Search results for: fluid model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18162

Search results for: fluid model

16392 Data Model to Predict Customize Skin Care Product Using Biosensor

Authors: Ashi Gautam, Isha Shukla, Akhil Seghal

Abstract:

Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.

Keywords: biosensors, data model, machine learning, skin care

Procedia PDF Downloads 97
16391 Theoretical and Experimental Investigation of the Interaction Behavior of a Bouncing Ball upon a Flexible Surface Impacted in Two Dimensions

Authors: Wiwat Chumai, Perawit Boonsomchua, Kanjana Ongkasin

Abstract:

The ball bouncing problem is a well-known problem in physics involving a ball dropped from a height to the ground. In this paper, the work investigates the theoretical and experimental setup that describes the dynamics of a rigid body on a chaotic elastic surface under air-damp conditions. Examination of four different types of balls is made, including marble, metal ball, tennis ball, and ping-pong ball. In this experiment, the effect of impact velocities is not considered; the ball is dropped from a fixed height. The method in this work employs the Rayleigh Dissipation Function to specify the effects of dissipative forces in Lagrangian mechanics. Our discoveries reveal that the dynamics of the ball exhibit horizontal motion while damping oscillation occurs, forming the destabilization in vertical pinch-off motion. Moreover, rotational motion is studied. According to the investigation of four different balls, the outcomes illustrate that greater mass results in more frequent dynamics, and the experimental results at some points align with the theoretical model. This knowledge contributes to our understanding of the complex fluid system and could serve as a foundation for further developments in water droplet simulation.

Keywords: droplet, damping oscillation, nonlinear damping oscillation, bouncing ball problem, elastic surface

Procedia PDF Downloads 100
16390 An Equivalent Circuit Model Approach for Battery Pack Simulation in a Hybrid Electric Vehicle System Powertrain

Authors: Suchitra Sivakumar, Hajime Shingyouchi, Toshinori Okajima, Kyohei Yamaguchi, Jin Kusaka

Abstract:

The progressing need for powertrain electrification calls for more accurate and reliable simulation models. A battery pack serves as the most vital component for energy storage in an electrified powertrain. Hybrid electric vehicles (HEV) do not behave the same way as they age, and there are several environmental factors that account for the degradation of the battery on a system level. Therefore, in this work, a battery model was proposed to study the state of charge (SOC) variation and the internal dynamic changes that contribute to aging and performance degradation in HEV batteries. An equivalent circuit battery model (ECM) is built using MATLAB Simulink to investigate the output characteristics of the lithium-ion battery. The ECM comprises of circuit elements like a voltage source, a series resistor and a parallel RC network connected in series. A parameter estimation study is conducted on the ECM to study the dependencies of the circuit elements with the state of charge (SOC) and the terminal voltage of the battery. The battery model is extended to simulate the temperature dependence of the individual battery cell and the battery pack with the environment. The temperature dependence model accounts for the heat loss due to internal resistance build up in the battery pack during charging, discharging, and due to atmospheric temperature. The model was validated for a lithium-ion battery pack with an independent drive cycle showing a voltage accuracy of 4% and SOC accuracy of about 2%.

Keywords: battery model, hybrid electric vehicle, lithium-ion battery, thermal model

Procedia PDF Downloads 298
16389 4P-Model of Information Terrorism

Authors: Nataliya Venelinova

Abstract:

The paper proposes a new interdisciplinary model of reconsidering the role of mass communication effects by coverage of terrorism. The idea of 4P model is based on the synergy, created by the information strategy of threat, predominantly used by terrorist groups, the effects of mediating the symbolic action of the terrorist attacks or the taking of responsibility of any attacks, and the reshaped public perception for security after the attacks being mass communicated. The paper defines the mass communication cycle of terrorism, which leads not only to re-agenda setting of the societies, but also spirally amplifying the effect of propagating fears by over-informing on terrorism attacks. This finally results in the outlining of the so called 4P-model of information terrorism: mass propaganda, panic, paranoia and pandemic.

Keywords: information terrorism, mass communication cycle, public perception, security

Procedia PDF Downloads 173
16388 On Disaggregation and Consolidation of Imperfect Quality Shipments in an Extended EPQ Model

Authors: Hung-Chi Chang

Abstract:

For an extended EPQ model with random yield, the existent study revealed that both the disaggregating and consolidating shipment policies for the imperfect quality items are independent of holding cost, and recommended a model with economic benefit by comparing the least total cost for each of the three models investigated. To better capture the real situation, we generalize the existent study to include different holding costs for perfect and imperfect quality items. Through analysis, we show that the above shipment policies are dependent on holding costs. Furthermore, we derive a simple decision rule solely based on the thresholds of problem parameters to select a superior model. The results are illustrated analytically and numerically.

Keywords: consolidating shipments, disaggregating shipments, EPQ, imperfect quality, inventory

Procedia PDF Downloads 376
16387 Composite Forecasts Accuracy for Automobile Sales in Thailand

Authors: Watchareeporn Chaimongkol

Abstract:

In this paper, we compare the statistical measures accuracy of composite forecasting model to estimate automobile customer demand in Thailand. A modified simple exponential smoothing and autoregressive integrate moving average (ARIMA) forecasting model is built to estimate customer demand of passenger cars, instead of using information of historical sales data. Our model takes into account special characteristic of the Thai automobile market such as sales promotion, advertising and publicity, petrol price, and interest rate for loan. We evaluate our forecasting model by comparing forecasts with actual data using six accuracy measurements, mean absolute percentage error (MAPE), geometric mean absolute error (GMAE), symmetric mean absolute percentage error (sMAPE), mean absolute scaled error (MASE), median relative absolute error (MdRAE), and geometric mean relative absolute error (GMRAE).

Keywords: composite forecasting, simple exponential smoothing model, autoregressive integrate moving average model selection, accuracy measurements

Procedia PDF Downloads 362
16386 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment

Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello

Abstract:

For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.

Keywords: electromagnetic stirring, induction heating, interface modeling, metal load

Procedia PDF Downloads 267
16385 Uncertainty of the Brazilian Earth System Model for Solar Radiation

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data ​​of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.

Keywords: climate changes, projections, solar radiation, uncertainty

Procedia PDF Downloads 250
16384 An Empirical Investigation of Mobile Banking Services Adoption in Pakistan

Authors: Aijaz A. Shaikh, Richard Glavee-Geo, Heikki Karjaluoto

Abstract:

Adoption of Information Systems (IS) is receiving increasing attention such that its implications have been closely monitored and studied by the IS management community, industry and professional gatekeepers. Building on previous research regarding the adoption of technology, this paper develops and validates an integrated model of the adoption of mobile banking. The model originates from the Technology Acceptance Model (TAM) and the Theory of Planned Behaviour (TPB). This paper intends to offer a preliminary scrutiny of the antecedents of the adoption of mobile banking services in the context of a developing country. Data was collected from Pakistan. The findings showed that an integrated TAM and TPB model greatly explains the adoption intention of mobile banking; and perceived behavioural control and its antecedents play a significant role in predicting adoption Theoretical and managerial implications of findings are presented and discussed.

Keywords: developing country, mobile banking service adoption, technology acceptance model, theory of planned behavior

Procedia PDF Downloads 419
16383 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: social network, link prediction, granular computing, type-2 fuzzy sets

Procedia PDF Downloads 326
16382 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel

Abstract:

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Keywords: fuel cell, modelling, real time emulation, testing

Procedia PDF Downloads 336
16381 Computer Simulation of Hydrogen Superfluidity through Binary Mixing

Authors: Sea Hoon Lim

Abstract:

A superfluid is a fluid of bosons that flows without resistance. In order to be a superfluid, a substance’s particles must behave like bosons, yet remain mobile enough to be considered a superfluid. Bosons are low-temperature particles that can be in all energy states at the same time. If bosons were to be cooled down, then the particles will all try to be on the lowest energy state, which is called the Bose Einstein condensation. The temperature when bosons start to matter is when the temperature has reached its critical temperature. For example, when Helium reaches its critical temperature of 2.17K, the liquid density drops and becomes a superfluid with zero viscosity. However, most materials will solidify -and thus not remain fluids- at temperatures well above the temperature at which they would otherwise become a superfluid. Only a few substances currently known to man are capable of at once remaining a fluid and manifesting boson statistics. The most well-known of these is helium and its isotopes. Because hydrogen is lighter than helium, and thus expected to manifest Bose statistics at higher temperatures than helium, one might expect hydrogen to also be a superfluid. As of today, however, no one has yet been able to produce a bulk, hydrogen superfluid. The reason why hydrogen did not form a superfluid in the past is its intermolecular interactions. As a result, hydrogen molecules are much more likely to crystallize than their helium counterparts. The key to creating a hydrogen superfluid is therefore finding a way to reduce the effect of the interactions among hydrogen molecules, postponing the solidification to lower temperature. In this work, we attempt via computer simulation to produce bulk superfluid hydrogen through binary mixing. Binary mixture is a technique of mixing two pure substances in order to avoid crystallization and enhance super fluidity. Our mixture here is KALJ H2. We then sample the partition function using this Path Integral Monte Carlo (PIMC), which is well-suited for the equilibrium properties of low-temperature bosons and captures not only the statistics but also the dynamics of Hydrogen. Via this sampling, we will then produce a time evolution of the substance and see if it exhibits superfluid properties.

Keywords: superfluidity, hydrogen, binary mixture, physics

Procedia PDF Downloads 316
16380 Three-Dimensional Numerical Model of an Earth Air Heat Exchanger under a Constrained Urban Environment in India: Modeling and Validation

Authors: V. Rangarajan, Priyanka Kaushal

Abstract:

This study investigates the effectiveness of a typical Earth Air Heat Exchanger (EATHE) for energy efficient space cooling in an urban environment typified by space and soil-related constraints that preclude an optimal design. It involves the development of a three-dimensional numerical transient model that is validated by measurements at a live site in India. It is found that the model accurately predicts the soil temperatures at various depths as well as the EATHE outlet air temperature. The study shows that such an EATHE, even when designed under constraints, does provide effective space cooling especially during the hot months of the year.

Keywords: earth air heat exchanger (EATHE), India, MATLAB, model, simulation

Procedia PDF Downloads 322
16379 Assessment on Rumen Microbial Diversity of Bali Cattle Using 16S rRNA Sequencing

Authors: Asmuddin Natsir, A. Mujnisa, Syahriani Syahrir, Marhamah Nadir, Nurul Purnomo

Abstract:

Bacteria, protozoa, Archaea, and fungi are the dominant microorganisms found in the rumen ecosystem that has an important role in converting feed ingredients into components that can be digested and utilized by the livestock host. This study was conducted to assess the diversity of rumen bacteria of bali cattle raised under traditional farming condition. Three adult bali cattle were used in this experiment. The rumen fluid samples from the three experimental animals were obtained by the Stomach Tube method before the morning feeding. The results of study indicated that the Illumina sequencing was successful in identifying 301,589 sequences, averaging 100,533 sequences, from three rumen fluid samples of three cattle. Furthermore, based on the SILVA taxonomic database, there were 19 kinds of phyla that had been successfully identified. Of the 19 phyla, there were only two dominant groups across the three samples, namely Bacteroidetes and Firmicutes, with an average percentage of 83.68% and 13.43%, respectively. Other groups such as Synergistetes, Spirochaetae, Planctomycetes can also be identified but in relatively small percentage. At the genus level, there were 157 sequences obtained from all three samples. Of this number, the most dominant group was Prevotella 1 with a percentage of 71.82% followed by 6.94% of Christencenellaceae R-7 group. Other groups such as Prevotellaceae UCG-001, Ruminococcaceae NK4A214 group, Sphaerochaeta, Ruminococcus 2, Rikenellaceae RC9 gut group, Quinella were also identified but with very low percentages. The sequencing results were able to detect the presence of 3.06% and 3.92% respectively for uncultured rumen bacterium and uncultured bacterium. In conclusion, the results of this experiment can provide an opportunity for a better understanding of the rumen bacterial diversity of the bali cattle raised under traditional farming condition and insight regarding the uncultured rumen bacterium and uncultured bacterium that need to be further explored.

Keywords: 16S rRNA sequencing, bali cattle, rumen microbial diversity, uncultured rumen bacterium

Procedia PDF Downloads 336
16378 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence

Authors: Seyed Sobhan Alvani, Mohammad Gohari

Abstract:

By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.

Keywords: traffic index, population growth rate, cities wideness, artificial neural network

Procedia PDF Downloads 41
16377 Frailty Models for Modeling Heterogeneity: Simulation Study and Application to Quebec Pension Plan

Authors: Souad Romdhane, Lotfi Belkacem

Abstract:

When referring to actuarial analysis of lifetime, only models accounting for observable risk factors have been developed. Within this context, Cox proportional hazards model (CPH model) is commonly used to assess the effects of observable covariates as gender, age, smoking habits, on the hazard rates. These covariates may fail to fully account for the true lifetime interval. This may be due to the existence of another random variable (frailty) that is still being ignored. The aim of this paper is to examine the shared frailty issue in the Cox proportional hazard model by including two different parametric forms of frailty into the hazard function. Four estimated methods are used to fit them. The performance of the parameter estimates is assessed and compared between the classical Cox model and these frailty models through a real-life data set from the Quebec Pension Plan and then using a more general simulation study. This performance is investigated in terms of the bias of point estimates and their empirical standard errors in both fixed and random effect parts. Both the simulation and the real dataset studies showed differences between classical Cox model and shared frailty model.

Keywords: life insurance-pension plan, survival analysis, risk factors, cox proportional hazards model, multivariate failure-time data, shared frailty, simulations study

Procedia PDF Downloads 359
16376 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data

Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer

Abstract:

This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.

Keywords: non-stationary, BINARMA(1, 1) model, Poisson innovations, conditional maximum likelihood, CML

Procedia PDF Downloads 129
16375 Experimental and Numerical Investigation of Heat Transfer in THTL Test Loop Shell and Tube Heat Exchanger

Authors: M. Moody, R. Mahmoodi, A. R. Zolfaghari, A. Aminottojari

Abstract:

In this study, flow inside the shell side of a shell-and-tube heat exchanger is simulated numerically for laminar and turbulent flows in both steady state and transient mode. Governing equations of fluid flow are discrete using finite volume method and central difference scheme and solved with simple algorithm which is staggered grid by using MATLAB programming language. The heat transfer coefficient is obtained using velocity field from equation Dittus-Bolter. In comparison with, heat exchanger is simulated with ANSYS CFX software and experimental data measured in the THTL test loop. Numerical results obtained from the study show good agreement with experimental data and ANSYS CFX results. In addition, by deliberation the effect of the baffle spacing and the baffle cut on the heat transfer rate for turbulent flow, it is illustrated that the heat transfer rate depends on the baffle spacing and the baffle cut directly. In other word in spied of large turbulence, if these two parameters are not selected properly in the heat exchanger, the heat transfer rate can reduce.

Keywords: shell-and-tube heat exchanger, flow and heat transfer, laminar and turbulence flow, turbulence model, baffle spacing, baffle cut

Procedia PDF Downloads 537
16374 The Discriminate Analysis and Relevant Model for Mapping Export Potential

Authors: Jana Gutierez Chvalkovska, Michal Mejstrik, Matej Urban

Abstract:

There are pending discussions over the mapping of country export potential in order to refocus export strategy of firms and its evidence-based promotion by the Export Credit Agencies (ECAs) and other permitted vehicles of governments. In this paper we develop our version of an applied model that offers “stepwise” elimination of unattractive markets. We modify and calibrate the model for the particular features of the Czech Republic and specific pilot cases where we apply an individual approach to each sector.

Keywords: export strategy, modeling export, calibration, export promotion

Procedia PDF Downloads 498
16373 Control of an SIR Model for Basic Reproduction Number Regulation

Authors: Enrique Barbieri

Abstract:

The basic disease-spread model described by three states denoting the susceptible (S), infectious (I), and removed (recovered and deceased) (R) sub-groups of the total population N, or SIR model, has been considered. Heuristic mitigating action profiles of the pharmaceutical and non-pharmaceutical types may be developed in a control design setting for the purpose of reducing the transmission rate or improving the recovery rate parameters in the model. Even though the transmission and recovery rates are not control inputs in the traditional sense, a linear observer and feedback controller can be tuned to generate an asymptotic estimate of the transmission rate for a linearized, discrete-time version of the SIR model. Then, a set of mitigating actions is suggested to steer the basic reproduction number toward unity, in which case the disease does not spread, and the infected population state does not suffer from multiple waves. The special case of piecewise constant transmission rate is described and applied to a seventh-order SEIQRDP model, which segments the population into four additional states. The offline simulations in discrete time may be used to produce heuristic policies implemented by public health and government organizations.

Keywords: control of SIR, observer, SEIQRDP, disease spread

Procedia PDF Downloads 111
16372 Open Innovation Strategy (OIS) Paradigm and an OIS Capabilities Model

Authors: Anastasis D. Petrou

Abstract:

Innovation and strategy discussions do highlight open innovation as a new paradigm in business. Yet, a number of stumbling blocks in the form of closed innovation principles weaved into the fabric of a traditional business model stand in the way of the new paradigm’s momentum to increase value in various business contexts. The paper argues that businesses considering an engagement with the open innovation paradigm would need to take steps to improve their multiplicative, absorptive and relational capabilities, respectively. The needed improvements would amount to a business model evolutionary transformation and eventually bring about a paradigm overhaul in business. The transformation is worth staging over time to ensure that open innovation is developed across interconnected and partnered areas of strategic importance. This article develops an open innovation strategy (OIS) capabilities model, and employs examples from different industries to briefly discuss OIS’s potential to augment business value in a number of suggested areas for future research.

Keywords: close innovation, open innovation paradigm, open innovation strategy (OIS) paradigm, OIS capabilities model, multiplicative capability, absorptive capability, relational capability

Procedia PDF Downloads 520
16371 Electricity Demand Modeling and Forecasting in Singapore

Authors: Xian Li, Qing-Guo Wang, Jiangshuai Huang, Jidong Liu, Ming Yu, Tan Kok Poh

Abstract:

In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly.

Keywords: power industry, electricity demand, modeling, forecasting

Procedia PDF Downloads 640
16370 Saltwater Intrusion Studies in the Cai River in the Khanh Hoa Province, Vietnam

Authors: B. Van Kessel, P. T. Kockelkorn, T. R. Speelman, T. C. Wierikx, C. Mai Van, T. A. Bogaard

Abstract:

Saltwater intrusion is a common problem in estuaries around the world, as it could hinder the freshwater supply of coastal zones. This problem is likely to grow due to climate change and sea-level rise. The influence of these factors on the saltwater intrusion was investigated for the Cai River in the Khanh Hoa province in Vietnam. In addition, the Cai River has high seasonal fluctuations in discharge, leading to increased saltwater intrusion during the dry season. Sea level rise, river discharge changes, river mouth widening and a proposed saltwater intrusion prevention dam can have influences on the saltwater intrusion but have not been quantified for the Cai River estuary. This research used both an analytical and numerical model to investigate the effect of the aforementioned factors. The analytical model was based on a model proposed by Savenije and was calibrated using limited in situ data. The numerical model was a 3D hydrodynamic model made using the Delft3D4 software. The analytical model and numerical model agreed with in situ data, mostly for tidally average data. Both models indicated a roughly similar dependence on discharge, also agreeing that this parameter had the most severe influence on the modeled saltwater intrusion. Especially for discharges below 10 m/s3, the saltwater was predicted to reach further than 10 km. In the models, both sea-level rise and river widening mainly resulted in salinity increments up to 3 kg/m3 in the middle part of the river. The predicted sea-level rise in 2070 was simulated to lead to an increase of 0.5 km in saltwater intrusion length. Furthermore, the effect of the saltwater intrusion dam seemed significant in the model used, but only for the highest position of the gate.

Keywords: Cai River, hydraulic models, river discharge, saltwater intrusion, tidal barriers

Procedia PDF Downloads 112
16369 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 469
16368 Methodology for Obtaining Static Alignment Model

Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez

Abstract:

In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.

Keywords: information theory, prediction model, prosthetic alignment, transtibial prosthesis

Procedia PDF Downloads 257
16367 Design and Implementation of Low-code Model-building Methods

Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu

Abstract:

This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.

Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment

Procedia PDF Downloads 31
16366 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: 6D posture estimation, image recognition, deep learning, AlexNet

Procedia PDF Downloads 155
16365 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain

Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee

Abstract:

In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.

Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization

Procedia PDF Downloads 416
16364 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context

Authors: Selin Guney, Andres Riquelme

Abstract:

The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.

Keywords: bio-economic, fisheries, GAM, production

Procedia PDF Downloads 252
16363 Dietary N-6/N-3 PUFA Ratios Affect the Homeostasis of CD4+ T Cells in Mice with Dextran Sulfate Sodium-Induced Colitis

Authors: Cyoung-Huei Huang, Chiu-Li Yeh, Man-Hui Pai, Sung-Ling Yeh

Abstract:

This study evaluated the effect of different dietary n-6/n-3 polyunsaturated fatty acid (PUFA) ratios on modulating helper T (Th) and regulatory T (Treg) lymphocytes in mice with dextran sulfate sodium (DSS)-induced colitis. There were 3 control and 3 colitis groups in this study. Mice were fed for 24 d with an AIN-93G diet either with soybean oil (S), a mixture of soybean oil and low fish oil content (LF) or high fish oil content (HF). The ratio of n-6/n-3 PUFA in the LF diet was 4:1, and that in the HF diet was 2:1. The control groups drank distilled water while colitis groups provided 2% DSS in drinking water during day 15-19. All mice drank distilled water from day 20-24 for recovery and sacrificed on day 25. The results showed that colitis resulted in higher Th1, Th2, and Th17 and lower Treg percentages in the blood. Also, plasma haptoglobin and proinflammatory chemokines were elevated in colon lavage fluid. Colitic groups with fish oil had lower inflammatory mediators in the plasma and colon lavage fluid. Further, the percentages of Th1, Th2, and Th17 cells in the blood were lower, whereas Treg cell percentages were higher than those in the soybean oil group. The colitis group with n-6/n-3 PUFA ratio 2:1 had more pronounce effects than ratio 4:1. These results suggest that diets with an n-6/n-3 PUFA ratio of 2:1 or 4:1 regulate the Th/Treg balance and attenuate inflammatory mediator production in colitis. Compared to the n-6/n-3 PUFA ratio 4:1, the ratio of 2:1 was more effective in reducing inflammatory reactions in DSS-induced colitis.

Keywords: inflammatory bowel disease, n-3 polyunsaturated fatty acids, helper T lymphocyte, regulatory T lymphocyte

Procedia PDF Downloads 297