilayer films have many unique features that contribute to increasing the density of information recording and the speed of storage devices. Multilayer structures are structures of alternating magnetic and nonmagnetic layers. In frame of the classical Heisenberg model, lattice spin systems with direct short- and long-range exchange interactions were investigated by Monte Carlo methods. The thermodynamic characteristics of multilayer structures, such as the temperature behavior of magnetization, energy, and heat capacity, were investigated. The processes of magnetization reversal of multilayer structures in external magnetic fields were investigated. The developed software is based on the new, promising programming language Rust. Rust is a new experimental programming language developed by Mozilla. The language is positioned as an alternative to C and C++. For the Monte Carlo simulation, the Metropolis algorithm and its parallel implementation using MPI and the Wang-Landau algorithm were used. We are planning to study of magnetic multilayer films with asymmetric Dzyaloshinskii–Moriya (DM) interaction, interfacing effects and skyrmions textures. This work was supported by the state task of the Ministry of Education and Science of the Russia # 3.7383.2017/8.9Keywords: The Monte Carlo methods, Heisenberg model, multilayer structures, magnetic skyrmion
Procedia PDF Downloads 1664008 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation
Procedia PDF Downloads 435