Search results for: multi features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7644

Search results for: multi features

5874 Finding the Right Regulatory Path for Islamic Banking

Authors: Meysam Saidi

Abstract:

While the specific externalities and required regulatory measures in relation to Islamic banking are fairly uncertain, the business is growing across the world. Unofficial data indicate that the Islamic Finance market is growing with annual rate of 15% and it has reached 1.3 $ trillion size. This trend is associated with inherent systematic connection of Islamic financial institutions to other entities and different sectors of economies. Islamic banking has been subject of market development policies in major economies, most notably the UK. This trend highlights the need for identification of distinct risk features of Islamic banking and crafting customized regulatory measures. So far there has not been a significant systemic crisis in this market which can be attributed to its distinct nature. However, the significant growth and spread of its products worldwide necessitate an in depth study of its nature for customized congruent regulatory measures. In the post financial crisis era some market analysis and reports suggested that the Islamic banks fairly weathered the crisis. As far as heavily blamed conventional financial products such as subprime mortgage backed securities and speculative credit default swaps were concerned the immunity claim can be considered true, as Islamic financial institutions were not directly exposed to such products. Nevertheless, similar to the experience of the conventional banking industry, it can be only a matter of time for Islamic banks to face failures that can be specific to the nature of their business. Using the experience of conventional banking regulations and identifying those peculiarities of Islamic banking that need customized regulatory approach can aid to prevent major failures. Frank Knight has stated that “We perceive the world before we react to it, and we react not to what we perceive, but always to what we infer”. The debate over congruent Islamic banking regulations might not be an exception to Frank Knight’s statement but I will try to base my discussion on concrete evidences. This paper first analyzes both theoretical and actual features of Islamic banking in order to ascertain to its peculiarities in terms of market stability and other externalities. Next, the paper discusses distinct features of Islamic financial transactions and banking which might require customized regulatory measures. Finally, the paper explores how a more transparent path for the Islamic banking regulations can be drawn.

Keywords: Islamic banking, regulation, risks, capital requirements, customer protection, financial stability

Procedia PDF Downloads 409
5873 Teachers as Agents of Change: A Qualitative Study of Master of Education Graduates from Pakistan

Authors: Mir Afzal Tajik

Abstract:

The 'Strengthening Teacher Education in Pakistan' (STEP) is an innovative programme jointly funded by the Government of Canada and the Aga Khan Foundation Canada and implemented by the Aga Khan University - Institute for Educational Development (AKU-IED) in partnership with the local governments, education departments and communities in the provinces of Balochistan, Sindh and Gilgit-Baltistan in Pakistan. One of the key components of the programme is professional development of teachers, head teachers and teacher educators through a variety of teacher education programmes including a two-year Masters of Education (MEd) Programme offered by AKU-IED. A number of teachers, head teachers and teacher educators from these provinces have been developed through the MEd Programme. This paper discusses a qualitative research study conducted to explore the nature, relevance, rigor and richness of the experiences of the MEd graduates, and how these experiences have fostered their own professional development and their ability to bring about positive changes in their schools. The findings of the study provide useful insights into the graduates’ self-actualization, transformation of their professional beliefs and practices, the difference they have made in their schools, and the challenges they face. The study also provides evidences of how the implementation of this multi-stakeholders and multi-partners STEP programme has led to the development of ‘communities of practice’ in schools. The study then makes a number of recommendations for policy and practice related to teacher education programmes as well as for partnerships in education.

Keywords: STEP, change agents, Pakistan, Canada, teacher education, MEd

Procedia PDF Downloads 368
5872 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 254
5871 Classroom Management Practices of Hotel, Restaurant, and Institution Management Instructors

Authors: Diana Ruth Caga-Anan

Abstract:

Classroom management is a critical skill but the styles are constantly evolving. It is constantly under pressure particularly in the college education level due to diversity in student profiles, modes of delivery, and marketization of higher education. This study sought to analyze the extent of implementation of classroom management practices (CMPs) of the college instructors of the Hotel, Restaurant, and Institution Management of a premier university in the Philippines. It was also determined if their length of teaching affects their classroom management style. A questionnaire with sixteen 'evidenced-based' CMPs grouped into five critical features of classroom management, adopted from the literature search of Simonsen et al. (2008), was administered to 4 instructor-respondents and to their 88 students. Weighted mean scores of each of the CMPs revealed that there were differences between the instructors’ self-scores and their students’ ratings on their implementation of CMPs. The critical feature of classroom management 'actively engage students in observable ways' got the highest mean score, corresponding to 'always' from the instructors’ self-rating and 'frequently' from their students’ ratings. However, 'use a continuum of strategies to respond to inappropriate behaviors' got the lowest scores from both the instructors and their students corresponding only to 'occasionally'. Analysis of variance showed that the only CMP affected by the length of teaching is the practice of 'prompting students to respond'. Based on the findings, some recommendations for the instructors to improve on the critical feature where they scored low are discussed and suggestions are included for future research.

Keywords: classroom management, CMPs, critical features, evidence-based classroom management practices

Procedia PDF Downloads 172
5870 Bacillus cereus Bacteremia and Multi-Organ Failure With Diffuse Brain Hypoxia During Acute Lymphoblastic Leukemia Induction Therapy. A Case Report

Authors: Roni Rachel Mendelson, Caileigh Pudela

Abstract:

Bacillus cereus is a toxin-producing, facultatively anaerobic gram-positive bacterium that is widely distributed environmentally. It can quickly multiply at room temperature with an abundantly present preformed toxin. When ingested, this toxin can cause gastrointestinal illness, which is the commonly known manifestation of the disease. Bacillus cereus sepsis is a disease that is mostly concerning in the population of the immunocompromised patients. One of them is acute lymphoblastic leukemia’s patients during induction. Pediatric acute lymphoblastic leukemia is a common pediatric hematologic malignancy. It is characterized by the rapid proliferation of poorly differentiated lymphoid progenitor cells inside the bone marrow. We present here a 21-month-old boy undergoing induction chemotherapy for acute lymphoblastic leukemia who developed bacillus sepsis bacteremia and, as a result, multi organ failure leading to seizures and multiple strokes. Our case report highlights the extensive overall and neurological damage that can be caused because of bacillus cereus bacteremia, which can lead to higher mortality rate and decreased in survivorship in a highly curable disease. It is very subtle and difficult to recognize and appears to be deteriorating extremely fast. There should be a low threshold for work up and empiric coverage for neutropenic patients during acute lymphoblastic leukemia induction therapy.

Keywords: acute lymphoblastic leukemia, bacillus cereus, immunocompromised, sepsis

Procedia PDF Downloads 80
5869 Analyzing of the Urban Landscape Configurations and Expansion of Dire Dawa City, Ethiopia Using Satellite Data and Landscape Metrics Approaches

Authors: Berhanu Keno Terfa

Abstract:

To realize the consequences of urbanization, accurate, and up-to-date representation of the urban landscape patterns is critical for urban planners and policymakers. Thus, the study quantitatively characterized the spatiotemporal composition and configuration of the urban landscape and urban expansion process in Dire Dawa City, Ethiopia, form the year 2006 to 2018. The integrated approaches of various sensors satellite data, Spot (2006) and Sentinel 2 (2018) combined with landscape metrics analysis was employed to explore the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 62% between 2006 and 2018, at an average annual increment of 3.6%, while the other land covers were lost significantly due to urban expansion. The highest urban expansion has occurred in the northwest direction, whereas the most fragmented landscape pattern was recorded in the west direction. Overall, the analysis showed that Dire Dawa City experienced accelerated urban expansion with a fragmented and complicated spatiotemporal urban landscape patterns, suggesting a strong tendency towards sprawl over the past 12 years. The findings in the study could help planners and policy developers to insight the historical dynamics of the urban region for sustainable development.

Keywords: zonal metrics, multi-temporal, multi-resolution, urban growth, remote sensing data

Procedia PDF Downloads 200
5868 An Advanced Automated Brain Tumor Diagnostics Approach

Authors: Berkan Ural, Arif Eser, Sinan Apaydin

Abstract:

Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.

Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition

Procedia PDF Downloads 418
5867 Effect of Irregularities on Seismic Performance of Building

Authors: Snehal Mevada, Darshana Bhatt, Aryan Kalthiya, Neel Parmar, Vishal Baraiya, Dhruvit Bhanderi, Tisha Patel

Abstract:

In multi-storeyed framed buildings, damage occurring from earthquake ground motion generally initiates at locations of structural weaknesses present in the lateral load-resisting frame. In some cases, these weaknesses may be created by discontinuities in stiffness, mass, plan, and torsion. Such discontinuity between storeys is often associated with sudden variations in the vertical geometric irregularities and plan irregularities. Vertical irregularities are structures with a soft storey that can further be broken down into the different types of irregularities as well as their severity for a more refined assessment tool pushover analysis which is one of the methods available for evaluating building against earthquake loads. So, it is very necessary to analyse and understand the seismic performance of the irregular structure in order to reduce the damage which occurs during an earthquake. In this project, a multi-storey (G+4) RCC building with four irregularities (stiffness, mass, plan, torsion) is studied for earthquake loads using the response spectrum method (dynamic analysis) and STADD PRO. All analyses have been done for seismic zone IV and for Medium Soil. In this study effects of different irregularities are analysed based on storey displacement, storey drift, and storey shear.

Keywords: comparison of regular and irregular structure, dynamic analysis, mass irregularity, plan irregularity, response spectrum method, stiffness irregularity, seismic performance, torsional irregularity, STAAD PRO

Procedia PDF Downloads 75
5866 Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna

Authors: Chuanzhi Chen, Wenjing Yu

Abstract:

Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized.

Keywords: multibody dynamics, expandable parabolic cylindrical antenna, stability, flexible deformation

Procedia PDF Downloads 146
5865 Distributed Real-time Framework for Experimental Multi Aerial Robotic Systems

Authors: Samuel Knox, Verdon Crann, Peyman Amiri, William Crowther

Abstract:

There exists a shortage of open-source firmware for allowing researchers to focus on implementing high-level planning and control strategies for multi aerial robotic systems in simulation and experiment. Within this body of work, practical firmware is presented, which performs all supplementary tasks, including communications, pre and post-experiment procedures, and emergency safety measures. This allows researchers to implement high-level planning and control algorithms for path planning, traffic management, flight formation and swarming of aerial robots. The framework is built in Python using the MAVSDK library, which is compatible with flight controllers running PX4 firmware and onboard computers based on Linux. Communication is performed using Wi-Fi and the MQTT protocol, currently implemented using a centralized broker. Finally, a graphical user interface (GUI) has been developed to send general commands and monitor the agents. This framework enables researchers to prepare customized planning and control algorithms in a modular manner. Studies can be performed experimentally and in simulation using PX4 software in the loop (SITL) and the Gazebo simulator. An example experimental use case of the framework is presented using novel distributed planning and control strategies. The demonstration is performed using off-the-shelf components and minimal setup.

Keywords: aerial robotics, distributed framework, experimental, planning and control

Procedia PDF Downloads 113
5864 Green Closed-Loop Supply Chain Network Design Considering Different Production Technologies Levels and Transportation Modes

Authors: Mahsa Oroojeni Mohammad Javad

Abstract:

Globalization of economic activity and rapid growth of information technology has resulted in shorter product lifecycles, reduced transport capacity, dynamic and changing customer behaviors, and an increased focus on supply chain design in recent years. The design of the supply chain network is one of the most important supply chain management decisions. These decisions will have a long-term impact on the efficacy and efficiency of the supply chain. In this paper, a two-objective mixed-integer linear programming (MILP) model is developed for designing and optimizing a closed-loop green supply chain network that, to the greatest extent possible, includes all real-world assumptions such as multi-level supply chain, the multiplicity of production technologies, and multiple modes of transportation, with the goals of minimizing the total cost of the chain (first objective) and minimizing total emissions of emissions (second objective). The ε-constraint and CPLEX Solver have been used to solve the problem as a single-objective problem and validate the problem. Finally, the sensitivity analysis is applied to study the effect of the real-world parameters’ changes on the objective function. The optimal management suggestions and policies are presented.

Keywords: closed-loop supply chain, multi-level green supply chain, mixed-integer programming, transportation modes

Procedia PDF Downloads 80
5863 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 57
5862 Reducing Hazardous Materials Releases from Railroad Freights through Dynamic Trip Plan Policy

Authors: Omar A. Abuobidalla, Mingyuan Chen, Satyaveer S. Chauhan

Abstract:

Railroad transportation of hazardous materials freights is important to the North America economics that supports the national’s supply chain. This paper introduces various extensions of the dynamic hazardous materials trip plan problems. The problem captures most of the operational features of a real-world railroad transportations systems that dynamically initiates a set of blocks and assigns each shipment to a single block path or multiple block paths. The dynamic hazardous materials trip plan policies have distinguishing features that are integrating the blocking plan, and the block activation decisions. We also present a non-linear mixed integer programming formulation for each variant and present managerial insights based on a hypothetical railroad network. The computation results reveal that the dynamic car scheduling policies are not only able to take advantage of the capacity of the network but also capable of diminishing the population, and environment risks by rerouting the active blocks along the least risky train services without sacrificing the cost advantage of the railroad. The empirical results of this research illustrate that the issue of integrating the blocking plan, and the train makeup of the hazardous materials freights must receive closer attentions.

Keywords: dynamic car scheduling, planning and scheduling hazardous materials freights, airborne hazardous materials, gaussian plume model, integrated blocking and routing plans, box model

Procedia PDF Downloads 205
5861 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers

Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang

Abstract:

Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.

Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors

Procedia PDF Downloads 120
5860 Carbon Supported Silver Nanostructures for Electrochemical Carbon Dioxide Reduction

Authors: Sonali Panigrahy, Manjunatha K., Sudip Barman

Abstract:

Electrocatalytic reduction methods hold significant promise in addressing the urgent need to mitigate excessive greenhouse gas emissions, particularly carbon dioxide (CO₂). A highly effective catalyst is essential for achieving the conversion of CO₂ into valuable products due to the complex, multi-electron, and multi-product nature of the CO₂ reduction process. The electrochemical reduction of CO₂, driven by renewable energy sources, presents a valuable opportunity for simultaneously reducing CO₂ emissions while generating valuable chemicals and fuels, with syngas being a noteworthy product. Silver-based electrodes have been the focus of extensive research due to their low overpotential and remarkable selectivity in promoting the generation of carbon monoxide (CO) in the electrocatalytic carbon dioxide reduction reaction (CO₂RR). In this study, we delve into the synthesis of carbon-supported silver nanoparticles (Ag/C), which serve as efficient electrocatalysts for the reduction of CO₂. The as-prepared catalyst, Ag/C, is not only cost-effective but also highly proficient in facilitating the conversion of CO₂ and H₂O into syngas, which is a customizable mixture of hydrogen (H₂) and carbon monoxide (CO). The highest faradic efficiency for the production of CO on Ag/C was calculated to be 56.4% at -1.4 V vs Ag/AgCl. The maximum partial current density for the generation of CO was determined to be -9.4 mA cm-2 at a potential of -1.6 V vs Ag/AgCl. This research demonstrates the potential of Ag/C as an electrocatalyst to enable the sustainable production of syngas, contributing to the reduction of CO₂ emissions and the synthesis of valuable chemical precursors and fuels.

Keywords: CO₂, carbon monooxide, electrochemical, silver

Procedia PDF Downloads 70
5859 Full-Spectrum Photo-thermal Conversion of Point-mode Cu₂O/TiN Plasmonic Nanofluids

Authors: Xiaoxiao Yu, Guodu He, Zihua Wu, Yuanyuan Wang, Huaqing Xie

Abstract:

Core-shell composite structure is a common method to regulate the spectral absorption of nanofluids, but there occur complex preparation processes, which limit the applications in some fields, such as photothermal utilization and catalysis. This work proposed point-mode Cu₂O/TiN plasmonic nanofluids to regulate the spectral capturing ability and simplify the preparation process. Non-noble TiN nanoparticles with the localized surface plasmon resonance effect are dispersed in Cu₂O nanoparticles for forming a multi-point resonance source to enhance the spectral absorption performance. The experimental results indicate that the multiple resonance effect of TiN effectively improves the optical absorption and expands the absorption region. When the radius of Cu₂O nanoparticles is equal to 150nm, the optical absorption of point-mode Cu₂O/TiN plasmonic nanoparticles is best. Moreover, the photothermal conversion efficiency of Cu₂O/TiN plasmonic nanofluid can reach 97.5% at a volume fraction of 0.015% and an optical depth of 10mm. The point-mode nanostructure effectively enhances the optical absorption properties and greatly simplifies the preparation process of the composite nanoparticles, which can promote the application of multi-component photonic nanoparticles in the field of solar energy.

Keywords: solar energy, nanofluid, point-mode structure, Cu₂O/TiN, localized surface plasmon resonance effect

Procedia PDF Downloads 61
5858 Multi-Objective Optimization and Effect of Surface Conditions on Fatigue Performance of Burnished Components Made of AISI 52100 Steel

Authors: Ouahiba Taamallah, Tarek Litim

Abstract:

The study deals with the burnishing effect of AISI 52100 steel and parameters influence (Py, i and f on surface integrity. The results show that the optimal effects are closely related to the treatment parameters. With a 92% improvement in roughness, SB can be defined as a finishing operation within the machining range. Due to 85% gain in consolidation rate, this treatment constitutes an efficient process for work-hardening of material. In addition, a statistical study based on regression and Taguchi's design has made it possible to develop mathematical models to predict output responses according to the studied burnishing parameters. Response Surface Methodology RSM showed a simultaneous influence of the burnishing parameters and to observe the optimal parameters of the treatment. ANOVA Analysis of results led to validate the prediction model with a determination coefficient R2=94.60% and R2=93.41% for surface roughness and micro-hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=20 Kgf, i=5 passes and f=0.08 mm.rev-1, which favors minimum surface roughness and a maximum of micro-hardness. The result was validated by a composite desirability D_i=1 for both surface roughness and microhardness, respectively. Applying optimal parameters, burnishing showed its beneficial effects in fatigue resistance, especially for imposed loading in the low cycle fatigue of the material where the lifespan increased by 90%.

Keywords: AISI 52100 steel, burnishing, Taguchi, fatigue

Procedia PDF Downloads 188
5857 Palygorskite Bearing Calcic-Soils from Western Thar Desert: Implications for Late Quaternary Monsoonal Fluctuations

Authors: A. Hameed, N. Upreti, P. Srivastava

Abstract:

Main objective the present study is to investigate microscopic, sub-microscopic, clay mineralogical and geochemical characteristics of three calcic soil profiles from the western Thar Desert for the last 30 ka paleoclimatic information. Thin-sections of the soils show weakly to moderately developed pedofeatures dominated by powdery to well-indurated pedogenic calcium carbonate. Sub-microscopy of the representative calcretes show extensive growth of fibrous palygorskite in pore spaces of micritic and sparitic nodules. XRD of the total clay ( < 2 µm) and fine clay ( < 0.2 µm) fractions of the soils show dominance of smectite, palygorskite, chlorite, mica, kaolinite and small amounts of quartz and feldspar. Formation of the palygorskite is attributed to pedogenic processes associated with Bw, Bss and Bwk horizons during drier conditions over the last 30 ka. Formation of palygorskite was mainly favoured by strongly evaporating percolating water and precipitation of secondary calcite, high pH (9-10), high Mg, Si and low Al activities during pedogenesis. Age estimate and distribution of calcretes, palygorskite, and illuvial features indicate fluctuating monsoonal strength during MIS3-MIS1 stages. The pedogenic features in calcic soils of western Thar suggest relatively arid conditions during MIS3-MIS2 transition and LGM time that changed to relatively wetter conditions during post LGM time and again returned to dry conditions at ~4 ka in MIS1.

Keywords: palygorskite, clay minerals, Thar, aridisol, late quaternary

Procedia PDF Downloads 162
5856 Application of Ground-Penetrating Radar in Environmental Hazards

Authors: Kambiz Teimour Najad

Abstract:

The basic methodology of GPR involves the use of a transmitting antenna to send electromagnetic waves into the subsurface, which then bounce back to the surface and are detected by a receiving antenna. The transmitter and receiver antennas are typically placed on the ground surface and moved across the area of interest to create a profile of the subsurface. The GPR system consists of a control unit that powers the antennas and records the data, as well as a display unit that shows the results of the survey. The control unit sends a pulse of electromagnetic energy into the ground, which propagates through the soil or rock until it encounters a change in material or structure. When the electromagnetic wave encounters a buried object or structure, some of the energy is reflected back to the surface and detected by the receiving antenna. The GPR data is then processed using specialized software that analyzes the amplitude and travel time of the reflected waves. By interpreting the data, GPR can provide information on the depth, location, and nature of subsurface features and structures. GPR has several advantages over other geophysical survey methods, including its ability to provide high-resolution images of the subsurface and its non-invasive nature, which minimizes disruption to the site. However, the effectiveness of GPR depends on several factors, including the type of soil or rock, the depth of the features being investigated, and the frequency of the electromagnetic waves used. In environmental hazard assessments, GPR can be used to detect buried structures, such as underground storage tanks, pipelines, or utilities, which may pose a risk of contamination to the surrounding soil or groundwater. GPR can also be used to assess soil stability by identifying areas of subsurface voids or sinkholes, which can lead to the collapse of the surface. Additionally, GPR can be used to map the extent and movement of groundwater contamination, which is critical in designing effective remediation strategies. the methodology of GPR in environmental hazard assessments involves the use of electromagnetic waves to create high of the subsurface, which are then analyzed to provide information on the depth, location, and nature of subsurface features and structures. This information is critical in identifying and mitigating environmental hazards, and the non-invasive nature of GPR makes it a valuable tool in this field.

Keywords: GPR, hazard, landslide, rock fall, contamination

Procedia PDF Downloads 82
5855 Structural Analysis of Sheep and Goat Farms in Konya Province

Authors: Selda Uzal Seyfi

Abstract:

Goat milk is a quite important in human nutrition. In order to meet the demand to the goat and sheep milk occurring in the recent years, an increase is seen in the demand to housing projects, which will enable animals to be sheltered in the suitable environments. This study was carried out in between 2012 and 2013, in order to identify the existing cases of sheep and goat housings in the province Konya and their possibilities to be developed. In the study, in the province Konya, 25 pieces of sheep and goat farms and 46 pieces of sheep and goat housings (14 sheep housings, 3 goat housings, and 29 housings, in which both sheep and goat are bred ) that are present in the farm were investigated as material. In the study, examining the general features of the farms that are present in the region and structural features of housings that are present in the farms, it is studied whether or not they are suitable for animal breeding. As a result of the study, the barns were evaluated as insufficient in terms of barn design, although 48% of they were built after 2000. In 63% of housings examined, stocking density of resting area was below the value of 1 m2/animal and in 59% of the housings, stocking density of courtyard area was below the 2 m2/animal. Feeding length, in 57% of housings has a value of 0.30 m and below. In the region, it will be possible to obtain the desired productivity level by building new barn designs, developed in accordance with the animal behaviors and welfare. Carrying out the necessary works is an important issue in terms of country and regional economy.

Keywords: barn design, goat housing, sheep housing, structural analysis

Procedia PDF Downloads 285
5854 Neuropsychological Testing in a Multi-Lingual Society: Normative Data for South African Adults in More Than Eight Languages

Authors: Sharon Truter, Ann B. Shuttleworth-Edwards

Abstract:

South Africa is a developing country with significant diversity in languages spoken and quality of education available, creating challenges for fair and accurate neuropsychological assessments when most available neuropsychological tests are obtained from English-speaking developed countries. The aim of this research was to compare normative data on a spectrum of commonly used neuropsychological tests for English- and Afrikaans-speaking South Africans with relatively high quality of education and South Africans with relatively low quality of education who speak Afrikaans, Sesotho, Setswana, Sepedi, Tsonga, Venda, Xhosa or Zulu. The participants were all healthy adults aged 18-60 years, with 8-12 years of education. All the participants were tested in their first language on the following tests: two non-verbal tests (Rey Osterrieth Complex Figure Test and Bell Cancellation Test), four verbal fluency tests (category, phonemic, verb and 'any words'), one verbal learning test (Rey Auditory Verbal Leaning Test) and three tests that have a verbal component (Trail Making Test A & B; Symbol Digit Modalities Test and Digit Span). Descriptive comparisons of mean scores and standard deviations across the language groups and between the groups with relatively high versus low quality of education highlight the importance of using normative data that takes into account language and quality of education.

Keywords: cross-cultural, language, multi-lingual, neuropsychological testing, quality of education

Procedia PDF Downloads 173
5853 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: decision tree, genetic algorithm, machine learning, software defect prediction

Procedia PDF Downloads 329
5852 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 127
5851 Autonomy and Other Variables Related to the Expression of Love among Saudi Couples

Authors: Reshaa Alruwaili

Abstract:

The primary aim of this study was to examine the hypothesis presented by Self Determination theory which suggests that autonomy impacts positively the expression of love. Other hypotheses were also examined which suggest that other variables explain the expression of love, including: dyadic adjustment (dyadic consensus, dyadic satisfaction and dyadic cohesion), couple satisfaction, age, gender, the length of marriage, number of children and attachment styles. The participants were Saudi couples, which provided the opportunity to consider the influence of Saudi culture on the expression of love. A questionnaire was employed to obtain measures of all the relevant variables, including a measure of expression of love that was built from 27 items, constituting verbal, physical and caring features, and a measure of autonomy based on three features: authorship, interest-taking and susceptibility. Data were collected from both members of 34 Saudi couples. Descriptive analysis of both expression of love and autonomy was conducted. Correlation and regression were used to assess the relationships between expression of love and autonomy and other variables. Results indicated that Saudi couples who most often express their love tend to be more than somewhat autonomous. Not much difference was found between husbands and wives in expressing love, although wives were slightly more autonomous than husbands. Expression of love was enhanced by the autonomy of the participants to a greater extent when dyadic satisfaction was controlled, since the latter was negatively correlated with autonomy and had no effect on the expression of love. Basic psychological needs, dyadic consensus and dismissive-avoidant attachment improve the expression of love, while it is decreased by the number of children.

Keywords: autonomy, determination theory, expression of love, dyadic adjustment

Procedia PDF Downloads 232
5850 Eco-Ethology of Bees Visitors on Vicia faba L. var. Major (Fabaceae) in Algeria

Authors: L. Bendifallah, S. Doumandji, K. Louadi, S. Iserbyt, F. Acheuk

Abstract:

Due to their ecological key position and diversity, plant-bee relationships constitute excellent models to understand the processes of food specialisation. The purpose of this study is to define and identify the most important species of bees foraging broadbean flowers, we estimated morphological, phonological and behavioural features. We discuss the results by considering the food specialisation level of the visitor. In the studied populations (Algiers, Algeria), visiting bees belong to four different genus: Apis, Andrena, Eucera and Xylocopa. Eucera is foraging broad beans flowers during months of April, May. The genus Andrena and Xylocopa were found on weeds after the flowering period of beans. The two species have not a preferred type of vegetation compared to Eucera. The main pollinators were generalist bees such as Apis mellifera L. and Xylocopa pubescens Spinola (Apidae), and specialist bees such Eucera numida Lep. (Apidae). The results show that no one of the studied species, neither the specialist, nor the generalist ones, share adaptative morphological or behavioural features that may improve foraging on Vicia faba. However, there is a narrow synchronisation between the daily and yearly phenologies of Eucera numida and those of V. faba. This could be an adaptation of the specialist bee to its host plant. Thus, the food specialisation of Eucera numida, as for most specialist bees, would be more linked to its adapted phenology than to an adapted morphology.

Keywords: Vicia faba, bees, pollinators, Algeria

Procedia PDF Downloads 320
5849 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach

Authors: Niyongabo Elyse

Abstract:

Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.

Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling

Procedia PDF Downloads 50
5848 Geometric Morphometric Analysis of Allometric Variation in the Hand Morphology of Adults

Authors: Aleksandr S. Ermolenko

Abstract:

Allometry is an important factor of morphological integration, contributing to the organization of the phenotype and its variability. The allometric change in the shape of the hand is particularly important in primate evolution, as the hand has important taxonomic features. Some of these features are known to parts with the shape, especially the ratio of the lengths of the index and ring fingers (2d: 4d ratio). The hand is a fairly well-studied system in the context of the evolutionary development of complex morphological structures since it consists of various departments (basipodium, metapodium, acropodium) that form a single structure –autopodium. In the present study, we examined the allometric variability of acropodium. We tested the null hypothesis that there would be no difference in allometric variation between the two components. Geometric morphometry based on a procrustation of 16 two-dimensional (2D) landmarks was analyzed using multivariate shape-by-size regressions in samples from 100 people (50 men and 50 women). The results obtained show that men have significantly greater allometric variability for the ring finger (variability in the transverse axis prevails), while women have significantly greater allometric variability for the index finger (variability in the longitudinal axis prevails). The influence of the middle finger on the shape of the hand is typical for both men and women. The influence of the little finger on the shape of the hand, regardless of gender, was not revealed. The results of this study support the hypothesis that allometry contributes to the organization of variation in the human hand.

Keywords: human hand, size and shape, 2d:4d ratio, geometric morphometry

Procedia PDF Downloads 158
5847 Integrated Manufacture of Polymer and Conductive Tracks for Functional Objects Fabrication

Authors: Barbara Urasinska-Wojcik, Neil Chilton, Peter Todd, Christopher Elsworthy, Gregory J. Gibbons

Abstract:

The recent increase in the application of Additive Manufacturing (AM) of products has resulted in new demands on capability. The ability to integrate both form and function within printed objects is the next frontier in the 3D printing area. To move beyond prototyping into low volume production, we demonstrate a UK-designed and built AM hybrid system that combines polymer based structural deposition with digital deposition of electrically conductive elements. This hybrid manufacturing system is based on a multi-planar build approach to improve on many of the limitations associated with AM, such as poor surface finish, low geometric tolerance, and poor robustness. Specifically, the approach involves a multi-planar Material Extrusion (ME) process in which separated build stations with up to 5 axes of motion replace traditional horizontally-sliced layer modeling. The construction of multi-material architectures also involved using multiple print systems in order to combine both ME and digital deposition of conductive material. To demonstrate multi-material 3D printing, three thermoplastics, acrylonitrile butadiene styrene (ABS), polyamide 6,6/6 copolymers (CoPA) and polyamide 12 (PA) were used to print specimens, on top of which our high viscosity Ag-particulate ink was printed in a non-contact process, during which drop characteristics such as shape, velocity, and volume were assessed using a drop watching system. Spectroscopic analysis of these 3D printed materials in the IR region helped to determine the optimum in-situ curing system for implementation into the AM system to achieve improved adhesion and surface refinement. Thermal Analyses were performed to determine the printed materials glass transition temperature (Tg), stability and degradation behavior to find the optimum annealing conditions post printing. Electrical analysis of printed conductive tracks on polymer surfaces during mechanical testing (static tensile and 3-point bending and dynamic fatigue) was performed to assess the robustness of the electrical circuits. The tracks on CoPA, ABS, and PA exhibited low electrical resistance, and in case of PA resistance values of tracks remained unchanged across hundreds of repeated tensile cycles up to 0.5% strain amplitude. Our developed AM printer has the ability to fabricate fully functional objects in one build, including complex electronics. It enables product designers and manufacturers to produce functional saleable electronic products from a small format modular platform. It will make 3D printing better, faster and stronger.

Keywords: additive manufacturing, conductive tracks, hybrid 3D printer, integrated manufacture

Procedia PDF Downloads 166
5846 A Highly Efficient Broadcast Algorithm for Computer Networks

Authors: Ganesh Nandakumaran, Mehmet Karaata

Abstract:

A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.

Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms

Procedia PDF Downloads 504
5845 Effect of Site Amplification on Seismic Safety Evaluation of Flyover Pier

Authors: Mohammad Raihan Mukhlis, M. Abdur Rahman Bhuiyan

Abstract:

Bangladesh is a developing country in which a lot of multi-span simply/continuous supported flyovers are being constructed in its major cities. Being situated in a seismically active region, seismic safety evaluation of flyovers is essential for seismic risk reduction. Effects of site amplification on seismic safety evaluation of flyover piers are the main concern of this study. In this regard, failure mode, lateral strength and displacement ductility of piers of a typical multi-span simply supported flyover have been evaluated by Japan Road Association (JRA) recommended guidelines, with and without considering site amplification. Ultimate flexural strengths of piers have been computed using the pushover analysis results. Shear capacity of piers has been calculated using the guidelines of JRA. Lateral strengths have been determined depending on the failure modes of the piers. Displacement ductility of piers has been computed using yield and ultimate displacements of the piers obtained from the pushover analysis results. Selected earthquake time history is used in seismic safety evaluation of the flyover piers. Finally, the ductility design method is used to conduct the seismic safety evaluation of the piers with and without considering site amplification. From the numerical results, it has been revealed that the effects of site amplification on seismic safety evaluation of bridge structures should be carefully taken into account.

Keywords: displacement ductility, flyover pier, lateral strength, safety evaluation, site amplification

Procedia PDF Downloads 170