Search results for: yield strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5842

Search results for: yield strength

4072 Influence of Initial Curing Time, Water Content and Apparent Water Content on Geopolymer Modified Sludge Generated in Landslide Area

Authors: Minh Chien Vu, Tomoaki Satomi, Hiroshi Takahashi

Abstract:

As being lack of sufficient strength to support the loading of construction as well as service life cause the clay content and clay mineralogy, soft and highly compressible soils (sludge) constitute a major problem in geotechnical engineering projects. Geopolymer, a kind of inorganic polymer, is a promising material with a wide range of applications and offers a lower level of CO₂ emissions than conventional Portland cement. However, the feasibility of geopolymer in term of modified the soft and highly compressible soil has not been received much attention due to the requirement of heat treatment for activating the fly ash component and the existence of high content of clay-size particles in the composition of sludge that affected on the efficiency of the reaction. On the other hand, the geopolymer modified sludge could be affected by other important factors such as initial curing time, initial water content and apparent water content. Therefore, this paper describes a different potential application of geopolymer: soil stabilization in landslide areas to adapt to the technical properties of sludge so that heavy machines can move on. Sludge condition process is utilized to demonstrate the possibility for stabilizing sludge using fly ash-based geopolymer at ambient curing condition ( ± 20 °C) in term of failure strength, strain and bulk density. Sludge conditioning is a process whereby sludge is treated with chemicals or various other means to improve the dewatering characteristics of sludge before applying in the construction area. The effect of initial curing time, water content and apparent water content on the modification of sludge are the main focus of this study. Test results indicate that the initial curing time has potential for improving failure strain and strength of modified sludge with the specific condition of soft soil. The result further shows that the initial water content over than 50% total mass of sludge could significantly lead to a decrease of strength performance of geopolymer-based modified sludge. The optimum apparent water content of geopolymer modified sludge is strongly influenced by the amount of geopolymer content and initial water content of sludge. The solution to minimize the effect of high initial water content will be considered deeper in the future.

Keywords: landslide, sludge, fly ash, geopolymer, sludge conditioning

Procedia PDF Downloads 102
4071 Glycerol-Based Bio-Solvents for Organic Synthesis

Authors: Dorith Tavor, Adi Wolfson

Abstract:

In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.

Keywords: glycerol, green chemistry, sustainability, catalysis

Procedia PDF Downloads 606
4070 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase

Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi

Abstract:

Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.

Keywords: environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability

Procedia PDF Downloads 379
4069 Biomechanical Analysis on Skin and Jejunum of Chemically Prepared Cat Cadavers Used in Surgery Training

Authors: Raphael C. Zero, Thiago A. S. S. Rocha, Marita V. Cardozo, Caio C. C. Santos, Alisson D. S. Fechis, Antonio C. Shimano, FabríCio S. Oliveira

Abstract:

Biomechanical analysis is an important factor in tissue studies. The objective of this study was to determine the feasibility of a new anatomical technique and quantify the changes in skin and the jejunum resistance of cats’ corpses throughout the process. Eight adult cat cadavers were used. For every kilogram of weight, 120ml of fixative solution (95% 96GL ethyl alcohol and 5% pure glycerin) was applied via the external common carotid artery. Next, the carcasses were placed in a container with 96 GL ethyl alcohol for 60 days. After fixing, all carcasses were preserved in a 30% sodium chloride solution for 60 days. Before fixation, control samples were collected from fresh cadavers and after fixation, three skin and jejunum fragments from each cadaver were tested monthly for strength and displacement until complete rupture in a universal testing machine. All results were analyzed by F-test (P <0.05). In the jejunum, the force required to rupture the fresh samples and the samples fixed in alcohol for 60 days was 31.27±19.14N and 29.25±11.69N, respectively. For the samples preserved in the sodium chloride solution for 30 and 60 days, the strength was 26.17±16.18N and 30.57±13.77N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days was 2.79±0.73mm and 2.80±1.13mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 2.53±1.03mm and 2.83±1.27mm, respectively. There was no statistical difference between the samples (P=0.68 with respect to strength, and P=0.75 with respect to displacement). In the skin, the force needed to rupture the fresh samples and the samples fixed for 60 days in alcohol was 223.86±131.5N and 211.86±137.53N respectively. For the samples preserved in sodium chloride solution for 30 and 60 days, the force was 227.73±129.06 and 224.78±143.83N, respectively. In relation to the displacement required for the rupture of the samples, the values of fresh specimens and those fixed in alcohol for 60 days were 3.67±1.03mm and 4.11±0.87mm, respectively. For the samples preserved for 30 and 60 days with sodium chloride solution, the displacement was 4.21±0.93mm and 3.93±0.71mm, respectively. There was no statistical difference between the samples (P=0.65 with respect to strength, and P=0.98 with respect to displacement). The resistance of the skin and intestines of the cat carcasses suffered little change when subjected to alcohol fixation and preservation in sodium chloride solution, each for 60 days, which is promising for use in surgery training. All experimental procedures were approved by the Municipal Legal Department (protocol 02.2014.000027-1). The project was funded by FAPESP (protocol 2015-08259-9).

Keywords: anatomy, conservation, fixation, small animal

Procedia PDF Downloads 274
4068 Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric

Authors: C. W. Kan

Abstract:

Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.

Keywords: learning materials, atmospheric pressure plasma treatment, cotton, wrinkle-resistant, BTCA

Procedia PDF Downloads 281
4067 Soil-Structure Interaction in Stiffness and Strength Degrading Systems

Authors: Enrique Bazan-Zurita, Sittipong Jarernprasert, Jacobo Bielak

Abstract:

We study the effects of soil-structure interaction (SSI) on the inelastic seismic response of a single-degree-of-freedom system whose hysteretic behaviour exhibits stiffness and/or strength degrading characteristics. Two sets of accelerograms are used as seismic input: the first comprising 87 record from stiff to medium stiff sites in California, and the second comprising 66 records from the soft lakebed of Mexico City. This study focuses in three seismic response parameters: ductility demand, inter-story drift, and total lateral displacement. The results allow quantitative estimates of changes in such parameters in an SSI system in comparison with those corresponding to the associated fixed-base system. We found that degrading features affect significantly both the response of fixed-base structures and the impact of soil-structure interaction. We propose a procedure to incorporate the results of this and similar studies in seismic design regulations for SSI system with anticipated nonlinear degrading behaviour.

Keywords: inelastic, seismic, building, foundation, interaction

Procedia PDF Downloads 269
4066 Keratin Fiber Fabrication from Biowaste for Biomedical Application

Authors: Ashmita Mukherjee, Yogesh Harishchandra Kabutare, Suritra Bandyopadhyay, Paulomi Ghosh

Abstract:

Uncontrolled bleeding in the battlefield and the operation rooms can lead to serious injuries, trauma and even be lethal. Keratin was reported to be a haemostatic material which rapidly activates thrombin followed by activation of fibrinogen leading to the formation of insoluble fibrin. Also platelets, the main initiator of haemostasis are reported to adhere to keratin. However, the major limitation of pure keratin as a biomaterial is its poor physical property and corresponding low mechanical strength. To overcome this problem, keratin was cross-linked with alginate to increase its mechanical stability. In our study, Keratin extracted from feather waste showed yield of 80.5% and protein content of 8.05 ± 0.43 mg/mL (n=3). FTIR and CD spectroscopy confirmed the presence of the essential functional groups and preservation of the secondary structures of keratin. The keratin was then cross-linked with alginate to make a dope. The dope was used to draw fibers of desired diameters in a suitable coagulation bath using a customized wet spinning setup. The resultant morphology of keratin fibers was observed under a brightfield microscope. The FT-IR analysis implied that there was a presence of both keratin and alginate peaks in the fibers. The cross-linking was confirmed in the keratin alginate fibers by a shift of the amide A and amide B peaks towards the right and disappearance of the peak for N-H stretching (1534.68 cm-1). Blood was drawn in citrate vacutainers for whole blood clotting test and blood clotting kinetics, which showed that the keratin fibers could accelerate blood coagulation compared to that of alginate fibers and tissue culture plate. Additionally, cross-linked keratin-alginate fiber was found to have lower haemolytic potential compared to alginate fiber. Thus, keratin cross-linked fibers can have potential applications to combat unrestrained bleeding.

Keywords: biomaterial, biowaste, fiber, keratin

Procedia PDF Downloads 165
4065 The Examination of Cement Effect on Isotropic Sands during Static, Dynamic, Melting and Freezing Cycles

Authors: Mehdi Shekarbeigi

Abstract:

The consolidation of loose substrates as well as substrate layers through promoting stabilizing materials is one of the most commonly used road construction techniques. Cement, lime, and flax, as well as asphalt emulsion, are common materials used for soil stabilization to enhance the soil’s strength and durability properties. Cement could be simply used to stabilize permeable materials such as sand in a relatively short time threshold. In this research, typical Portland cement is selected for the stabilization of isotropic sand; the effect of static and cyclic loading on the behavior of these soils has been examined with various percentages of Portland cement. Thus, firstly, a soil’s general features are investigated, and then static tests, including direct cutting, density and single axis tests, and California Bearing Ratio, are performed on the samples. After that, the dynamic behavior of cement on silica sand with the same grain size is analyzed. These experiments are conducted on cement samples of 3, 6, and 9 of the same rates and ineffective limiting pressures of 0 to 1200 kPa with 200 kPa steps of the face according to American Society for Testing and Materials D 3999 standards. Also, to test the effect of temperature on molds and frost samples, 0, 5, 10, and 20 are carried out during 0, 5, 10, and 20-second periods. Results of the static tests showed that increasing the cement percentage increases the soil density and shear strength. The single-axis compressive strength increase is higher for samples with higher cement content and lower densities. The results also illustrate the relationship between single-axial compressive strength and cement weight parameters. Results of the dynamic experiments indicate that increasing the number of loading cycles and melting and freezing cycles enhances permeability and decreases the applied pressure. According to the results of this research, it could be stated that samples containing 9% cement have the highest amount of shear modulus and, therefore, decrease the permeability of soil. This amount could be considered as the optimal amount. Also, the enhancement of effective limited pressure from 400 to 800kPa increased the shear modulus of the sample by an average of 20 to 30 percent in small strains.

Keywords: cement, isotropic sands, static load, three-axis cycle, melting and freezing cycles

Procedia PDF Downloads 61
4064 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model

Authors: Aminah Muchdar, Nuraeni, Eddy

Abstract:

The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.

Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE

Procedia PDF Downloads 164
4063 Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders

Authors: Helia Barzegar Sedigh, Farzaneh Hamedi, Payam Ashtari

Abstract:

There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.

Keywords: experimental study, finite element model, flexural and shear yielding, t-resisting frame

Procedia PDF Downloads 218
4062 Biodiesel Production from Broiler Chicken Waste

Authors: John Abraham, Ramesh Saravana Kumar, Francis, Xavier, Deepak Mathew

Abstract:

Broiler slaughter waste has become a major source of pollution throughout the world. Utilization of broiler slaughter waste by dry rendering process produced Rendered Chicken Oil (RCO) a cheap raw material for biodiesel production and Carcass Meal a feed ingredient for pets and fishes. Conversion of RCO into biodiesel may open new vistas for generating wealth from waste besides controlling the major havoc of environmental pollution. A two-step process to convert RCO to good quality Biodiesel was invented. Acid catalysed esterification of FFA followed by base catalysed transesterification of triglycerides was carried out after meticulously standardising the methanol molar ratio, catalyst concentration, reaction temperature and reaction time to obtain the maximum biodiesel yield of 97.62% and lowest glycerol yield of 6.96%. RCO biodiesel blended was tested in a Mahindra Scorpio CRDI engine. The results revealed that the blending of commercial diesel with 20% RCO biodiesel lead to less engine wear, a quieter engine and better fuel economy. The better lubricating qualities of RCO B20 prevented over heating of engine, which prolongs the engine life. The blending of biodiesel at 20% to commercial diesel can reduce the import of costly crude oil and simultaneously, substantially reduce the engine emissions as proved by significantly lower smoke levels, thus mitigating climatic changes.

Keywords: broiler waste, rendered chicken oil, biodiesel, engine testing

Procedia PDF Downloads 404
4061 The Impact of Ionic Strength on the Adsorption Behavior of Anionic and Cationic Dyes on Low Cost Biosorbent

Authors: Abdallah Bouguettoucha, Derradji Chebli, Sara Aga, Agueniou Fazia

Abstract:

The objective of this study was to looking for alternative materials (low cost) for the adsorption of textile dyes and optimizes the type which gives optimum adsorption and provides an explanation of the mechanism involved in the adsorption process. Adsorption of Orange II and Methylene blue on H2SO4 traited cone of Pinus brutia, was carried out at different initial concentrations of the dye (20, 50 and 100 mg / L) and at tow initial pH, pH 1 and 10 respectively. The models of Langmuir, Freundlich and Sips were used in this study to analyze the obtained results of the adsorption isotherm. PCB-0M had high adsorption capacities namely 32.8967 mg/g and 128.1651 mg/g, respectively for orange II and methylene blue and further indicated that the removal of dyes increased with increase in the ionic strength of solution, this was attributed to aggregation of dyes in solution. The potential of H2SO4 traited cone of Pinus brutia, an easily available and low cost material, to be used as an alternative biosorbent material for the removal of a dyes, Orange II and Methylene Bleu, from aqueous solutions was therefore confirmed.

Keywords: Methylene blue, orange II, cones of pinus brutia, adsorption

Procedia PDF Downloads 267
4060 Investigation on the Properties of Particulate Reinforced AA2014 Metal Matrix Composite Materials Produced by Vacuum Infiltration Method

Authors: Isil Kerti, Onur Okur, Sibel Daglilar, Recep Calin

Abstract:

Particulate reinforced aluminium matrix composites have gained more importance in automotive, aeronautical and defense industries due to their specific properties like as low density, high strength and stiffness, good fatigue strength, dimensional stability at high temperature and acceptable tribological properties. In this study, 2014 Aluminium alloy used as a matrix material and B₄C and SiC were selected as reinforcements components. For production of composites materials, vacuum infiltration method was used. In the experimental studies, the reinforcement volume ratios were defined by mixing as totally 10% B₄C and SiC. Aging treatment (T6) was applied to the specimens. The effect of T6 treatment on hardness was determined by using Brinell hardness test method. The effects of the aging treatment on microstructure and chemical structure were analysed by making XRD, SEM and EDS analysis on the specimens.

Keywords: metal matrix composite, vacumm infiltration method, aluminum metal matrix, mechanical feature

Procedia PDF Downloads 295
4059 Formulation of Highly Dosed Drugs Using Different Granulation Techniques: A Comparative Study

Authors: Ezeddin Kolaib

Abstract:

Paracetamol tablets and cimetidine tablets were prepared by single-step granulation/tabletting and by compression after high shear granulation. The addition of PVP (polyvinylpyrrolidone) was essential for single-step granulation/tabletting of formulation containing high concentrations of paracetamol or cimetidine. Paracetamol tablets without and with PVP obtained by single-step granulation/tabletting exhibited a significantly higher tensile strength, a significantly lower disintegration time, a lower friability and a faster dissolution compared to those prepared by compression after high shear granulation. Cimetidine tablets with PVP obtained by single-step granulation/tabletting exhibited a significantly lower tensile strength, a significantly lower disintegration time and a faster dissolution compared to those prepared by compression after high shear granulation. Single-step granulation/tabletting allowed to produce tablets containing up to 80% paracetamol or cimetidine with a dissolution profile complying with the USP requirements. For pure paracetamol or pure cimetidine the addition of crospovidone as a disintegrant was required to obtain a dissolution profile that complied with the pharmacopoeial requirements. Long term and accelerated stability studies of paracetamol tablets produced by single-step granulation/tabletting over a period of one year showed no significant influence on the tablet tensile strength, friability and dissolution. Although a significant increase of the disintegration time was observed, it remained below 10 min. These results indicated that single-step granulation/tabletting could be an efficient technique for the production of highly dosed drugs such as paracetamol and cimetidine.

Keywords: single-step granulation/tabletting, twin screw extrusion, high shear granulation, high dosage drugs, paracetamol, cimetidine

Procedia PDF Downloads 281
4058 Screening the Best Integrated Pest Management Treatments against Helicoverpa armigera

Authors: Ajmal Khan Kassi, Humayun Javed, Tariq Mukhtar

Abstract:

The research was conducted to screen out resistance and susceptibility of okra varieties against Helicoverpa armigera under field conditions 2016. In this experiment, the different management practices viz. release Trichogramma chilonis, hoeing, and weeding, clipping, and lufenuron were tested individually and with all possible combinations for the controlling of American bollworm at 3 diverse localities viz. University research farm Koont, National Agriculture Research Centre (NARC) and farmer field Taxila by using resistant variety Arka Anamika. All the treatment combinations regarding damage of shoot and fruit showed significant results. The minimum fruit infestation, i.e., 3.20% and 3.58% was recorded with combined treatment (i.e., T. chilonis + hoeing + weeding + lufenuron) in two different localities. The minimum shoot infestation, i.e., 7.18%, 7.08%, and 6.85% was also observed with (T. chilonis + hoeing + weeding + lufenuron) combined treatment at all three different localities. The above-combined treatment (T. chilonis + hoeing + weeding + lufenuron) also resulted in maximum yield at NARC and Taxila, i.e., 57.67 and 62.66 q/ha respectively. On the basis of combined treatment (i.e., T. chilonis + hoeing + weeding + lufenuron) in three different localities, Arka Anamika variety proved to be comparatively resistant against H. armigera. So this variety is recommended for the cultivation in Pothwar region to get maximum yield and minimum losses against H. armigera.

Keywords: okra, screening, combine treatment, Helicoverpa armigera

Procedia PDF Downloads 138
4057 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite

Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan

Abstract:

Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.

Keywords: natural fibers, polymer matrix composites, jute, compression molding, biodegradation

Procedia PDF Downloads 127
4056 Comparative Study of Free Vibrational Analysis and Modes Shapes of FSAE Car Frame Using Different FEM Modules

Authors: Rajat Jain, Himanshu Pandey, Somesh Mehta, Pravin P. Patil

Abstract:

Formula SAE cars are the student designed and fabricated formula prototype cars, designed according to SAE INTERNATIONAL design rules which compete in the various national and international events. This paper shows a FEM based comparative study of free vibration analysis of different mode shapes of a formula prototype car chassis frame. Tubing sections of different diameters as per the design rules are designed in such a manner that the desired strength can be achieved. Natural frequency of first five mode was determined using finite element analysis method. SOLIDWORKS is used for designing the frame structure and SOLIDWORKS SIMULATION and ANSYS WORKBENCH 16.2 are used for the modal analysis. Mode shape results of ANSYS and SOLIDWORKS were compared. Fixed –fixed boundary conditions are used for fixing the A-arm wishbones. The simulation results were compared for the validation of the study. First five modes were compared and results were found within the permissible limits. The AISI4130 (CROMOLY- chromium molybdenum steel) material is used and the chassis frame is discretized with fine quality QUAD mesh followed by Fixed-fixed boundary conditions. The natural frequency of the chassis frame is 53.92-125.5 Hz as per the results of ANSYS which is found within the permissible limits. The study is concluded with the light weight and compact chassis frame without compensation with strength. This design allows to fabricate an extremely safe driver ergonomics, compact, dynamically stable, simple and light weight tubular chassis frame with higher strength.

Keywords: FEM, modal analysis, formula SAE cars, chassis frame, Ansys

Procedia PDF Downloads 321
4055 Performance Tests of Wood Glues on Different Wood Species Used in Wood Workshops: Morogoro Tanzania

Authors: Japhet N. Mwambusi

Abstract:

High tropical forests deforestation for solid wood furniture industry is among of climate change contributing agents. This pressure indirectly is caused by furniture joints failure due to poor gluing technology based on improper use of different glues to different wood species which lead to low quality and weak wood-glue joints. This study was carried in order to run performance tests of wood glues on different wood species used in wood workshops: Morogoro Tanzania whereby three popular wood species of C. lusitanica, T. glandis and E. maidenii were tested against five glues of Woodfix, Bullbond, Ponal, Fevicol and Coral found in the market. The findings were necessary on developing a guideline for proper glue selection for a particular wood species joining. Random sampling was employed to interview carpenters while conducting a survey on the background of carpenters like their education level and to determine factors that influence their glues choice. Monsanto Tensiometer was used to determine bonding strength of identified wood glues to different wood species in use under British Standard of testing wood shear strength (BS EN 205) procedures. Data obtained from interviewing carpenters were analyzed through Statistical Package of Social Science software (SPSS) to allow the comparison of different data while laboratory data were compiled, related and compared by the use of MS Excel worksheet software as well as Analysis of Variance (ANOVA). Results revealed that among all five wood glues tested in the laboratory to three different wood species, Coral performed much better with the average shear strength 4.18 N/mm2, 3.23 N/mm2 and 5.42 N/mm2 for Cypress, Teak and Eucalyptus respectively. This displays that for a strong joint to be formed to all tree wood species for soft wood and hard wood, Coral has a first priority in use. The developed table of guideline from this research can be useful to carpenters on proper glue selection to a particular wood species so as to meet glue-bond strength. This will secure furniture market as well as reduce pressure to the forests for furniture production because of the strong existing furniture due to their strong joints. Indeed, this can be a good strategy on reducing climate change speed in tropics which result from high deforestation of trees for furniture production.

Keywords: climate change, deforestation, gluing technology, joint failure, wood-glue, wood species

Procedia PDF Downloads 223
4054 Performance of Self-Compacting Mortars Containing Foam Glass Granulate

Authors: Brahim Safi, Djamila Aboutaleb, Mohammed Saidi, Abdelbaki Benmounah, Fahima Benbrahim

Abstract:

The inorganic wastes are currently used in the manufacture of concretes as mineral additions by cement substitution or as fine/coarse aggregates by replacing traditional aggregates. In this respect, this study aims to valorize the mineral wastes in particular glass wastes to produce granulated foam glass (as fine aggregates). Granulated foam glasses (GFG) were prepared from the glass powder (glass cullet) and foaming agent (limestone) according to applied manufacturing of GFG (at a heat treatment 850 ° C for 20min). After, self-compacting mortars were elaborated with fine aggregate (sand) and other variant mortars with granulated foam glass at volume ratio (0, 30, 50 and 100 %). Rheological characterization tests (fluidity) and physic-mechanical (density, porosity /absorption of water and mechanical tests) were carried out on studied mortars. The results obtained show that a slightly decreasing of compressive strength of mortars having lightness very important for building construction.

Keywords: glass wastes, lightweight aggregate, mortar, fluidity, density, mechanical strength

Procedia PDF Downloads 217
4053 Structural Performances of Rubberized Concrete Wall Panel Utilizing Fiber Cement Board as Skin Layer

Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Mo Kim Hung, Yip Chun Chieh

Abstract:

This research delves into the structural characteristics of distinct construction material, rubberized lightweight foam concrete (RLFC) wall panels, which have been developed as a sustainable alternative for the construction industry. These panels are engineered with a RLFC core, possessing a density of 1150 kg/m3, which is specifically formulated to bear structural loads. The core is enveloped with high-strength fiber cement boards, selected for their superior load-bearing capabilities, and enhanced flexural strength when compared to conventional concrete. A thin bed adhesive, known as TPS, is employed to create a robust bond between the RLFC core and the fiber cement cladding. This study underscores the potential of RLFC wall panels as a viable and eco-friendly option for modern building construction, offering a combination of structural efficiency and environmental benefits.

Keywords: structural performance, rubberized concrete wall panel, fiber cement board, insulation performance

Procedia PDF Downloads 42
4052 A Simple Chemical Approach to Regenerating Strength of Thermally Recycled Glass Fibre

Authors: Sairah Bashir, Liu Yang, John Liggat, James Thomason

Abstract:

Glass fibre is currently used as reinforcement in over 90% of all fibre-reinforced composites produced. The high rigidity and chemical resistance of these composites are required for optimum performance but unfortunately results in poor recyclability; when such materials are no longer fit for purpose, they are frequently deposited in landfill sites. Recycling technologies, for example, thermal treatment, can be employed to address this issue; temperatures typically between 450 and 600 °C are required to allow degradation of the rigid polymeric matrix and subsequent extraction of fibrous reinforcement. However, due to the severe thermal conditions utilised in the recycling procedure, glass fibres become too weak for reprocessing in second-life composite materials. In addition, more stringent legislation is being put in place regarding disposal of composite waste, and so it is becoming increasingly important to develop long-term recycling solutions for such materials. In particular, the development of a cost-effective method to regenerate strength of thermally recycled glass fibres will have a positive environmental effect as a reduced volume of composite material will be destined for landfill. This research study has demonstrated the positive impact of sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution, prepared at relatively mild temperatures and at concentrations of 1.5 M and above, on the strength of heat-treated glass fibres. As a result, alkaline treatments can potentially be implemented to glass fibres that are recycled from composite waste to allow their reuse in second-life materials. The optimisation of the strength recovery process is being conducted by varying certain reaction parameters such as molarity of alkaline solution and treatment time. It is believed that deep V-shaped surface flaws exist commonly on severely damaged fibre surfaces and are effectively removed to form smooth, U-shaped structures following alkaline treatment. Although these surface flaws are believed to be present on glass fibres they have not in fact been observed, however, they have recently been discovered in this research investigation through analytical techniques such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Reaction conditions such as molarity of alkaline solution affect the degree of etching of the glass fibre surface, and therefore the extent to which fibre strength is recovered. A novel method in determining the etching rate of glass fibres after alkaline treatment has been developed, and the data acquired can be correlated with strength. By varying reaction conditions such as alkaline solution temperature and molarity, the activation energy of the glass etching process and the reaction order can be calculated respectively. The promising results obtained from NaOH and KOH treatments have opened an exciting route to strength regeneration of thermally recycled glass fibres, and the optimisation of the alkaline treatment process is being continued in order to produce recycled fibres with properties that match original glass fibre products. The reuse of such glass filaments indicates that closed-loop recycling of glass fibre reinforced composite (GFRC) waste can be achieved. In fact, the development of a closed-loop recycling process for GFRC waste is already underway in this research study.

Keywords: glass fibers, glass strengthening, glass structure and properties, surface reactions and corrosion

Procedia PDF Downloads 234
4051 Design of a Vehicle Door Structure Based on Finite Element Method

Authors: Tawanda Mushiri, Charles Mbohwa

Abstract:

The performance of door assembly is very significant for the vehicle design. In the present paper, the finite element method is used in the development processes of the door assembly. The stiffness, strength, modal characteristic, and anti-extrusion of a newly developed passenger vehicle door assembly are calculated and evaluated by several finite element analysis commercial software. The structural problems discovered by FE analysis have been modified and finally achieved the expected door structure performance target of this new vehicle. The issue in focus is to predict the performance of the door assembly by powerful finite element analysis software, and optimize the structure to meet the design targets. It is observed that this method can be used to forecast the performance of vehicle door efficiently when it’s designed. In order to reduce lead time and cost in the product development of vehicles more development will be made virtually.

Keywords: vehicle door, structure, strength, stiffness, modal characteristic, anti-extrusion, Finite Element Method

Procedia PDF Downloads 410
4050 Thermochemical and Biological Pretreatment Study for Efficient Sugar Release from Lignocellulosic Biomass (Deodar and Sal Wood Residues)

Authors: Neelu Raina, Parvez Singh Slathia, Deepali Bhagat, Preeti Sharma

Abstract:

Pretreatment of lignocellulosic biomass for generating suitable substrates (starch/ sugars) for conversion to bioethanol is the most crucial step. In present study waste from furniture industry i.e sawdust from softwood Cedrus deodara (deodar) and hardwood Shorea robusta (sal) was used as lignocellulosic biomass. Thermochemical pretreatment was given by autoclaving at 121°C temperature and 15 psi pressure. Acids (H2SO4,HCl,HNO3,H3PO4), alkali (NaOH,NH4OH,KOH,Ca(OH)2) and organic acids (C6H8O7,C2H2O4,C4H4O4) were used at 0.1%, 0.5% and 1% concentration without giving any residence time. 1% HCl gave maximum sugar yield of 3.6587g/L in deodar and 6.1539 g/L in sal. For biological pretreatment a fungi isolated from decaying wood was used , sawdust from deodar tree species was used as a lignocellulosic substrate and before thermochemical pretreatment sawdust was treated with fungal culture at 37°C under submerged conditions with a residence time of one week followed by a thermochemical pretreatment methodology. Higher sugar yields were obtained with sal tree species followed by deodar tree species, i.e., 6.0334g/L in deodar and 8.3605g/L in sal was obtained by a combined biological and thermochemical pretreatment. Use of acids along with biological pretreatment is a favourable factor for breaking the lignin seal and thus increasing the sugar yield. Sugar estimation was done using Dinitrosalicyclic assay method. Result validation is being done by statistical analysis.

Keywords: lignocellulosic biomass, bioethanol, pretreatment, sawdust

Procedia PDF Downloads 389
4049 Experimental Study of the Microstructure and Properties of Aluminum Alloy Composites Reinforced with Pod Ash Nanoparticles Composites

Authors: A. P .I. Popoola, V. S. Aigbodion, O. S. I. Fayomi

Abstract:

The experimental study of the microstructure and properties of Al-Cu-Mg alloy/bean pod ash (BPA) nanoparticles was investigated. The aluminium matrix composites (AMCs) were produced by varying the BPA nanoparticles from 1-4wt%. The microstructure and phases of the composites produced were examined by SEM/EDS and XRD. Properties such as: hardness, tensile strength, impact energy, fatigue and wear were evaluated. The results showed that tensile strength and hardness values increased by 35 and 44.1% at 4wt% BPA nanoparticles with appreciable impact energy. The fatigue limit of 167MPa, 135 MPa and 75Mpa were obtained for the nano-particle (55nm), micro-particle (100µm) BPA composites and unreinforced alloy respectively. The wear properties of the as-cast Al–3.7%Cu-1.4%Mg/BPA nanoparticle have been improved significantly even with a low weight percent of BPA nanoparticle. The properties of the as-cast aluminium nanoparticles (MMNCs) have been improved significantly even with a low weight percent of nano-sized BPAp.

Keywords: bean pod ash nanoparticles, al-cu-mg alloy, mechanical properties, wear, microstructures

Procedia PDF Downloads 249
4048 Affect of Reservoir Fluctuations on an Active Landslide in the Xiangjiaba Reservoir Area, Southwest China

Authors: Javed Iqbal

Abstract:

Filling of Xiangjiaba Reservoir Lake in Southwest China triggered and re-activated numerous landslides due to water fluctuation. In order to understand the relationship between reservoirs and slope instability, a typical reservoir landslide (Dasha landslide) at right bank of Jinsha River was selected as a case study for in-depth investigations. The detailed field investigations were carried out in order to identify the landslide with respect to its surroundings and to find out the slip-surface. Boreholes were drilled in order to find out the subsurface lithology and the depth of failure of Dasha landslide. The in-situ geotechnical tests were performed, and the soil samples from exposed slip surface were retrieved for geotechnical laboratory analysis. Finally, stability analysis was done using 3D strength reduction method under different conditions of reservoir water level fluctuations and rainfall conditions. The in-depth investigations show that the Dasha landslide is a bedding rockslide which was once activated in 1986. The topography of Dasha landslide is relatively flat, while the back scarp and local terrain are relatively steep. The landslide area is about 29 × 104 m², and the maximum thickness of the landslide deposits revealed by drilling is about 40 m with the average thickness being about 20 m, and the volume is thus estimated being about 580 × 10⁴ m³. Bedrock in the landslide area is composed of Suining Formation of Jurassic age. The main rock type is silty mudstone with sandstone, and bedding orientation is 300~310° ∠ 7~22°. The factor of safety (FOS) of Dasha landslide obtained by 3D strength reduction cannot meet the minimum safety requirement under the working condition of reservoir level fluctuation as designed, with effect of rainfall and rapid drawdown.

Keywords: Dasha landslide, Xiangjiaba reservoir, strength reduction method, bedding rockslide

Procedia PDF Downloads 149
4047 Mechanical Properties and Microstructural Analysis of Al6061-Red Mud Composites

Authors: M. Gangadharappa, M. Ravi Kumar, H. N. Reddappa

Abstract:

The mechanical properties and morphological analysis of Al6061-Red mud particulate composites were investigated. The compositions of the composite include a matrix of Al6061 and the red mud particles of 53-75 micron size as reinforcement ranging from 0% to 12% at an interval of 2%. Stir casting technique was used to fabricate Al6061-Red mud composites. Density measurement, estimation of percentage porosity, tensile properties, fracture toughness, hardness value, impact energy, percentage elongation and percentage reduction in area. Further, the microstructures and SEM examinations were investigated to characterize the composites produced. The result shows that a uniform dispersion of the red mud particles along the grain boundaries of the Al6061 alloy. The tensile strength and hardness values increases with the addition of Red mud particles, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the red mud, an industrial waste can be used to enhance the properties of Al6061 alloy for engineering applications.

Keywords: Al6061, red mud, tensile strength, hardness and microstructures

Procedia PDF Downloads 546
4046 Anthropometric and Physical Fitness Ability Profile of Elite and Non-Elite Boxers of Manipur

Authors: Anthropometric, Physical Fitness Ability Profile of Elite, Non-Elite Boxers of Manipur

Abstract:

Background: Boxing is one of the oldest combat sports where different anthropological and fitness ability parameters determine performance. It is characterized by short duration, high intensity bursts of activity. The purpose of this research was to determine anthropometric and physical fitness profile of male elite and non-elite boxers of Manipur and to compare the two groups. Materials and Methods: Nineteen subjects were selected as elite boxers and twenty-four were non-elite boxers of Manipur. A cross-sectional study was conducted on anthropometric measurements and physical fitness ability tests on 33 subjects (elite and non-elite boxers). Statistical analysis was done using descriptive statistics, t-test and logistic regression with the help of SPSS version 15 software. Results: Results showed elite boxers have significantly reduced neck girth and calf girth as compare to non-elite boxers. Elite boxers have significantly lower sub scapular skin fold (SSF) and supra iliac skin fold (SISF) than their counterparts. Higher stature, larger BTB and lower percent fat are associated with higher performance in boxing. Sit ups (SU), standing Broad Jump (SBJ), Plat taping (PT), Sit and reach (SAR) and Harvard Step Test (HST) are predicted as most contributing factors enhancing performance level among the physical fitness components. Elite boxers are found to have more functional strength (sit ups), higher explosive strength (SBJ), more agility (PT), cardio-vascular endurance and flexibility (SAR) than non-elite boxers. Conclusion: In conclusion, lower fat, higher lean body mass, larger bi-trochantric breadth, high explosive strength, agility and flexibility are significantly associated with higher performance and chance of becoming elite boxers.

Keywords: anthropometry, elite and non-elite boxers, Manipur, physical fitness

Procedia PDF Downloads 250
4045 Crop Genotype and Inoculum Density Influences Plant Growth and Endophytic Colonization Potential of Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN

Authors: Muhammad Naveed, Sohail Yousaf, Zahir Ahmad Zahir, Birgit Mitter, Angela Sessitsch

Abstract:

Most bacterial endophytes originate from the soil and enter plants via the roots followed by further spread through the inner tissues. The mechanisms allowing bacteria to colonize plants endophytically are still poorly understood for most bacterial and plant species. Specific bacterial functions are required for plant colonization, but also the plant itself is a determining factor as bacterial ability to establish endophytic populations is very often dependent on the plant genotype (cultivar) and inoculums density. The effect of inoculum density (107, 108, 109 CFU mL-1) of Burkholderia phytofirmans strain PsJN was evaluated on growth and endophytic colonization of different maize and potato cultivars under axenic and natural soil conditions. PsJN inoculation significantly increased maize seedling growth and tuber yield of potato at all inoculum density compared to uninoculated control. Under axenic condition, PsJN inoculation (108 CFU mL-1) significantly improved the germination, root/shoot length and biomass up to 62, 115, 98 and 135% of maize seedling compared to uninoculated control. In case of potato, PsJN inoculation (109 CFU mL-1) showed maximum response and significantly increased root/shoot biomass and tuber yield under natural soil condition. We confirmed that PsJN is able to colonize the rhizosphere, roots and shoots of maize and potato cultivars. The endophytic colonization increased linearly with increasing inoculum density (within a range of 8 x 104 – 3 x 107 CFU mL-1) and were highest for maize (Morignon) and potato (Romina) as compared to other cultivars. Efficient colonization of cv. Morignon and Romina by strain PsJN indicates the specific cultivar colonizing capacity of the bacteria. The findings of the study indicate the non-significant relationship between colonization and plant growth promotion in maize under axenic conditions. However, the inoculum level (109 CFU mL-1) that promoted colonization of rhizosphere and plant interior (endophytic) also best promoted growth and tuber yield of potato under natural soil conditions.

Keywords: crop genotype, inoculum density, Burkholderia phytofirmans PsJN, colonization, growth, potato

Procedia PDF Downloads 474
4044 Corrosion of Concrete Reinforcing Steel Bars Tested and Compared Between Various Protection Methods

Authors: P. van Tonder, U. Bagdadi, B. M. D. Lario, Z. Masina, T. R. Motshwari

Abstract:

This paper analyses how concrete reinforcing steel bars corrode and how it can be minimised through the use of various protection methods against corrosion, such as metal-based paint, alloying, cathodic protection and electroplating. Samples of carbon steel bars were protected, using these four methods. Tests performed on the samples included durability, electrical resistivity and bond strength. Durability results indicated relatively low corrosion rates for alloying, cathodic protection, electroplating and metal-based paint. The resistivity results indicate all samples experienced a downward trend, despite erratic fluctuations in the data, indicating an inverse relationship between electrical resistivity and corrosion rate. The results indicated lowered bond strengths when the reinforced concrete was cured in seawater compared to being cured in normal water. It also showed that higher design compressive strengths lead to higher bond strengths which can be used to compensate for the loss of bond strength due to corrosion in a real-world application. In terms of implications, all protection methods have the potential to be effective at resisting corrosion in real-world applications, especially the alloying, cathodic protection and electroplating methods. The metal-based paint underperformed by comparison, most likely due to the nature of paint in general which can fade and chip away, revealing the steel samples and exposing them to corrosion. For alloying, stainless steel is the suggested material of choice, where Y-bars are highly recommended as smooth bars have a much-lowered bond strength. Cathodic protection performed the best of all in protecting the sample from corrosion, however, its real-world application would require significant evaluation into the feasibility of such a method.

Keywords: protection methods, corrosion, concrete, reinforcing steel bars

Procedia PDF Downloads 157
4043 Investigation of Suitability of Dredged Wastes for Production of Bricks

Authors: B. Adebayo, A. O. Omotehinse, C. Arum

Abstract:

This study investigates the suitability of dredged samples for the production of bricks. Some geotechnical properties (moisture content, grain size distribution) of dredged samples were also determined using the British Standard. Bricks were produced using appropriate mixes of two dredged wastes. The dredged samples (Oroto dredged samples and Igbokoda dredged samples) have high moisture content of 90.48 % and 37.5 % respectively and both are classified as silty materials. The two dredged samples were mixed in different percentage (1- Oroto dredged sample (DS) 85 % and Igbokoda dredged sample (IS) 15 %, 2-DS 70 % and IS 30 %, 3- DS 55 % and IS 45 %, 4- DS 50 % and IS 50 %, 5- DS 45 % and IS 55 %,6- DS 30 % and IS 70 %, 7- DS 15 % and IS 85 %, 8- Clay 100 %, 9- DS 100 %, 10-IS 100 %) for the production of bricks and were tested for 7 days, 14 days, 21 days and 28 days. Although, the water absorption level of the bricks produced were high (5.635 to 33.4 %), the compressive strength on the 28th day was within the accepted British Standard. The Igbokoda dredge sample is a good material for the production of bricks when mixed with Oroto Dredged sample because the compressive strength of the material is within the accepted limit.

Keywords: bricks, dredged, moisture content, suitability

Procedia PDF Downloads 223