Search results for: neural interface
1428 Navigating Neural Pathways to Success with Students on the Autism Spectrum
Authors: Panda Krouse
Abstract:
This work is a marriage of the science of Applied Behavioral Analysis and an educator’s look at Neuroscience. The focus is integrating what we know about the anatomy of the brain in autism and evidence-based practices in education. It is a bold attempt to present links between neurological research and the application of evidence-based practices in education. In researching for this work, no discovery of articles making these connections was made. Consideration of the areas of structural differences in the brain are aligned with evidence-based strategies. A brief literary review identifies how identified areas affect overt behavior, which is what, as educators, is what we can see and measure. Giving further justification and validation of our practices in education from a second scientific field is significant for continued improvement in intervention for students on the autism spectrum.Keywords: autism, evidence based practices, neurological differences, education intervention
Procedia PDF Downloads 711427 The Design of Information Technology System for Traceability of Thailand’s Tubtimjun Roseapple
Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom, Sawanath Treesathon
Abstract:
As there are several countries which import agriculture product from Thailand, those countries demand Thailand to establish the traceability system. The traceability system is the tool to reduce the risk in the supply chain in a very effective way as it will help the stakeholder in the supply chain to identify the defect point which will reduce the cost of operation in the supply chain. This research is aimed to design the traceability system for Tubtimjun roseapple for exporting to China, and it is the qualitative research. The data was collected from the expert in the tuntimjun roseapple and fruit exporting industry, and the data was used to design the traceability system. The design of the tubtimjun roseapple traceability system was followed the theory of supply chain which starts from the upstream of the supply chain to the downstream of the supply chain to support the process and condition of the exporting which included the database designing, system architecture, user interface design and information technology of the traceability system.Keywords: design information, technology system, traceability, tubtimjun roseapple
Procedia PDF Downloads 1761426 A Semi-Implicit Phase Field Model for Droplet Evolution
Authors: M. H. Kazemi, D. Salac
Abstract:
A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method
Procedia PDF Downloads 4881425 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach
Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier
Abstract:
Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube
Procedia PDF Downloads 1601424 Technological Challenges for First Responders in Civil Protection; the RESPOND-A Solution
Authors: Georgios Boustras, Cleo Varianou Mikellidou, Christos Argyropoulos
Abstract:
Summer 2021 was marked by a number of prolific fires in the EU (Greece, Cyprus, France) as well as outside the EU (USA, Turkey, Israel). This series of dramatic events have stretched national civil protection systems and first responders in particular. Despite the introduction of National, Regional and International frameworks (e.g. rescEU), a number of challenges have arisen, not only related to climate change. RESPOND-A (funded by the European Commission by Horizon 2020, Contract Number 883371) introduces a unique five-tier project architectural structure for best associating modern telecommunications technology with novel practices for First Responders of saving lives, while safeguarding themselves, more effectively and efficiently. The introduced architecture includes Perception, Network, Processing, Comprehension, and User Interface layers, which can be flexibly elaborated to support multiple levels and types of customization, so, the intended technologies and practices can adapt to any European Environment Agency (EEA)-type disaster scenario. During the preparation of the RESPOND-A proposal, some of our First Responder Partners expressed the need for an information management system that could boost existing emergency response tools, while some others envisioned a complete end-to-end network management system that would offer high Situational Awareness, Early Warning and Risk Mitigation capabilities. The intuition behind these needs and visions sits on the long-term experience of these Responders, as well, their smoldering worry that the evolving threat of climate change and the consequences of industrial accidents will become more frequent and severe. Three large-scale pilot studies are planned in order to illustrate the capabilities of the RESPOND-A system. The first pilot study will focus on the deployment and operation of all available technologies for continuous communications, enhanced Situational Awareness and improved health and safety conditions for First Responders, according to a big fire scenario in a Wildland Urban Interface zone (WUI). An important issue will be examined during the second pilot study. Unobstructed communication in the form of the flow of information is severely affected during a crisis; the flow of information between the wider public, from the first responders to the public and vice versa. Call centers are flooded with requests and communication is compromised or it breaks down on many occasions, which affects in turn – the effort to build a common operations picture for all firstr esponders. At the same time the information that reaches from the public to the operational centers is scarce, especially in the aftermath of an incident. Understandably traffic if disrupted leaves no other way to observe but only via aerial means, in order to perform rapid area surveys. Results and work in progress will be presented in detail and challenges in relation to civil protection will be discussed.Keywords: first responders, safety, civil protection, new technologies
Procedia PDF Downloads 1481423 Spatial Cognition and 3-Dimensional Vertical Urban Design Guidelines
Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma
Abstract:
The main focus of this paper is to propose a comprehensive framework for the cognitive measurement and modelling of the built environment. This will involve exploring and measuring neural mechanisms. The aim is to create a foundation for further studies in this field that are consistent and rigorous. Additionally, this framework will facilitate collaboration with cognitive neuroscientists by establishing a shared conceptual basis. The goal of this research is to develop a human-centric approach for urban design that is scientific and measurable, producing a set of urban design guidelines that incorporate cognitive measurement and modelling. By doing so, the broader intention is to design urban spaces that prioritize human needs and well-being, making them more liveable.Keywords: vertical urbanism, human centric design, spatial cognition and psychology, vertical urban design guidelines
Procedia PDF Downloads 871422 Low-Cost Embedded Biometric System Based on Fingervein Modality
Authors: Randa Boukhris, Alima Damak, Dorra Sellami
Abstract:
Fingervein biometric authentication is one of the most popular and accurate technologies. However, low cost embedded solution is still an open problem. In this paper, a real-time implementation of fingervein recognition process embedded in Raspberry-Pi has been proposed. The use of Raspberry-Pi reduces overall system cost and size while allowing an easy user interface. Implementation of a target technology has guided to opt some specific parallel and simple processing algorithms. In the proposed system, we use four structural directional kernel elements for filtering finger vein images. Then, a Top-Hat and Bottom-Hat kernel filters are used to enhance the visibility and the appearance of venous images. For feature extraction step, a simple Local Directional Code (LDC) descriptor is applied. The proposed system presents an Error Equal Rate (EER) and Identification Rate (IR), respectively, equal to 0.02 and 98%. Furthermore, experimental results show that real-time operations have good performance.Keywords: biometric, Bottom-Hat, Fingervein, LDC, Rasberry-Pi, ROI, Top-Hat
Procedia PDF Downloads 2071421 Bridging the Gap between M and E, and KM: Towards the Integration of Evidence-Based Information and Policy Decision-Making
Authors: Xueqing Ivy Chen, Christo De Coning
Abstract:
It is clear from practice that a gap exists between Result-Based Monitoring and Evaluation (RBME) as a discipline, and Knowledge Management (KM) on the other hand. Whereas various government departments have institutionalised these functions, KM and M&E has functioned in isolation from each other in a practical sense in the public sector. It’s therefore necessary to explore the relationship between KM and M&E and the necessity for integration, so that a convergence of these disciplines can be established. An integration of KM and M&E will lead to integration and improvement of evidence-based information and policy decision-making. M&E and KM process models are available but the complementarity between specific process steps of these process models are not exploited. A need exists to clarify the relationships between these functions in order to ensure evidence based information and policy decision-making. This paper will depart from the well-known policy process models, such as the generic model and consider recent on the interface between policy, M&E and KM.Keywords: result-based monitoring and evaluation, RBME, knowledge management, KM, evident based decision making, public policy, information systems, institutional arrangement
Procedia PDF Downloads 1581420 Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques
Authors: Bum-Soo Kim, Jin-Uk Kim
Abstract:
In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result.Keywords: boundary image matching, indexing, partial denoising, time-series matching
Procedia PDF Downloads 1441419 A Pervasive System Architecture for Smart Environments in Internet of Things Context
Authors: Patrick Santos, João Casal, João Santos Luis Varandas, Tiago Alves, Carlos Romeiro, Sérgio Lourenço
Abstract:
Nowadays, technology makes it possible to, in one hand, communicate with various objects of the daily life through the Internet, and in the other, put these objects interacting with each other through this channel. Simultaneously, with the raise of smartphones as the most ubiquitous technology on persons lives, emerge new agents for these devices - Intelligent Personal Assistants. These agents have the goal of helping the user manage and organize his information as well as supporting the user in his/her day-to-day tasks. Moreover, other emergent concept is the Cloud Computing, which allows computation and storage to get out of the users devices, bringing benefits in terms of performance, security, interoperability and others. Connecting these three paradigms, in this work we propose an architecture for an intelligent system which provides an interface that assists the user on smart environments, informing, suggesting actions and allowing to manage the objects of his/her daily life.Keywords: internet of things, cloud, intelligent personal assistant, architecture
Procedia PDF Downloads 5181418 Lego Mindstorms as a Simulation of Robotic Systems
Authors: Miroslav Popelka, Jakub Nožička
Abstract:
In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software
Procedia PDF Downloads 3771417 Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease
Authors: P. Shrivastava, A. Shukla, K. Verma, S. Rungta
Abstract:
Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset.Keywords: parkinson, gait, feature selection, bat algorithm
Procedia PDF Downloads 5511416 Leadership's Controlling via Complexity Investigation in Crisis Scenarios
Authors: Jiří Barta, Oldřich Svoboda, Jiří F. Urbánek
Abstract:
In this paper will be discussed two coin´s sides of crisis scenarios dynamics. On the one's side is negative role of subsidiary scenario branches in its compactness weakening by means unduly chaotic atomizing, having many interactive feedbacks cases, increasing a value of a complexity here. This negative role reflects the complexity of use cases, weakening leader compliancy, which brings something as a ´readiness for controlling capabilities provision´. Leader´s dissatisfaction has zero compliancy, but factual it is a ´crossbar´ (interface in fact) between planning and executing use cases. On the other side of this coin, an advantage of rich scenarios embranchment is possible to see in a support of response awareness, readiness, preparedness, adaptability, creativity and flexibility. Here rich scenarios embranchment contributes to the steadiness and resistance of scenario mission actors. These all will be presented in live power-points ´Blazons´, modelled via DYVELOP (Dynamic Vector Logistics of Processes) on the Conference.Keywords: leadership, controlling, complexity, DYVELOP, scenarios
Procedia PDF Downloads 4071415 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics
Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima
Abstract:
This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks
Procedia PDF Downloads 1711414 Determination of the Optimal Content of Commercial Superplasticizer Additives in Cements with Calcined Clay
Authors: Amanda R. Teixeira, João H. S. Rego, Gabriel F. S. Brito, Fabricio M. Silva
Abstract:
The use of superplasticizer additives has provided several advances for the civil construction industry, enabling gains in the rheological behavior and mechanical properties of cementitious matrices. These compounds act at the solid-liquid interface of colloidal suspensions of cement pastes, preventing agglomeration of the particles. Although the use in the concrete industry is wide, the mechanisms of dispersion of concrete admixtures composed of polycarboxylate in cement with supplementary cementitious materials have ample opportunity to be investigated, providing the attainment of increasingly compatible and efficient cement-addition-additive systems. The cements used in the research are Portland Cement CPV and two cements Portland Cement Composite (CPIV) with calcined clay contents of 20% and 28% and three commercial additives based on polycarboxylate. The performance of the additives and obtaining the optimal content was determined by the Marsh Cone test and spread by Mini-Slump.Keywords: calcined clay, composite cements, superplasticizer additives, polycarboxylate
Procedia PDF Downloads 1101413 Speech Perception by Video Hosting Services Actors: Urban Planning Conflicts
Authors: M. Pilgun
Abstract:
The report presents the results of a study of the specifics of speech perception by actors of video hosting services on the material of urban planning conflicts. To analyze the content, the multimodal approach using neural network technologies is employed. Analysis of word associations and associative networks of relevant stimulus revealed the evaluative reactions of the actors. Analysis of the data identified key topics that generated negative and positive perceptions from the participants. The calculation of social stress and social well-being indices based on user-generated content made it possible to build a rating of road transport construction objects according to the degree of negative and positive perception by actors.Keywords: social media, speech perception, video hosting, networks
Procedia PDF Downloads 1521412 Comparison of Web Development Using Framework over Library
Authors: Syamsul Syafiq, Maslina Daud, Hafizah Hasan, Ahmad Zairi, Shazil Imri, Ezaini Akmar, Norbazilah Rahim
Abstract:
Over recent years, web development has changed significantly. Driven largely by the rise of trends like mobiles, the world of development is rapidly evolving. The rise of the Internet makes web applications crucial nowadays. The web application has been an interface for a company and one of the ways they present their portfolio to the client. On the other hand, the web has become part of the file management system which takes over the role of paper. Due to high demand in web applications, developers are required to develop a web application that are cost-effective, secure and well coded. A framework has been proposed to develop an application rather than using library style development. The framework is helping the developer in creating the structure of a web automatically. This paper will compare the advantages and disadvantages of web development using framework against library-style development. This comparison is based on a previous research paper focusing on two main indicators, which are the impact to management and impact to the developer.Keywords: framework, library style development, web application development, traditional web, static web, dynamic web
Procedia PDF Downloads 2281411 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN
Procedia PDF Downloads 3751410 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.Keywords: machine learning, healthcare, classification, explainability
Procedia PDF Downloads 631409 The Museum of Museums: A Mobile Augmented Reality Application
Authors: Qian Jin
Abstract:
Museums have been using interactive technology to spark visitor interest and improve understanding. These technologies can play a crucial role in helping visitors understand more about an exhibition site by using multimedia to provide information. Google Arts and Culture and Smartify are two very successful digital heritage products. They used mobile augmented reality to visualise the museum's 3D models and heritage images but did not include 3D models of the collection and audio information. In this research, service-oriented mobile augmented reality application was developed for users to access collections from multiple museums(including V and A, the British Museum, and British Library). The third-party API (Application Programming Interface) is requested to collect metadata (including images, 3D models, videos, and text) of three museums' collections. The acquired content is then visualized in AR environments. This product will help users who cannot visit the museum offline due to various reasons (inconvenience of transportation, physical disability, time schedule).Keywords: digital heritage, argument reality, museum, flutter, ARcore
Procedia PDF Downloads 831408 Application of an Artificial Neural Network to Determine the Risk of Malignant Tumors from the Images Resulting from the Asymmetry of Internal and External Thermograms of the Mammary Glands
Authors: Amdy Moustapha Drame, Ilya V. Germashev, E. A. Markushevskaya
Abstract:
Among the main problems of medicine is breast cancer, from which a significant number of women around the world are constantly dying. Therefore, the detection of malignant breast tumors is an urgent task. For many years, various technologies for detecting these tumors have been used, in particular, in thermal imaging in order to determine different levels of breast cancer development. These periodic screening methods are a diagnostic tool for women and may have become an alternative to older methods such as mammography. This article proposes a model for the identification of malignant neoplasms of the mammary glands by the asymmetry of internal and external thermal imaging fields.Keywords: asymmetry, breast cancer, tumors, deep learning, thermogram, convolutional transformation, classification
Procedia PDF Downloads 671407 E-Governance: A Key for Improved Public Service Delivery
Authors: Ayesha Akbar
Abstract:
Public service delivery has witnessed a significant improvement with the integration of information communication technology (ICT). It not only improves management structure with advanced technology for surveillance of service delivery but also provides evidence for informed decisions and policy. Pakistan’s public sector organizations have not been able to produce some good results to ensure service delivery. Notwithstanding, some of the public sector organizations in Pakistan has diffused modern technology and proved their credence by providing better service delivery standards. These good indicators provide sound basis to integrate technology in public sector organizations and shift of policy towards evidence based policy making. Rescue-1122 is a public sector organization which provides emergency services and proved to be a successful model for the provision of service delivery to save human lives and to ensure human development in Pakistan. The information about the organization has been received by employing qualitative research methodology. The information is broadly based on primary and secondary sources which includes Rescue-1122 website, official reports of organizations; UNDP (United Nation Development Program), WHO (World Health Organization) and by conducting 10 in-depth interviews with the high administrative staff of organizations who work in the Lahore offices. The information received has been incorporated with the study for the better understanding of the organization and their management procedures. Rescue-1122 represents a successful model in delivering the services in an efficient way to deal with the disaster management. The management of Rescue has strategized the policies and procedures in such a way to develop a comprehensive model with the integration of technology. This model provides efficient service delivery as well as maintains the standards of the organization. The service delivery model of rescue-1122 works on two fronts; front-office interface and the back-office interface. Back-office defines the procedures of operations and assures the compliance of the staff whereas, front-office equipped with the latest technology and good infrastructure handles the emergency calls. Both ends are integrated with satellite based vehicle tracking, wireless system, fleet monitoring system and IP camera which monitors every move of the staff to provide better services and to pinpoint the distortions in the services. The standard time of reaching to the emergency spot is 7 minutes, and during entertaining the case; driver‘s behavior, traffic volume and the technical assistance being provided to the emergency case is being monitored by front-office. Then the whole information get uploaded to the main dashboard of Lahore headquarter from the provincial offices. The latest technology is being materialized by Rescue-1122 for delivering the efficient services, investigating the flaws; if found, and to develop data to make informed decision making. The other public sector organizations of Pakistan can also develop such models to integrate technology for improving service delivery and to develop evidence for informed decisions and policy making.Keywords: data, e-governance, evidence, policy
Procedia PDF Downloads 2511406 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1521405 Human Brain Organoids-on-a-Chip Systems to Model Neuroinflammation
Authors: Feng Guo
Abstract:
Human brain organoids, 3D brain tissue cultures derived from human pluripotent stem cells, hold promising potential in modeling neuroinflammation for a variety of neurological diseases. However, challenges remain in generating standardized human brain organoids that can recapitulate key physiological features of a human brain. Here, this study presents a series of organoids-on-a-chip systems to generate better human brain organoids and model neuroinflammation. By employing 3D printing and microfluidic 3D cell culture technologies, the study’s systems enable the reliable, scalable, and reproducible generation of human brain organoids. Compared with conventional protocols, this study’s method increased neural progenitor proliferation and reduced heterogeneity of human brain organoids. As a proof-of-concept application, the study applied this method to model substance use disorders.Keywords: human brain organoids, microfluidics, organ-on-a-chip, neuroinflammation
Procedia PDF Downloads 2051404 Dual-Network Memory Model for Temporal Sequences
Authors: Motonobu Hattori
Abstract:
In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudo patterns. Because, temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.Keywords: catastrophic forgetting, dual-network, temporal sequences, hippocampal
Procedia PDF Downloads 2761403 Reducing Power Consumption in Network on Chip Using Scramble Techniques
Authors: Vinayaga Jagadessh Raja, R. Ganesan, S. Ramesh Kumar
Abstract:
An ever more significant fraction of the overall power dissipation of a network-on-chip (NoC) based system on- chip (SoC) is due to the interconnection scheme. In information, as equipment shrinks, the power contributes of NoC links starts to compete with that of NoC routers. In this paper, we propose the use of clock gating in the data encoding techniques as a viable way to reduce both power dissipation and time consumption of NoC links. The projected scramble scheme exploits the wormhole switching techniques. That is, flits are scramble by the network interface (NI) before they are injected in the network and are decoded by the target NI. This makes the scheme transparent to the underlying network since the encoder and decoder logic is integrated in the NI and no modification of the routers structural design is required. We review the projected scramble scheme on a set of representative data streams (both synthetic and extracted from real applications) showing that it is possible to reduce the power contribution of both the self-switching activity and the coupling switching activity in inter-routers links.Keywords: Xilinx 12.1, power consumption, Encoder, NOC
Procedia PDF Downloads 4031402 The Effect of Substrate Surface Roughness for Hot Dip Aluminizing of IN718 Alloy
Authors: Aptullah Karakas, Murat Baydogan
Abstract:
The hot dip aluminizing (HDA) process involves immersing a metallic substrate into a molten aluminum bath for several minutes, and removed from the bath and cooled down to room temperature. After the HDA process, various aluminide layers are formed as a result of interdiffusion between the substrate and the molten aluminum and between the aluminide layers. In order to form a uniform aluminide layer, the specimen must be covered and wet well by the molten aluminum. Surface roughness plays an important role in wettability, and thus, surface preparation is an important stage in determining the final surface roughness. In this study, different roughness values were achieved by grinding the surface with emery papers as 180, 320 and 600 grids. After the surface preparation, the HDA process was performed in a molten Al-Si bath at 700 ᴼC for 10 minutes. After the HDA process, a microstructural examination of the coating was carried out to evaluate the uniformity of the coating and adhesion between the substrate and the coating. According to the results, the best adhesion at the interface was observed on the specimen, which was prepared by 320 grid emery paper having a mean surface roughness (Ra) of 0.097 µm.Keywords: hot-dip aluminizing, microstructure, surface roughness, coating
Procedia PDF Downloads 741401 Seismic Retrofit of Existing Bridge Foundations with Micropiles: 3D Finite Element Analysis
Authors: Mohanad Talal Alfach
Abstract:
This paper concerns the seismic behaviour of soil-piles-bridge reinforced by additional micropiles. The analysis carried out by three-dimensional finite element modelling using the FE software ABAQUS. The soil behaviour is assumed to be elastic with Rayleigh damping, while the micropiles are modeled as 3D elastic beam elements. The bridge deck slab was represented by a concentrated mass at the top of the pier column. The interaction between the added micropiles and the existing piles as well as the performance of the retrofitted soil-pile-superstructure system were investigated for different configurations of additional micropiles (number, position, inclination). Numerical simulation results show that additional micropiles constitute an efficient retrofitting solution. Analysis of results also shows that spacing between existing piles and retrofitting micropiles has little effect; while it is observed a substantial improvement (in case of weak piles/micropiles - soil interface) with reducing the inclination angle of retrofitting micropiles.Keywords: retrofitting, seismic, finite element, micropiles, elastic
Procedia PDF Downloads 1511400 Flexible 3D Virtual Desktop Using Handles for Cloud Environments
Abstract:
Due to the improvement in performance of computer hardware and the development of operating systems, a multi-tasking for several programs has become one of the basic functions to computer users. It is natural for computer users to want more functional, convenient, and visual GUI functions (Graphic User Interface). In this paper, a 3D virtual desktop system was proposed to meet users’ requirements for cloud environments such as a virtual desktop function in the Windows environment. The proposed system uses the handles of the windows to hide or restore several windows. It connects the list of task spaces using the circular double linked list to manage the handles. Each handle list is registered in the corresponding task space being executed. The 3D virtual desktop is efficient and flexible in handling the numbers of task spaces and can help users to work under more comfortable environments. Acknowledgment: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIP) (NRF-2015R1D1A1A01057680).Keywords: virtual desktop, GUI, cloud, virtualization
Procedia PDF Downloads 2101399 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 256