Search results for: process of change in adolescent identity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21938

Search results for: process of change in adolescent identity

3908 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: finite element analysis, new composite structural system, seismic performance evaluation, static pushover analysis

Procedia PDF Downloads 129
3907 An Exploratory Study of the Ghanaian Music Industry: Its Impacts on the Economy and Society

Authors: Ralph Nyadu-Addo, Francis Matambalya, Utz Dornberger

Abstract:

The global music industry is a multi-billion dollar sector. The potential of Africa’s music industry is widely recognised in the socio-economic development milieu. It has impacted positively on several sectors including most especially the tourism, media and information, communication technology (ICT) among others. It is becoming increasingly clear that even in Africa (as demonstrated in Nigeria) that in addition to its intrinsic value, the sector has significant economic returns. UNCTAD observed, the creative industries offer some of the best prospects for high growth in least developed countries. The statistics from Africa may be far lower than similar sectors in developed countries but it goes to give further credence to several UNCTAD publications which say the creative industry is under researched and its potential under-estimated but holds the key to its rapid development The emerging creative economy (music in particular) has become a leading component of economic growth, employment, trade, innovation, and social cohesion in many countries. In line with these developments, the Ghana government recognizes the potential that the Creative Industries have to shape and reinforce Ghana’s economic growth. Creative sectors, particularly music, tend to rely less on sophisticated infrastructure or capital-intensive investment. Potential is particularly abundant in Africa, where musical creativity is rich, diverse, well-loved, and constantly evolving while drawing on strong traditions. The development of a popular music industry thus represents low-hanging fruit for most African economies says the World Bank. As we shift towards economic diversification using the creative industry, value is increasingly created at the intersection of arts, business and technology. Cultural and creative entrepreneurs are leading this trend. It is one of the areas where value is captured within the country as emerging trends have shown in Nigeria and Ghana among others. Yet, evidence shows that the potential of the cultural and creative sectors remains largely untapped. Furthermore, its socio-economic impact remains under-researched in many developing countries and its dynamics unknown. Despite its huge influence on music repertoire across the globe, most countries in Africa have not historically been significant markets for the international music industry. Today, that is beginning to change. Generally, reliable and adequate literature about music in the sub-region is difficult to obtain. The growing interests in academia and business cycles about a reliable data on the growing music industry in developing countries have called for an urgent need to undertake this research. Research questions: i. Who are the major stakeholders in the music value chain in Ghana? ii. How much of value is captured domestically iii. What is the economic impact of the Ghanaian music industry iv. How has the advent of ICT (internet) impacted on the music landscape? Research sources will be mainly through interviews of major stakeholders, baseline study of the industry by KPMG and content analysis of related newspapers and magazines.

Keywords: economic impact, information communications technology (ICT), music-industry, value chain

Procedia PDF Downloads 288
3906 Effect of Sodium Chloride Replacement with Potassium Chloride on Qualities of Longan Seasoning Powder

Authors: Narin Charoenphun, Praopen Rattanadee, Chaiporn Phaephiromrat

Abstract:

One of the most important intricacies of cooking is seasoning which is the process of adding salt, herbs, or spices to food to enhance the flavor. Sodium chloride (NaCl) was added in seasoning powder for taste-improving and shelf life of products. However, the raised blood pressure caused by eating too much NaCl may damage the arteries leading to the heart. Interestingly, NaCl replacement with other substance is essential for consumer. The objective of this study was to investigate the effects of NaCl replacement with potassium chloride (KCl) on the sensory characteristics and physiochemical properties of longan seasoning powder. Five longan seasoning Powder were replaced sodium chloride with KCl at 0, 25, 50 75 and 100%. Mixture design with 2 replications was performed. Sensory characteristics on overall flavor, saltiness, sweetness, bitterness and overall liking were investigated using 12 descriptive trained panelists. Results revealed that NaCl and KCl had effects on saltiness, bitterness and overall liking. As the level of KCl substituted increased, the overall flavor and sweetness of powdered seasoning from longan were not significantly (p < 0.05). This resulted in the decrease of overall liking of the products. In addition, increasing the level of KCl substituted resulted in the drop of saltiness but out of bitterness of the products. Saltiness of powdered seasoning from longan with replacement levels of 50, 75 and 100% KCl different when compared to that of 0% KCl. Bitterness of powdered seasoning from longan with replacement levels of 50, 75 and 100% KCl different when compared to that of 0% KCl. Moreover, consumer acceptance test was conducted (n=100). In conclusion, the optimum formulation contained of 32.0% longan powder, 28.0% sugar, 15.0% NaCl, 5% KCl, 16.0% pork powder, 3.0% pepper powder, and 3.0% garlic powder that would meet acceptability scores of at least 7 or like moderately.

Keywords: longan, seasoning, NaCl, KCl

Procedia PDF Downloads 247
3905 The Effect of Pozzolan Addition on the Physico-Chemical and Mechanical Properties of Mortars Based on Cement Resistant to Sulfate (CRS)

Authors: L. Belagraa, A. Belguendouz, Y. Rouabah, A. Bouzid, A. Noui, O. Kessal

Abstract:

The use of cements CRS in aggressive environments showed a lot of benefits as like good mechanical responses and therefore better durability, however, their manufacturing consume a lot of clinker, which leads to the random hazardous deposits, the shortage of natural resources and the gas and the dust emissions mainly; (CO2) with its ecological negative impact on the environment. Technical, economic and environmental benefits by the use of blended cements have been reported and being considered as a research area of great interest. The purpose of this study is to evaluate the influence of the substitution of natural pozzolan on the physico-chemical properties of the new formulated binder and the mechanical behavior of mortar containing this binary cement. Hence, the pozzolan replacement is composed with different proportions (0%, 2.5%, 5%, 7.5% and 10%). The physico-chemical properties of cement resistant to sulfate (CRS) alternative composition were investigated. Further, the behavior of the mortars based on this binder is studied. These characteristics includes chemical composition, density and fineness, consistency, setting time, shrinkage, absorption and the mechanical response. The results obtained showed that the substitution of pozzolan at the optimal ratio of 5% has a positive effect on the resulting cement, greater specific surface area, reduced water demand, accelerating the process of hydration, a better mechanical responses and decreased absorption. Therefore, economic and ecological cement based on mineral addition like pozzolan could be possible as well as advantageous to the formulation of environmental mortars.

Keywords: Cement Resistant to Sulfate (CRS), environmental mortars mechanical response, physico-chemical properties, pozzolan

Procedia PDF Downloads 358
3904 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management

Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige

Abstract:

Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.

Keywords: discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability

Procedia PDF Downloads 273
3903 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil

Procedia PDF Downloads 212
3902 Transformational Leadership Behaviors and Their Impact on Organizational Creativity

Authors: Mohamed Saeed Ahmed Salman

Abstract:

The aim of this Current Study is to reveals the impact of Transformational Leadership on Organizational Innovation in Mobile Jordanian Communication Companies, (Zain; Orange; Umniah and Xpress). The study depends on descriptive and analytical mothodize using the practical manner, study sample consists of Head of section and Experts from all Specializations in Mobile Jordanian Communication Companies amounted (120). A major study finding all Transformational Leadership Behaviors was median extent. The innovation adoption and innovation abilities availability was high extent. Besides there is a significant statistical impact of Transformational Leadership Behaviors, (Idealized Influence; Intellectual Stimulation; Individualized Consideration and Empowerment), on Organizational Innovation (innovation adoption & innovation abilities availability). It can be said that organizational creativity is the adoption of new ideas and behaviors that are applied in the organization, whether this is in creating new products or services, or new technology that is used at work. Transformational leadership is a process that occurs when one or more people engage with others in a way that enables leaders and followers to raise each other to higher levels of morals, motivations, and behaviors (desires, needs, ambitions, and followers' core values). An effective leader under transformational leadership is one who has a high ability to communicate, motivate, delegate, and listen to others, and is characterized by great flexibility in solving problems and dealing greatly with variables. The difference between creativity and innovation, in conclusion, innovation, invention, and creativity are three important elements for any institution or organization, and there is a fine line that separates them, which is that creativity works to generate new ideas, while invention makes them tangible, and innovation makes them valuable.

Keywords: leadership, organizational, transformational, creativity

Procedia PDF Downloads 11
3901 Risk Reassessment Using GIS Technologies for the Development of Emergency Response Management Plans for Water Treatment Systems

Authors: Han Gul Lee

Abstract:

When water treatments utilities are designed, an initial construction site risk assessment is conducted. This helps us to understand general safety risks that each utility needs to be complemented in the designing stage. Once it’s built, an additional risk reassessment process secures and supplements its disaster management and response plan. Because of its constantly changing surroundings with city renovation and developments, the degree of various risks that each facility has to face changes. Therefore, to improve the preparedness for spill incidents or disasters, emergency managers should run spill simulations with the available scientific technologies. This research used a two-dimensional flow routing model to simulate its spill disaster scenario based on its digital elevation model (DEM) collected with drone technologies. The results of the simulations can help emergency managers to supplement their response plan with concrete situational awareness in advance. Planning based on this simulation model minimizes its potential loss and damage when an incident like earthquakes man-made disaster happens, which could eventually be a threat in a public health context. This pilot research provides an additional paradigm to increase the preparedness to spill disasters. Acknowledgment: This work was supported by Korea Environmental Industry & Technology Institute (KEITI) through Environmental R&D Project on the Disaster Prevention of Environmental Facilities Program funded by Korea Ministry of Environment (MOE) (No.202002860001).

Keywords: risk assessment, disaster management, water treatment utilities, situational awareness, drone technologies

Procedia PDF Downloads 138
3900 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 256
3899 A Case Study on Indian Translation Ecosystem of Point-Of-Care Solutions

Authors: Tripta Dixit, Smita Sahu, William Selvamurthy, Sadhana Srivastava

Abstract:

The translation of healthcare technologies is an expensive, complex affair, current healthcare challenges in Asian countries and their efforts to meet Millennium Development Goals (MDGs), necessitates continuous technology advancement to save countless lives, improve the quality of life and for socio-economic development. India’s consistently improving global innovation index (57) demonstrates its innovation potential, but access to health care is asymmetric and lacks priority in India. Therefore, there is utmost need of a robust translation system for point-of-care (POC) solutions, inexpensive, low-maintenance, reliable, and easy-to-use diagnostic technologies. Few cases of POC technologies viz. Elisa based diagnostic kits for regional viral disease, a device for detection of cancerous lesions were studied to understand the process and challenges involved in their translation. Accordingly, the entire translation ecosystem was summarized proposing a nexus of various actors such as technology developer, technology transferor technology receiver, funding entities, government/regulatory bodies and their effect on translation of different medical technologies. This study highlights the role and concerns pertaining to these actors for POC such as unsystematic and unvalidated research roadmap, low profit preposition, unfocused approach of up-scaling, low market acceptability and multiple window regulatory framework, etc. This provides an opportunity to devise solutions to overcome problem areas in translation path.

Keywords: healthcare technologies, point-of-care solutions, public health, translation

Procedia PDF Downloads 166
3898 Surface Characterization and Femtosecond-Nanosecond Transient Absorption Dynamics of Bioconjugated Gold Nanoparticles: Insight into the Warfarin Drug-Binding Site of Human Serum Albumin

Authors: Osama K. Abou-Zied, Saba A. Sulaiman

Abstract:

We studied the spectroscopy of 25-nm diameter gold nanoparticles (AuNPs), coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs was observed in which the fluorescence quenching of Trp214 is dominated by a static mechanism. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed the unchanged nature of the binding cavity on the surface of the AuNPs, indicating the stability of the protein structure on the metal surface. The transient absorption results of the surface plasmonic resonance (SPR) band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process after excitation at 460 nm. The three decay components were assigned to the electron-electron (~ 400 fs), electron-phonon (~ 2.0 ps) and phonon-phonon (200–250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Binding of FL in HSA did not have any measurable effect on the bleach recovery dynamics of the SPR band, although both FL and AuNPs were excited at 460 nm. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles which are expected to help in optimizing their properties for critical applications in nanomedicine.

Keywords: gold nanoparticles, human serum albumin, fluorescein, femtosecond transient absorption

Procedia PDF Downloads 326
3897 Immersive and Interactive Storytelling: Exploring Narratives and Online Multisensory Experience for Cultural Memory and Collective Awareness through Graphic Novel

Authors: Cristina Greco

Abstract:

The spread of the digital and we-based technologies has led to a transformation process, which has coincided with an increase in the number of cases who are beyond the mainstream storytelling and its codes on the interaction with the user. On the base of a previous research on i-docs and virtual museums, this study analyses interactive and immersive online Graphic Novel – one-page, animated, illustrated, and hybrid – to reflect on the transformational implications of this expressive form on the user perception, remembrance, and awareness. The way in which the user experiences a certain level of interaction with the story and immersion in the semantic and figurative universe would bring user’s attention, activating introspection and self-reflection processes, perception, imagination, and creativity. This would have to do with the involvement of different senses – visual, proprioceptive, tactile, auditory, and vestibular – and the activation of a phenomenon of synaesthesia (involuntary cross-modal sensory association) – where, for example, the aural reconnect the user to another sense, providing a multisensory experience. The case studies show specific forms of interactive and immersive graphic novel and reflect on application that has sought to engage innovative ways to communicate different messages and stimulate cultural memory and collective awareness. The visual semiotic and narrative analysis of the distinctive traits of such a complex textuality, along with a study of the user’s experience through observation in naturalistic settings and interviews, allows us to question the functioning of these configurations, with regard to the relationships between the figurative dimension, the perceptive activity, and their impact on the user’s engagement.

Keywords: collective awareness, cultural memory, graphic novel, interactive and immersive storytelling

Procedia PDF Downloads 141
3896 Patient Care Needs Assessment: An Evidence-Based Process to Inform Quality Care and Decision Making

Authors: Wynne De Jong, Robert Miller, Ross Riggs

Abstract:

Beyond the number of nurses providing care for patients, having nurses with the right skills, experience and education is essential to ensure the best possible outcomes for patients. Research studies continue to link nurse staffing and skill mix with nurse-sensitive patient outcomes; numerous studies clearly show that superior patient outcomes are associated with higher levels of regulated staff. Due to the limited number of tools and processes available to assist nurse leaders with staffing models of care, nurse leaders are constantly faced with the ongoing challenge to ensure their staffing models of care best suit their patient population. In 2009, several hospitals in Ontario, Canada participated in a research study to develop and evaluate an RN/RPN utilization toolkit. The purpose of this study was to develop and evaluate a toolkit for Registered Nurses/Registered Practical Nurses Staff mix decision-making based on the College of Nurses of Ontario, Canada practice standards for the utilization of RNs and RPNs. This paper will highlight how an organization has further developed the Patient Care Needs Assessment (PCNA) questionnaire, a major component of the toolkit. Moreover, it will demonstrate how it has utilized the information from PCNA to clearly identify patient and family care needs, thus providing evidence-based results to assist leaders with matching the best staffing skill mix to their patients.

Keywords: nurse staffing models of care, skill mix, nursing health human resources, patient safety

Procedia PDF Downloads 310
3895 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries

Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna

Abstract:

Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.

Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling

Procedia PDF Downloads 244
3894 How Best Mentors mentor: A Metadiscursive Study of Mentoring Styles in Teacher Education

Authors: Cissy Li

Abstract:

Mentorship is a commonly used strategy for career development that has obvious benefits for students in undergraduate pre-service teacher training programs. In contrast to teaching practicum, which generally involves pedagogical supervision and performance evaluation by teachers, mentorship is more focused on sharing experiences, supporting challenges, and nurturing skills in order to promote personal and professional growth. To empower pre-service teachers and prepare them for potential challenges in the context of local English language teaching (ELT), an alumni mentoring program was established in the framework of communities of practice (CoP), with the mentors being in-service graduates working in local schools and mentees being students on the teacher-training programme in a Hong Kong university. By triangulating audio transcripts of mentoring sessions delivered by three top mentors with data from questionnaire responses and mentor logs, this paper examines the mentoring styles of the three best mentors from the metadiscursive perspective. It was found that, in a community of practice, mentors who may seem to enjoy a relative more dominant position, in fact, had to strategically and pragmatically employ metadiscursive resources to manage relationships with the mentees and organize talks in the mentoring process. Other attributing factors for a successful mentoring session include mentor personality and prior mentorship experiences, nature of the activities in the session, and group dynamics. This paper concludes that it is the combination of all the factors that constitute a particular mentoring style. The findings have implications for mentoring programs in teacher preparation.

Keywords: mentoring, teacher education, mentoring style, metadiscourse

Procedia PDF Downloads 88
3893 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine

Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel

Procedia PDF Downloads 146
3892 Mechanical Properties and Crack Extension Mechanism of Rock Contained Blocks Under Uniaxial Compression

Authors: Ruiyang Bi

Abstract:

Natural rock masses are cut into rock blocks of different shapes and sizes by intersecting joints. These rock blocks often determine the mechanical properties of the rock mass. In this study, fine sandstone cube specimens were produced, and three intersecting joint cracks were cut inside the specimen. Uniaxial compression tests were conducted using mechanical tests and numerical simulation methods to study the mechanical properties and crack propagation mechanism of triangular blocks within the rock. During the test, the mechanical strength, acoustic emission characteristics and strain field evolution of the specimen were analyzed. Discrete element software was used to study the expansion of microcracks during the specimen failure process, and the crack types were divided. The simulation results show that as the inclination angles of the three joints increase simultaneously, the mechanical strength of the specimen first decreases and then increases, and the crack type is mainly shear. As the inclination angle of a single joint increases, the strength of the specimen gradually decreases. When the inclination angles of the two joints increase at the same time, the strength of the specimen gradually decreases. The research results show that the stability of the rock mass is affected by the joint inclination angle and the size of the cut blocks. The greater the joint dip and block size, the more significant the development of micro-cracks in the rock mass, and the worse the stability.

Keywords: rock joints, uniaxial compression, crack extension, discrete element simulation

Procedia PDF Downloads 57
3891 Semantic Indexing Improvement for Textual Documents: Contribution of Classification by Fuzzy Association Rules

Authors: Mohsen Maraoui

Abstract:

In the aim of natural language processing applications improvement, such as information retrieval, machine translation, lexical disambiguation, we focus on statistical approach to semantic indexing for multilingual text documents based on conceptual network formalism. We propose to use this formalism as an indexing language to represent the descriptive concepts and their weighting. These concepts represent the content of the document. Our contribution is based on two steps. In the first step, we propose the extraction of index terms using the multilingual lexical resource Euro WordNet (EWN). In the second step, we pass from the representation of index terms to the representation of index concepts through conceptual network formalism. This network is generated using the EWN resource and pass by a classification step based on association rules model (in attempt to discover the non-taxonomic relations or contextual relations between the concepts of a document). These relations are latent relations buried in the text and carried by the semantic context of the co-occurrence of concepts in the document. Our proposed indexing approach can be applied to text documents in various languages because it is based on a linguistic method adapted to the language through a multilingual thesaurus. Next, we apply the same statistical process regardless of the language in order to extract the significant concepts and their associated weights. We prove that the proposed indexing approach provides encouraging results.

Keywords: concept extraction, conceptual network formalism, fuzzy association rules, multilingual thesaurus, semantic indexing

Procedia PDF Downloads 134
3890 The Advancement of Environmental Impact Assessment for 5th Transmission Natural Gas Pipeline Project in Thailand

Authors: Penrug Pengsombut, Worawut Hamarn, Teerawuth Suwannasri, Kittiphong Songrukkiat, Kanatip Ratanachoo

Abstract:

PTT Public Company Limited or simply PTT has played an important role in strengthening national energy security of the Kingdom of Thailand by transporting natural gas to customers in power, industrial and commercial sectors since 1981. PTT has been constructing and operating natural gas pipeline system of over 4,500-km network length both onshore and offshore laid through different area classifications i.e., marine, forest, agriculture, rural, urban, and city areas. During project development phase, an Environmental Impact Assessment (EIA) is conducted and submitted to the Office of Natural Resources and Environmental Policy and Planning (ONEP) for approval before project construction commencement. Knowledge and experiences gained and revealed from EIA in the past projects definitely are developed to further advance EIA study process for newly 5th Transmission Natural Gas Pipeline Project (5TP) with approximately 415 kilometers length. The preferred pipeline route is selected and justified by SMARTi map, an advance digital one-map platform with consists of multiple layers geographic and environmental information. Sensitive area impact focus (SAIF) is a practicable impact assessment methodology which appropriate for a particular long distance infrastructure project such as 5TP. An environmental modeling simulation is adopted into SAIF methodology for impact quantified in all sensitive areas whereas other area along pipeline right-of-ways is typically assessed as an impact representative. Resulting time and cost deduction is beneficial to project for early start.

Keywords: environmental impact assessment, EIA, natural gas pipeline, sensitive area impact focus, SAIF

Procedia PDF Downloads 399
3889 Integrated Approach of Knowledge Economy and Society in the Perspective of Higher Education Institutions

Authors: S. K. Ashiquer Rahman

Abstract:

Innovation, sustainability, and higher education are vital issues of the knowledge economy and society. In fact, the concentration on these issues, educators and researchers convinced the learners to prepare productive citizens for the knowledge economy and society, and many initiatives have been launched worldwide. The concept of a knowledge economy requires simultaneous and balanced progress in three dimensions (Innovation, Education and Sustainability) which are totally interdependent and correlated. The paper discusses the importance of an integrated approach to the knowledge economy and society from the perspective of higher education institutions. It remarks on the advent of a knowledge-based economy and society and the need for the combination of Innovation, sustainability, and education. This paper introduces nine (9) important issues or challenges of higher education institutions that have emphasized, cross-linked each other, and combined in a new education system that can form a new generation for the completive world as well as able to manage the knowledge-based economy and societal system. Moreover, the education system must be the foundation for building the necessary knowledge-based economy and society, which must manage the innovation process through a more sustainable world. In this viewpoint, Innovation, sustainability and higher education are becoming more and more central in our economy and society, and it is directly associated with the possibility of global wealth distribution to the economy and society. The objective of this research is to demonstrate the knowledge-based economy and social paradigm in order to create the opportunity for higher education institutions' development. The paper uses the collective action methodologies to examine “the mechanisms and strategies” used by higher education institutions’ authority to accommodate an integrated pattern as per connecting behaviors of knowledge economy and society. The paper accomplishes that the combination of Innovation, sustainability and education is a very helpful approach to building a knowledge-based economy and society for practicing the higher education institution’s challenges.

Keywords: education, innovation, knowledge economy, sustainability

Procedia PDF Downloads 95
3888 Storage of Organic Carbon in Chemical Fractions in Acid Soil as Influenced by Different Liming

Authors: Ieva Jokubauskaite, Alvyra Slepetiene, Danute Karcauskiene, Inga Liaudanskiene, Kristina Amaleviciute

Abstract:

Soil organic carbon (SOC) is the key soil quality and ecological stability indicator, therefore, carbon accumulation in stable forms not only supports and increases the organic matter content in the soil, but also has a positive effect on the quality of soil and the whole ecosystem. Soil liming is one of the most common ways to improve the carbon sequestration in the soil. Determination of the optimum intensity and combinations of liming in order to ensure the optimal carbon quantitative and qualitative parameters is one of the most important tasks of this work. The field experiments were carried out at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry (LRCAF) during the 2011–2013 period. The effect of liming with different intensity (at a rate 0.5 every 7 years and 2.0 every 3-4 years) was investigated in the topsoil of acid moraine loam Bathygleyic Dystric Glossic Retisol. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LRCAF. Soil samples for chemical analyses were taken from the topsoil after harvesting. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) at 590 nm wavelength using glucose standards. SOC fractional composition was determined by Ponomareva and Plotnikova version of classical Tyurin method. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR in water extract at soil-water ratio 1:5. Spectral properties (E4/E6 ratio) of humic acids were determined by measuring the absorbance of humic and fulvic acids solutions at 465 and 665 nm. Our study showed a negative statistically significant effect of periodical liming (at 0.5 and 2.0 liming rates) on SOC content in the soil. The content of SOC was 1.45% in the unlimed treatment, while in periodically limed at 2.0 liming rate every 3–4 years it was approximately by 0.18 percentage points lower. It was revealed that liming significantly decreased the DOC concentration in the soil. The lowest concentration of DOC (0.156 g kg-1) was established in the most intensively limed (2.0 liming rate every 3–4 years) treatment. Soil liming exerted an increase of all humic acids and fulvic acid bounded with calcium fractions content in the topsoil. Soil liming resulted in the accumulation of valuable humic acids. Due to the applied liming, the HR/FR ratio, indicating the quality of humus increased to 1.08 compared with that in unlimed soil (0.81). Intensive soil liming promoted the formation of humic acids in which groups of carboxylic and phenolic compounds predominated. These humic acids are characterized by a higher degree of condensation of aromatic compounds and in this way determine the intensive organic matter humification processes in the soil. The results of this research provide us with the clear information on the characteristics of SOC change, which could be very useful to guide the climate policy and sustainable soil management.

Keywords: acid soil, carbon sequestration, long–term liming, soil organic carbon

Procedia PDF Downloads 218
3887 Designing of Tooling Solution for Material Handling in Highly Automated Manufacturing System

Authors: Muhammad Umair, Yuri Nikolaev, Denis Artemov, Ighor Uzhinsky

Abstract:

A flexible manufacturing system is an integral part of a smart factory of industry 4.0 in which every machine is interconnected and works autonomously. Robots are in the process of replacing humans in every industrial sector. As the cyber-physical-system (CPS) and artificial intelligence (AI) are advancing, the manufacturing industry is getting more dependent on computers than human brains. This modernization has boosted the production with high quality and accuracy and shifted from classic production to smart manufacturing systems. However, material handling for such automated productions is a challenge and needs to be addressed with the best possible solution. Conventional clamping systems are designed for manual work and not suitable for highly automated production systems. Researchers and engineers are trying to find the most economical solution for loading/unloading and transportation workpieces from a warehouse to a machine shop for machining operations and back to the warehouse without human involvement. This work aims to propose an advanced multi-shape tooling solution for highly automated manufacturing systems. The currently obtained result shows that it could function well with automated guided vehicles (AGVs) and modern conveyor belts. The proposed solution is following requirements to be automation-friendly, universal for different part geometry and production operations. We used a bottom-up approach in this work, starting with studying different case scenarios and their limitations and finishing with the general solution.

Keywords: artificial intelligence, cyber physics system, Industry 4.0, material handling, smart factory, flexible manufacturing system

Procedia PDF Downloads 126
3886 Efficient Fuzzy Classified Cryptographic Model for Intelligent Encryption Technique towards E-Banking XML Transactions

Authors: Maher Aburrous, Adel Khelifi, Manar Abu Talib

Abstract:

Transactions performed by financial institutions on daily basis require XML encryption on large scale. Encrypting large volume of message fully will result both performance and resource issues. In this paper a novel approach is presented for securing financial XML transactions using classification data mining (DM) algorithms. Our strategy defines the complete process of classifying XML transactions by using set of classification algorithms, classified XML documents processed at later stage using element-wise encryption. Classification algorithms were used to identify the XML transaction rules and factors in order to classify the message content fetching important elements within. We have implemented four classification algorithms to fetch the importance level value within each XML document. Classified content is processed using element-wise encryption for selected parts with "High", "Medium" or “Low” importance level values. Element-wise encryption is performed using AES symmetric encryption algorithm and proposed modified algorithm for AES to overcome the problem of computational overhead, in which substitute byte, shift row will remain as in the original AES while mix column operation is replaced by 128 permutation operation followed by add round key operation. An implementation has been conducted using data set fetched from e-banking service to present system functionality and efficiency. Results from our implementation showed a clear improvement in processing time encrypting XML documents.

Keywords: XML transaction, encryption, Advanced Encryption Standard (AES), XML classification, e-banking security, fuzzy classification, cryptography, intelligent encryption

Procedia PDF Downloads 403
3885 An Criterion to Minimize FE Mesh-Dependency in Concrete Plate Subjected to Impact Loading

Authors: Kwak, Hyo-Gyung, Gang, Han Gul

Abstract:

In the context of an increasing need for reliability and safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling, in advance, mesh dependency in the used finite element (FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. It means that the accuracy of simulation results may deeply be dependent on FE mesh size in simulations. This paper introduces an improved criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC (Holmquist Johnson Cook), CSC (Continuous Surface Cap) and K&C (Karagozian & Case) models are examined to trace their relative sensitivity to the used FE mesh size. To coincide with the purpose of the penetration test with a concrete plate under a projectile (bullet), the residual velocities of projectile after penetration are compared. The correlation studies between analytical results and the parametric studies associated with them show that the variation of residual velocity with the used FE mesh size is quite reduced by applying a unique failure strain value determined according to the proposed criterion.

Keywords: high strain rate concrete, penetration simulation, failure strain, mesh-dependency, fracture energy

Procedia PDF Downloads 514
3884 Uniqueness and Repeatability Analysis for Slim Tube Determined Minimum Miscibility Pressure

Authors: Waqar Ahmad Butt, Gholamreza Vakili Nezhaad, Ali Soud Al Bemani, Yahya Al Wahaibi

Abstract:

Miscible gas injection processes as secondary recovery methods can be applied to a huge number of mature reservoirs to improve the trapped oil displacement. Successful miscible gas injection processes require an accurate estimation of the minimum miscibility pressure (MMP) to make injection process feasible, economical, and effective. There are several methods of MMP determination like slim tube approach, vanishing interfacial tension and rising bubble apparatus but slim tube is the deployed experimental technique in this study. Slim tube method is assumed to be non-standardized for MMP determination with respect to both operating procedure and design. Therefore, 25 slim tube runs were being conducted with three different coil lengths (12, 18 and 24 m) of constant diameter using three different injection rates (0.08, 0.1 and 0.15 cc/min) to evaluate uniqueness and repeatability of determined MMP. A trend of decrease in MMP with increase in coil length was found. No unique trend was found between MMP and injection rate. Lowest MMP and highest recovery were observed with highest coil length and lowest injection rate. It shows that slim tube measured MMP does not depend solely on interacting fluids characteristics but also affected by used coil selection and injection rate choice. Therefore, both slim tube design and procedure need to be standardized. It is recommended to use lowest possible injection rate and estimated coil length depending upon the distance between injections and producing wells for accurate and reliable MMP determination.

Keywords: coil length, injection rate, minimum miscibility pressure, multiple contacts miscibility

Procedia PDF Downloads 248
3883 A Participatory Study in Using Augmented Reality for Teaching Civics in Middle Schools

Authors: E. Sahar

Abstract:

Civic political knowledge is crucial for the stability of democratic countries. In the USA, Americans have poor knowledge about their constitution and their political systems. Some states such as Florida State suffers from a huge decline in civics comparing to the National Average. This study concerns with using new technologies such as augmented reality to engage students in learning civics in classrooms. This is a participatory study, which engage teachers in the process of designing augmented reality civic games. The researcher used survey to find out the materials that teachers struggle with while teaching civics. Four lessons were found the most difficult to teach for middle school students: SS7C1.1 Enlightenment thinkers, SS7C1.2 influencing documents, SS7C1.7-Weakness of the Articles of Confederation, and Forms and systems of governments. For the limited scope of this study, we focused on “Forms and Systems of governments’ as the main project. Augmented Reality is used to help students to engage in learning civics through building a game that is based on the pedagogy constructivism theory. The resulted project meets the educational requirements for civics, provide students with more knowledge in at stake issues such as migration and citizenship, and help them to build leadership skills while playing in groups. The augmented reality game is also designed to test the students learning for each stage. This study helps to generate insightful implications for the use of augmented reality by educators, researchers, instructional designers, and developers who are interested in integrating technology in teaching civics for students in middle school classrooms.

Keywords: augmented reality, games, civics teaching, Florida middle school

Procedia PDF Downloads 119
3882 Achieving Sustainable Development through Transformative Pedagogies in Universities

Authors: Eugene Allevato

Abstract:

Developing a responsible personal worldview is central to sustainable development, but achieving quality education to promote transformative learning for sustainability is thus far, poorly understood. Most programs involving education for sustainable development rely on changing behavior, rather than attitudes. The emphasis is on the scientific and utilitarian aspect of sustainability with negligible importance on the intrinsic value of nature. Campus sustainability projects include building sustainable gardens and implementing energy-efficient upgrades, instead of focusing on educating for sustainable development through exploration of students’ values and beliefs. Even though green technology adoption maybe the right thing to do, most schools are not targeting the root cause of the environmental crisis; they are just providing palliative measures. This study explores the under-examined factors that lead to pro-environmental behavior by investigating the environmental perceptions of both college business students and personnel of green organizations. A mixed research approach of qualitative, based on structured interviews, and quantitative instruments was developed including 30 college-level students’ interviews and 40 green organization staff members involved in sustainable activities. The interviews were tape-recorded and transcribed for analysis. Categorization of the responses to the open‐ended questions was conducted with the purpose of identifying the main types of factors influencing attitudes and correlating with behaviors. Overall the findings of this study indicated a lack of appreciation for nature, and inability to understand interconnectedness and apply critical thinking. The results of the survey conducted on undergraduate students indicated that the responses of business and liberal arts students by independent t-test were significantly different, with a p‐value of 0.03. While liberal arts students showed an understanding of human interdependence with nature and its delicate balance, business students seemed to believe that humans were meant to rule over the rest of nature. This result was quite intriguing from the perspective that business students will be defining markets, influencing society, controlling and managing businesses that supposedly, in the face of climate change, shall implement sustainable activities. These alarming results led to the focus on green businesses in order to better understand their motivation to engage in sustainable activities. Additionally, a probit model revealed that childhood exposure to nature has a significantly positive impact in pro-environmental attitudes to most of the New Ecological Paradigm scales. Based on these findings, this paper discusses educators including Socrates, John Dewey and Paulo Freire in the implementation of eco-pedagogy and transformative learning following a curriculum with emphasis on critical and systems thinking, which are deemed to be key ingredients in quality education for sustainable development.

Keywords: eco-pedagogy, environmental behavior, quality education for sustainable development, transformative learning

Procedia PDF Downloads 306
3881 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film

Procedia PDF Downloads 112
3880 Harnessing Emerging Creative Technology for Knowledge Discovery of Multiwavelenght Datasets

Authors: Basiru Amuneni

Abstract:

Astronomy is one domain with a rise in data. Traditional tools for data management have been employed in the quest for knowledge discovery. However, these traditional tools become limited in the face of big. One means of maximizing knowledge discovery for big data is the use of scientific visualisation. The aim of the work is to explore the possibilities offered by emerging creative technologies of Virtual Reality (VR) systems and game engines to visualize multiwavelength datasets. Game Engines are primarily used for developing video games, however their advanced graphics could be exploited for scientific visualization which provides a means to graphically illustrate scientific data to ease human comprehension. Modern astronomy is now in the era of multiwavelength data where a single galaxy for example, is captured by the telescope several times and at different electromagnetic wavelength to have a more comprehensive picture of the physical characteristics of the galaxy. Visualising this in an immersive environment would be more intuitive and natural for an observer. This work presents a standalone VR application that accesses galaxy FITS files. The application was built using the Unity Game Engine for the graphics underpinning and the OpenXR API for the VR infrastructure. The work used a methodology known as Design Science Research (DSR) which entails the act of ‘using design as a research method or technique’. The key stages of the galaxy modelling pipeline are FITS data preparation, Galaxy Modelling, Unity 3D Visualisation and VR Display. The FITS data format cannot be read by the Unity Game Engine directly. A DLL (CSHARPFITS) which provides a native support for reading and writing FITS files was used. The Galaxy modeller uses an approach that integrates cleaned FITS image pixels into the graphics pipeline of the Unity3d game Engine. The cleaned FITS images are then input to the galaxy modeller pipeline phase, which has a pre-processing script that extracts, pixel, galaxy world position, and colour maps the FITS image pixels. The user can visualise image galaxies in different light bands, control the blend of the image with similar images from different sources or fuse images for a holistic view. The framework will allow users to build tools to realise complex workflows for public outreach and possibly scientific work with increased scalability, near real time interactivity with ease of access. The application is presented in an immersive environment and can use all commercially available headset built on the OpenXR API. The user can select galaxies in the scene, teleport to the galaxy, pan, zoom in/out, and change colour gradients of the galaxy. The findings and design lessons learnt in the implementation of different use cases will contribute to the development and design of game-based visualisation tools in immersive environment by enabling informed decisions to be made.

Keywords: astronomy, visualisation, multiwavelenght dataset, virtual reality

Procedia PDF Downloads 83
3879 Preliminary Flow Sheet for Recycling of Spent Lithium-Ion Batteries

Authors: Mohammad Ali Rajaeifar, Oliver Heidrich

Abstract:

Nowadays, Li-ion batteries are vastly disseminated and the battery market is expected to experience a huge growth during next decade especially in terms of traction batteries. As the automotive industry moving towards the electrification of the powertrain, more raw/critical materials and energy are extracted while on the other hand, concerns are made regarding the scarcity of the materials as well as environmental issues regarding the destiny of the spent batteries. In this regards, recycling could play a vital role in the supply chain, leading reutilization of key battery materials and also reducing environmental burden related to the use of batteries. The aim of this paper is to review the previous and state-of-the-art treatments for recycling of Li-ion batteries. All the treatments method from mechanical, mild-thermal, pyrometallurgical and hydrometallurgical as well as combined methods for recycling of Li-ion batteries were considered in the study. There are various treatment methods that are economical, but they are not environmentally friendly or vice versa. This is due to the fact that the benefits of the Li-ion batteries recycling could be affected by different factors such as the amount of spent batteries available, the quality of the recovered material, the energy and material consumption by the process itself and environmental burdens caused by required logistics. Finally, a preliminary work sheet of possible route for recycling of spent Li-ion batteries was presented through the course of this study. Overall, it is worth quoting that recycling processes generally consumes a great deal of energy and auxiliary materials. Moreover, the collection of spent products from waste streams represents additional environmental efforts. Therefore, developing and optimizing efficient collection and separation technologies is essential to achieve sustainability goals.

Keywords: hydrometallurgical treatment, Li-ion batteries, mild-thermal treatment, mechanical treatment, recycling, pyrometallurgical treatment

Procedia PDF Downloads 104